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This investigation is concerned with recovering a regression function
Ž .g x on the basis of noisy observations taken at uniformly spaced designi

points x . It is presumed that the corresponding observations are cor-i
rupted by additive dependent noise, and that the noise is, in fact, induced
by a general linear process in which the summand law can be discrete, as
well as continuously distributed. Discreteness induces a complication
because such noise is not known to be strong mixing, the postulate by
which regression estimates are often shown to be asymptotically normal.
In fact, as cited, there are processes of this character which have been
proven not to be strong mixing. The main analytic result of this study is
that, in general circumstances which include the non]strong mixing
example, the smoothers we propose are asymptotically normal. Some
motivation is offered, and a simple illustrative example calculation con-
cludes this investigation. The innovative elements of this work, mainly,
consist of encompassing models with discrete noise, important in practical
applications, and in dispensing with mixing assumptions. The ensuing
mathematical difficulties are overcome by sharpening standard argu-
ments.

1. Introduction. This paper is concerned with a fixed-design regression
problem in which the design points x , . . . , x and the responses Y , . . . , Yn0 nn n0 nn
are related as follows:

1.1 Y s g x q « , 0 F i F n.Ž . Ž .ni ni ni

Here « , 0 F i F n, are the random disturbances and g is a boundedni
real-valued function defined on a compact subset A of the real line R.

� 4Assume that for each n, « , 0 F i F n have the same distribution asni
j , . . . , j , where j , t s 0, "1, "2, . . . , is a general weakly stationary linear0 n t
process,

`

1.2 j s c Z .Ž . Ýt j tyj
jsy`

� 4Here Z is a martingale difference sequence relative to an increasingt
Ž 2 . 2 Ž .sequence of s-fields FF such that E Z s s almost surely a.s. for somet ty1 t
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Žs ) 0, where E denotes conditional expectation with respect to FF andt t
.similarly for variances . It is assumed that

`

< <1.3 c - `Ž . Ý j
jsy`

Ž ` 2 .and thus Ý c - ` . For background material on martingale differences,jsy` j
Ž . Ž .the reader is referred to the books of Hall and Heyde 1980 and Stout 1974 .

In the stronger case that the Z ’s are independent, identically distributedt
Ž . Ž . wi.i.d. random variables r.v.’s , the latter condition is equivalent see, e.g.,

Ž . Ž .Rosenblatt 1985 , pages 39 and 46, Priestley 1981 , page 143, or Bartlett
Ž . x1955 , page 157 to the assumption that the time series is well defined, is
stationary and possesses a spectral density. It thus encompasses stationary

Ž .autoregressive moving-average ARMA models and many other time series
Ž .of interest in the literature. The texts by Brockwell and Davis 1991 ,

Ž . Ž .Priestley 1981 and Box and Jenkins 1970 offer fine background material
regarding such linear time series.

The problem we face here is that of estimating the function g on the basis
Ž .of sample pairs x , Y , 0 F i F n. The estimate is to be a general linearni ni

smoother of the form

n

1.4 g x s w x Y ,Ž . Ž . Ž .Ýn ni ni
is1

Ž . Ž .where the weight functions w x s w x; x , i s 1, . . . , n, depend on x g˜ni ni n
Ž .A, on the fixed design points x s x , . . . , x and on the number of˜n n0 nn

observations n.
Ž .In the case that the j ’s satisfy the strong mixing or a-mixing condition, at

Ž .suitably normalized version of g x has been shown to be asymptoticallyn
Ž . wnormal by Roussas, Tran and Ioannides 1992 . See also Boente and Fraiman

Ž . x1990 . Conditions for general linear processes to be strong mixing may be
Ž . Ž .found, for example, in Athreya and Pantula 1986 , Gorodetskii 1977 , Pham

Ž . Ž .and Tran 1985 and Withers 1981a, b . However, all works known to us
wrequire that the Z variables be continuously distributed or at least Athreyat

Ž . xand Pantula 1986 , Theorem 2 satisfy the property that a finite segment of
Ž .the distribution of the sum 1.2 has a range on which it is absolutely

continuous. Yet a great number of processes j and even Y are naturallyt t
quantized or alternately quantized by rounding of the observations. Any

Ž .tabular time records, such as those in Part 5 of Box and Jenkins 1970 , have
already been rounded or truncated. Some of these, such as closing stock
prices, are, by their nature, discrete. Asymptotic normality of nonparametric

Ž .estimates 1.4 for processes with disturbances as the ones discussed here has
not hitherto been established because such noises are not known to be strong

Ž .mixing. Arguments in Athreya and Pantula 1986 would seem to imply that
whenever the Z process is discrete, strong mixing is in doubt. The centralt
advance of the present work is that nevertheless, even in nonmixing cases,
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Ž .under conditions to be stated, smoothers 1.4 , suitably normalized, are now
confirmed to be asymptotically normal.

