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EMPIRICAL PROCESS APPROACH IN A TWO-SAMPLE
LOCATION–SCALE MODEL WITH CENSORED DATA1

BY FUSHING HSIEH

National Taiwan University

To compare two samples of possibly right-censored failure times, a
location]scale model, without assuming the distribution form, is consid-
ered for the log-transformed data. This new accelerated failure time model
is introduced to accommodate the possible heterogeneity between within-
treatment variations of the two groups considered. One distinct feature of
this model is that, with the presence of heterogeneity, statistical infer-
ences on both location and scale parameters based on log-rank tests or
linear rank tests will become inappropriate. In this paper we propose the
empirical process approach to construct a regression setup derived from
the theory of strong approximation of the Kaplan]Meier product]limit

Ž .empirical quantile process. A generalized least squares GLS estimator is
obtained and shown to be semiparametric efficient. Also it is shown that
this estimation is adaptive for a special case. At the end, results on the
two-sample setting are applied to the K-sample problem.

1. Introduction. To evaluate treatment effects on the hazard function
in comparative survival and life testing studies, the Cox proportional hazard
model has been the most successful and widely used model for the past two
decades. On the other hand, as a useful alternative, the accelerated failure
time model, which regresses the logarithm of the failure time over the
covariates in the same studies, bears the treatment effects directly related to

w Ž .the time scale of the response variables. See Wei 1992 for a nice review on
xthis model. For the latter model, recently theoretical justifications for the

linear rank tests employed as estimating equations are intensively and
Ž . Ž . Ž .successfully studied in Tsiatis 1990 , Ritov 1990 and Ying 1993 , among

many others. Given further advances in computational related issues, more
applications of this linear regression model with censored data could be
expected in failure time related research.

However, most of the models considered in the literature related to this
topic are homogeneous models in the sense that the error variables in the
linear regression model are assumed to be identically distributed with un-
known distribution form. This assumption could be very unrealistic. From the
parsimonious point of view, the unequal within-treatment variations corre-
sponding to different covariates are frequently encountered in medical re-

Ž .search. This has been emphasized in O’Brien 1988 . Further, in contrast to
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heteroscedastic normal regression studies, the homogeneity assumption could
become a limitation for its potential applications, especially when a predic-
tion of survival probability is needed given a specific covariate.

The models considered here will allow for unequal within-treatment varia-
tions between different groups. A treatment variable having this type of
inequality is said to have heterogeneous effects. In this paper, we will focus
on the two-sample and K-sample problems, while the heterogeneous type of

Ž .censored regression model is studied and reported in Hsieh 1996 in which a
totally different way of constructing empirical processes adapting to the
regression setup is required.

More specifically, for the two-sample problem, the accelerated failure time
Ž . Ž .models discussed in Louis 1981 and Wei and Gail 1983 are homogeneous

models in the sense that each becomes a two-sample location shift model
after having log-transformation on the data. This can be seen from the
following generalized model, which will be kept in mind throughout this
paper,

g
1 T s T rl ,Ž . Ž .1 0

where T and T are random variables of failure times in two treatment1 0
Ž .groups, respectively. After log-transformation, model 1 is equivalent to the

following two-sample location]scale model:

2 log T s g log T y log l .Ž . Ž .1 0

In terms of distributions, the above model is also equivalent to assuming
x y m

3 F x s F ,Ž . Ž .1 0 ž /s

where F is the distribution function of random variable log T , i s 0, 1, andi i
m s log l and s s 1rg . If g s 1, it becomes the location]shift model and it is

Ž .called the scale]change model in Wei and Gail 1983 . Hence a treatment
variable having heterogeneous effects means that s / 1. Parsimoniously and
practically, it is necessary to test the homogeneity hypothesis s s 1 before
the location]shift model can be further used.

One significant feature of this paper is that the inference techniques
employed in the aforementioned references based on log-rank test or linear
rank test statistics turn out to be inappropriate for the location]scale model
considered here. The reason is that the pooled rank vector or order statistics
of the two samples generated from two distributions with different location
and scale parameters will not carry useful information of either location or

ˇw Ž . Ž . xscale parameters. See Hajek and Sidak 1967 , page 94, or Moses 1963 .´ ´
More precisely speaking, the linear rank test statistics used as estimating

Ž . Ž .equations in Tsiatis 1990 and Ying 1993 , in general, will not be a martin-
gale with the presence of the heterogeneity. Therefore, different estimation
approaches are called for the inference in this location]scale model.

The estimating approach proposed here is based on the theory of empirical
Ž .processes and is called the empirical process approach EPA . The first step of

this approach is to construct a regression setup based on the strong approxi-
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Ž .mations of the Kaplan]Meier product]limit PL empirical quantile process
wpertaining to the two samples of log-transformed life times. For a compre-

Ž . xhensive account of this theory, see Chapter 8 of Csorgo 1983 . The second¨ ˝
step is estimate the parameters of interest m and s by using the generalized

Ž .least squares GLS estimator, a type of weighted least squares estimator.
Ž .For more applications of the EPA approach, see Hsieh 1995 , Hsieh and

Ž . Ž .Turnbull 1996 and Hsieh