Ž . Ž .The basic fixed-design stochastic sequence model 1.1 and 1.2 is not new.
Ž .In the case of independent noise, it goes back to Priestley and Chao 1972 ,

Ž .Gasser and Muller 1979 and others. In the case of dependent samples, Chu¨
Ž .and Marron 1991 have considered a similar model, theirs being only slightly

less general in that they postulated the disturbances to be ARMA; they were
concerned with bandwidth estimation, not convergence of the regression

Ž .estimate. Hardle and Tuan 1986 proved asymptotic normality of M-¨
Ž .smoothers. Truong 1991 obtained optimal rates of convergence for kernel

Ž .estimators based on local averages. Hardle and Tuan 1986 and Truong¨
Ž .1991 studied the case when the noise process is a general linear process.

Ž .Burman 1991 investigated the problem of estimating a regression function
with nonrandom design points and dependent errors. In the random-design

Ž . Ž .case, Truong and Stone 1992 and Tran 1993 obtained optimal rates of
convergence of local average estimators under a-mixing conditions. Roussas

Ž .and Tran 1992 have established asymptotic normality of recursive regres-
sion estimators under related conditions.

The last mentioned work offers motivation for this type of model in an
Ž .economic context of an enterprise trying to infer the profit g x at level x of

some controllable variable, such as price, fat content of hamburgers and so
on. Imagine that the level of this variable is changed on a periodic basis. The
profit, being influenced by other factors such as weather, unemployment and
so forth, one can anticipate that it has temporal dependence. In this context,
the fixed-design model here makes even more sense to us, because it pre-
sumes the decision-maker is varying his or her control, x, in a systematic,
rather than random, manner. In connection with applicability of this line of
inquiry, there are a number of works bringing nonparametric notions to bear
on generalized linear processes by investigators affiliated with economics

w Ž . Ž .departments e.g., Andrews 1984 , Robinson 1983, 1987 and White and
Ž .xDomowitz 1984 , although these studies do not tie the model to an applica-

Ž .tion. Andrews 1984 is intrigued by AR processes which are not strongly
Ž .mixing, and White and Domowitz 1984 are concerned with conditions

Ž .implying strong mixing and asymptotic normality. Pham 1986 investigates
mixing properties in a setting of bilinear and generalized random coefficient

Ž .AR models. Hesse 1990 shows that, under conditions general enough to
include the same example of an AR sequence which is not strong mixing as in
our Section 4, the pth quantile admits a Bahadur-type representation. In
brief, this AR example has attracted enough attention that demonstration of
asymptotic normality in regression under such disturbances may compound

Ž .the interest already expressed. Finally, Stoyanov and Robinson 1991 con-
cern themselves with semiparametric and nonparametric inference in the
framework of continuous-time stochastic processes.

Another conceivable setting in which our estimation model might be
appropriate is that of a ship taking sonar or plumb readings of depth, as it
travels in a fixed direction, or a traveling aircraft taking geodesic readings by
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radar. Then the ideal readings might be disturbed by position-dependent
error influenced by currents, winds, temperature, moisture in the air and so

Ž .forth. Digitizing of the observations would put us into the framework of 1.1
Ž .and 1.2 , if the disturbances could be viewed as arising from linear time

series.
The main result is contained in Theorem 2.1. The assumptions involved

are relatively simple and not substantially more complicated than those used
w Ž .xeven in the i.i.d. case see, e.g., Georgiev 1988 .

This paper is organized as follows: the basic notation, assumptions and
central result are stated in Section 2. The proof is deferred to Section 3,

wand the concluding section offers an example of a function taken from Chu
Ž .xand Marron 1991 contaminated by a linear noise process which is not

strong mixing. Computational evidence suggests that nevertheless the linear
smoother provides an adequate approximation consistent with Theorem 2.1 of

wthis study. The technique used here is reminiscent of Gordin’s see Gordin
Ž . Ž . x1969 and Hall and Heyde 1980 , Theorem 5.1 . However, our method of
proof is different; we show that the statistics involved are martingale arrays
instead of approximating them by martingales. The letter C will be used to
denote constants whose values may vary and are unimportant. All limits are
taken as n ª ` unless indicated otherwise.

2. Assumptions and statements of main results. For simplicity, we
Ž .will consider the estimate g x with x g A, where A is a compact set whichn

w xwe will take to be 0, 1 without loss of generality. The weight functions are of
the form

2.1 w x s x y x rh K x y x rh ,Ž . Ž . Ž . Ž .Ž . Ž .ni ni n , iy1 n ni n

where x , i s 0, 1, . . . , n q 1, are given design points, K is a kernel functionni
� 4and h is a sequence of bandwidths tending to 0. We will write h as h forn n

brevity. Denote

2s x s Var g x .Ž . Ž .n n

Omitting the argument x for simplicity, we have

n n n
2s s Var w Y s Var w « s Var w jÝ Ý Ýn ni ni ni ni ni iž / ž / ž /

is1 is1 is1

n
2s Var j w q 2 w w Cov j , j ,� 4Ž . Ý Ý1 ni ni n j i j

is1 1Fi-jFn

2.2Ž .

where

`
2Cov j , j s Cov j , j s s c c .� 4 � 4 Ýi j i iyŽ iyj. u uyiqj

usy`
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Ž .Let m s m n ­` be a nondecreasing integer-valued function and define
m

m2.4 j s c Z ,Ž . Ýt j tyj
jsym

n
2m m2.5 s s Var w j .Ž . Ž . Ýn ni iž /

is1

ASSUMPTION 1. Suppose:

Ž . ` < <i Ý c - `;jsy` j
Ž . 2 2 Ž < <2qd .ii E Z s s for every t and sup E Z s M a.s. forty1 t y`- t -` ty1 t

some d ) 0 and M - `.

< <ASSUMPTION 2. Suppose C rn F x y x F C rn for all 1 F i F n,1 ni n, iy1 2
1 F n - `.

ASSUMPTION 3. The kernel function K is nonnegative, bounded and con-
Ž . Ž .tinuous almost everywhere on R and has a majorant; that is, K x F H x ,
w .all x g R, where H is symmetric, bounded, nonincreasing on 0, ` with

Ž .HH y dy - `, where the integral is over R.

ASSUMPTION 4. Suppose:

Ž .i nh ª `;
Ž . 2ii lim inf nhs G C for some positive constant C.n

We now proceed with the formulation of the main result of the paper.

THEOREM 2.1. For each x g A, a compact subset of R, under Assumptions
1]4,

g x y Eg xŽ . Ž .n n ª N 0, 1 .Ž .ds xŽ .n

3. Some auxiliary results. We will implicitly assume that Assumptions
1 to 4 are satisfied unless otherwise stated.

LEMMA 3.1. Suppose h ª 0 and nh ª ` and Assumptions 2 and 3 are
satisfied. Then

n

3.1 x y x rh K x y x rh ª K y dy,Ž . Ž . Ž . Ž .Ž .Ý Hni n , iy1 ni
is1
n

2 23.2 x y x rh K x y x rh ª K y dy ) 0.Ž . Ž . Ž . Ž .Ž .Ý Hni n , iy1 ni
is1

Ž .This is the lemma on pages 5 and 6 in Georgiev and Greblicki 1986 .
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LEMMA 3.2. There exist two positive constants CU and CU such that1 2
n

U U2C F nh w F CÝ1 ni 2
is1

for all n.

Ž .PROOF. By 3.1 ,
n

3.3 w ª K y dy.Ž . Ž .Ý Hni
is1

Also,
y1 y1w F C nh K x y x rh F C nh ,Ž . Ž . Ž .Ž .ni 2 ni

so that
y13.4 max w F C nh .Ž . Ž .ni

1FiFn

Then
` n

y123.5 w F max w w F C max w F C nh .Ž . Ž .Ý Ýni ni ni ni
1FiFn 1FiFnns1 is1

Also,
n n 2x y x x y xni n , iy1 ni2w s KÝ Ýni ž /h his1 is1

nC x y x x y x Cni n , iy1 ni2G K G ,Ý ž /nh h h nhis1

3.6Ž .

Ž .where the last inequality is obtained by using Lemma 3.1. Relations 3.6 and
Ž .3.5 complete the proof. I

LEMMA 3.3. It holds that
22 mlim nh s y s s 0.Ž .Ž .n n

Ž . Ž . Ž . � 4PROOF. Define C k and C k as follows: C k s Cov j , j andm i iqk
Ž . � m m 4C k s Cov j , j . Thenm i iqk

< <ny k
23.7 s s C k w w .Ž . Ž .Ý Ýn ni n , iqk

< < is1k Fny1

Ž . 2 Ž m.2 Ž .Equation 3.7 still holds if s is replaced by s as defined in 2.5 andn n
Ž . Ž . Ž . Ž .C k is replaced by C K . By 3.3 and 3.4 ,m

n
22 ms y s F max w w C k y C kŽ . Ž .Ž . Ý Ýn n n j ni mž / ž /1FjFn is1 < <k Fny1

y1F C nh D k ,Ž . Ž .Ý m
< <k Fny1
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Ž . Ž . Ž .where D k s C k y C k . The proof will be completed by showing thatm m
< Ž . <Ý D k ª 0. Clearly,< k < F ny1 m

` `
2 2C k s s c c s s c c ,Ž . Ý Ýj jqk j jq < k <

jsy` jsy`

< <my k¡
2 < <s c c , for k F 2m ,Ý j jq < k <~C k sŽ .m jsym¢ < <0, for k ) 2m.

Thus

¡ 2 < <s c c q c c , for k F 2m,Ý Ýj jq < k < j jy < k <ž /~D k sŽ . j-ym j)mm ¢ < <C k , for k ) 2m.Ž .

Hence

`
2 < < < <3.8 D k F s c c q C k .Ž . Ž . Ž .Ý Ý Ý Ým j jž /

< < < < jsy` < <k Fny1 j )m k )2 m

Ž . ` < Ž . <The right-hand side of 3.8 tends to 0 since Ý C k - `, by Assumptionksy`

1. I

Ž m.LEMMA 3.4. It holds that s rs ª 1.n n

PROOF. By Lemma 3.3,

22 mnh s y sŽ .Ž .n n ª 02nhsn

2 Ž . Ž 2 Ž m.2 . 2since nhs is bounded by Assumption 4 ii . Thus s y s rs ª 0, fromn n n n
which the lemma follows. I

LEMMA 3.5. It holds that

y1ms max w ª 0.Ž .n ni
1FiFn

PROOF. By Lemma 3.4, to establish the proof, it is sufficient to show that
y2 Ž .2 Ž 2 .y1s max w ª 0. This follows since s max w staysn 1F iF n ni n 1F iF n ni

Ž . Ž .bounded, as n ª `, by Assumption 4 ii , and max w ª 0 by 3.4 . I1F iF n ni
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For n ) 2m, define cm byni

mqi¡
ma c , for 1 y m F i F m ,Ý n j jyi

js1
m

mm ~ a c , for m q 1 F i F n y m,Ýc s n , iqj jni
jsym

nyiqm
ma c , for n y m q 1 F i F n q m,Ý n , nyj nyiyj¢ js0

m Ž m.y1where a s s w .ni n ni

LEMMA 3.6. It holds that
< m <max c ª 0.ni

1ymFiFnqm

PROOF. Using the definition of cm ,ni
`

y1m m< < < <max c F s max w c ª 0,Ž . Ýž /ni n ni i
1ymFiFnqm 1FiFn isy`

Ž .by Assumption 1 i and Lemma 3.5. I

Define
n n

y1 m m m3.9 a s s w , T s a j , T s a j .Ž . Ž . Ý Ýni n ni n ni i n ni i
is1 is1

Thus
3.10 Var T m s 1.Ž . Ž .n

Also, define A bynk

kym
m3.11 A s c Z , 1 F k F n q 2m.Ž . Ýnk ni i

is1ym

LEMMA 3.7. For all n ) 2m,

A s T m .n , nq2 m n

m Ž .PROOF. From the definition of j in 2.4 ,t
n m

m mT s a c Z .Ý Ýn nk j kyj
ks1 jsym

Set i s k y j. Then 1 y m F i F n q m since 1 F k F n and ym F j F m.
� 4Also, 1 y i F j F n y i, whereas ym F j F m. Thus max 1 y i, ym F j F

� 4min m, n y i . Consequently,
nqm

mT s g i , m , n Z ,Ž .Ýn i
is1ym



FIXED-DESIGN REGRESSION 983

where
� 4min m , nyi

mg i , m , n ' a c .Ž . Ý n , iqj j
� 4jsmax 1yi , ym

� 4 � 4If 1 y m F i F m, then max 1 y i, ym s 1 y i and min m, n y i s m
since n ) 2m. In this case,

m
m mg i , n , m s a c s c .Ž . Ý n , iqj j ni

js1yi

� 4 � 4If m q 1 F i F n y m, then max 1 y i, ym s ym and min m, n y i s m
because n ) 2m. Therefore,

m
m mg i , n , m s a c s c .Ž . Ý n , iqj j ni

jsym

� 4 � 4If nymq1F iFnqm, then max 1yi, ym sy m and min m, ny i s
n y i and then

nyi
ny i mg i , n , m s a c s c ,Ž . Ý n , iqj j ni

jsym

again by using the fact that n ) 2m. I

Ž .The following lemma follows from Theorem 2.5 in Helland 1982 .

� 4LEMMA 3.8. Let z ; k s 1, 2, . . . , n s 1, 2, . . . be an array of randomnk
Ž . �variables defined on a probability space V, FF, P and let FF ; k s 0, 1, . . . ,nk

4n s 1, 2, . . . be an array of s-fields such that FF ; FF ; FF for each n andn, ky1 nk
� 4k G 1. Suppose z is a martingale difference array adapted to FF ; that is,nk nk

� 4z is FF -measurable and E z s 0 a.s. for k G 1 and n G 1. For annk nk ky1 nk
� 4increasing sequence k of integers, suppose thatn

kn
2qd< <3.12 E z ª 0,Ž . � 4Ý ky1 nk P

ks1

kn

� 43.13 Var z ª 1.Ž . Ý ky1 nk P
ks1

Then

z q ??? qz ª N 0, 1 .Ž .n , 1 n , k dn

Ž .LEMMA 3.9. Let A be given by 3.11 . Thennk

A ª N 0, 1 .Ž .n , nq2 m d
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PROOF. First,
nqm

2qdm< <E c Z� 4Ý ky1 nk k
ks1ym

nqm
22qd dm m< < < <F max E Z max c c .Ž .Ýky1 k nk nkž /

1ymFkFnq2 m 1ymFkFnq2 m ks1ym

Ž .The right-hand side tends to 0 by Assumption 1 i , Lemma 3.6 and by
nq2 m Ž m .2 y2 Ž . Ž .noticing that Ý c s s by 3.10 . Thus 3.12 of Lemma 3.8 isks1ym nk

satisfied with z s cm Z and k s n q 2m.nk nk k n
nqm � m 4 Ž .Second, Ý Var c Z s 1 by 3.10 and Lemma 3.7 and, conse-ks1 ky1 nk k

Ž . 0 � m 4quently, 3.13 is satisfied. It is easy to see that Ý Var c Z ª 0.ky1ym ky1 nk k
The lemma follows by a simple argument using Lemma 3.8.

LEMMA 3.10. It holds that
2mE T y T ª 0.Ž .n n

PROOF. Define q and q by1n 2 n

2 2n1 1
q s 2 y E w j ,Ý1n ni im ž /ž /s sn n is1

2n2
mq s E w j y j .Ž .Ý2 n ni i i2m ž /sŽ . is1n

Then, by the C -inequality,r

2mE T y T F q q q .Ž .n n 1n 2 n

Ž .By Lemma 3.2, Assumption 1 and 3.4 ,
2 2n n ` n

y12 2 < <E w j F C w q 2s max w c w F C nh .Ž .Ý Ý Ý Ýni i ni n j u niž / ž /ž / ž / 1FjFn y`is1 is1 is1

However, by Assumption 4,
2C 1 1 y12m 2q F y F C 1 y s rs nhs ,Ž .Ž . Ž .1n n n nmž /nh s sn n

which tends to 0 by Lemma 3.4. After an easy but tedious computation and by
using Assumption 1,

n n
y2m 23.14 q F C s w q max w w o 1 ,Ž . Ž .Ž . Ý Ý2 n n ni n j niž /1FjFnis1 is1

Ž . Ž .which tends to 0 by Lemma 3.2 and relations 3.4 and 3.3 . The presence of
Ž . Ž .the o 1 term in 3.14 is obtained by using Assumption 1. I

PROOF OF THEOREM 2.1. The proof follows from Lemmas 3.9 and 3.10. I
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4. An application.

EXAMPLE 4.1. Let j be the first-order autoregressive process defined byt

14.1 j s j q Z ,Ž . t ty1 t2

where Z ’s are independent symmetric Bernoulli r.v.’s taking values 1 andt
y1. So that EZ s 0 and s 2 s 1. It is well known that j is absolutelyt t
continuous and does not satisfy the strong mixing condition. This follows

Ž . Ž . Ž .from Theorem 5.2 in Withers 1981b ; also, see Andrews 1984 . Rewrite 4.1
as a general linear process as follows:

` 0, for j F y1,
4.2 j s c Z , c sŽ . Ýt j tyj j yj½ 2 , for j G 0.jsy`

w xTake A s 0, 1 , and, for illustrative purposes, we will simplify things by
w xtaking the kernel to be the U y1, 1 p.d.f.; that is,

14.3 K x s I x ;Ž . Ž . Ž .wy 1, 1x2

Ž .the weights as in 2.1 with the further restriction that

i
yu4.4 x s , i s 0, 1, . . . , n , and h s n , 0 - u - 1.Ž . ni n

Then

1 x y irn 1Ž .
yu4.5 w x s K s I x ,Ž . Ž . Ž .ni Ž < xyŽ i r n. < F n .1yu yu 1yuž /n n 2n

and the resulting estimate is
n1

yug x s I x Y .Ž . Ž .Ýn Ž < xyŽ i r n. < F n . ni1yu2n is1

For this, it will be shown that

g x y Eg xŽ . Ž .n n ª N 0, 1 , x g 0, 1 .Ž . Ž .dsn

Ž .This will be done by showing that Assumption 4 ii holds, since it is clear that
Ž .Assumptions 1, 2 and 4 i hold.

w xLEMMA 4.1. Suppose 0 - u - 1, 0 - x - 1 and K is the uniform y1, 1
kernel, and define

1 x y irn x y jrnŽ . Ž . yŽ jy1.Q ' K K 2 .Ýn 1yu yu yuž / ž /n n n1Fi-jFn

Then
1lim Q s .n 2
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PROOF. We have

n n1 x y irn x y jrnŽ . Ž . yŽ jyi.Q s K K 2Ý Ýn 1yu yu yuž / ž /n n nis1 jsiq1

1 1 1
yŽ jyi.s 2 ,Ý Ý1yu ž / ž /2 2n S S1 2

where

� 1yu 1yu 4S s i : nx y n F i F nx q n and 1 F i F n y 11

� 1yu 4 � 1yu 4s i : max nx y n , 1 F i F min nx q n , n y 1� 4
� 1yu 1yu 4s i : nx y n F i F nx q n for sufficiently large n ,

and, for each i g S ,1

S s j: nx y n1yu F j F nx q n1yu and i q 1 F j F n� 42

� 1yu 4 � 1yu 4s j: max nx y n , i q 1 F j F min nx q n , n� 4
s j: i q 1 F j F nx q n1yu for sufficiently large n.� 4

Therefore, by simple calculations,

1
yjQ s 2 i 2Ý Ýn 1yu4n 1yu 1yu 1yunxyn FiFnxqn iq1FjFnxqn

1 1 1
1yus 2n y 1 y ª . I1y u1yu 2 nž / 24n 2

LEMMA 4.2. lim inf nhs2 G C for some positive constant C.n

Ž .PROOF. From the expression of the c ’s in 4.2 ,j

` ` 4
2 yj4.6 Var j s c s 4 s ,Ž . Ž . Ý Ý1 j 3js0 js0

and, with 1 F i - j F n,

` ` 4 1
4.7 Cov j , j s c c s c c s .� 4Ž . Ý Ýi j u uyiqj u uqŽ jyi. jyiž / ž /3 2usy` us0

Ž . Ž . Ž .Furthermore, by 4.2 , 4.5 , 4.7 and the definition of Q in Lemma 4.1,n

w w Cov j , j� 4Ý ni n j i j
1Fi-jFn

` 4Qns w w c c s .Ý Ýni n j u uyiqj 1yuž / 3nusy`1Fi-jFn

4.8Ž .
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Ž .Also, by means of 4.5 ,

n n 1
2w s I xŽ .Ý Ý ini 2Ž1yu . yu4n xy Fnis1 is1 ž /n

1 2n1yu q 1
s 1 s .Ý2Ž1yu . 2Ž1yu .4n 4nS1

4.9Ž .

Ž . Ž . Ž . Ž . Ž .Therefore, by way of 2.2 , 2.3 , 4.6 , 4.8 , 4.9 and Lemma 4.1,

4 2n1yu q 1 8Qn2s s q ,n 2Ž1yu . 1yuž /3 4n 3n

so that

2 1 8Q 2 4n2 1yu 2nhs s n s s q q ª q s 2,n n 1yu3 3 3 33n

which completes the proof of the lemma. I

This section concludes with some experimentation, the objective of which is
Ž .to see if, with a moderate number of data, under the fixed-design model 1.1

Ž .and 1.2 and the postulates of this section, we can recover a regression
function g with accuracy suggested by the normal approximation. The re-

Ž .gression function, taken from Chu and Marron 1991 , is

334.10 g x s 50 x 1 y x ,Ž . Ž . Ž .

Ž .the domain A of g is the unit interval and the non-a-mixing disturbances
Ž . Ž . 2are as determined by 4.1 and 4.2 , s being 1. The weights of our linear

Ž . Ž .smoother are as given by 2.1 using the kernel 4.3 and the oft-selected
value u s 1r5.

We need a numerical value for s to use Theorem 2.1 as a means to get an
Ž . Ž . Ž .confidence interval for g x . From 2.2 and accounting for the kernel 4.3 ,

n
2s s Var j w q 2 w w Cov j , j� 4Ž . Ý Ýn 1 ni ni n j i jž /

is1 1Fi-jFn

4r5w xn1
s Var j 1 q 2 Cov j , j ,� 4Ž . Ý Ý1 i j24r5 ž /4r5 4r5 4r5w x2 nŽ . w x w x w xisy n q1 y n q1Fi-jF n

w 4r5 xwhere n designates the integer part of the indicated number. Use that
s s 1 and for j G 0,

4
yt ytyj yj4.11 Cov j , j s c c s 2 2 s = 2 .� 4Ž . Ý Ý0 j t tqj 3tG0 tG0
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Ž .Then, at last, conclude from 4.11 that

4 2 1
2s s q s .n 4r54r5 4r5 w xw x w x n3 ? 2 n 3 ? 2 nŽ . Ž .

This estimate is predicated on the assumption that x is situated so thatni
< 4r5 <it is further than n points from either endpoint of A.

Figure 1 shows the results of two independent simulations under the
parameters described above for n s 2000. The curve in the center is the true

Ž .regression 4.10 , and it is bordered above and below by functions

g " d , where d s 2 s f 9.56 = 10y2 .2000 2000

The factor 2 multiplies the theoretical standard deviation as a crude way to
w Ž .account for bias, which is considerable because g x depends on points at2000

FIG. 1.
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TABLE 1
Results of a computational experiment

Entry at 0.25 at 0.5 at 0.75

n s 200

Ž .g x 0.3296 0.78125 0.3296
m 0.3596 0.7282 0.33255n
s 0.2392 0.2381 0.2319n̂
2 s 0.288 0.288 0.288n

n s 500

Ž .g x 0.3296 0.78125 0.3296
m 0.3185 0.7290 0.3646n
s 0.1522 0.1697 0.1894n̂
2 s 0.1665 0.1665 0.1665n

n s 1000

Ž .g x 0.3296 0.78125 0.3296
m 0.3301 0.7470 0.3460n
s 0.1305 0.1222 0.1182n̂
2 s 0.1262 0.1262 0.1262n

0.2 xa distance of 0.22 , 1r2000 on either side of x . In any event, the assump-
tion that the square of the bias is the same order of magnitude as the
standard deviation lies at the heart of the principle whereby a bandwidth
rate of u s 1r5 is derived. In generating the data, the disturbance simulator
is first ‘‘exercised’’ for 100 observations so that it approximates stationary
behavior when its points are put to use.

In further experimentation, for various sample sizes n, 100 replications of
this experiment were performed and their means and sample variances, for
each fixed n, were computed at domain points x s 0.25, 0.5 and 0.75. The
results of these calculations are related in Table 1, where they can be
compared to their theoretical values. In Table 1, m and s are the sampleˆn n
means and variances, respectively.
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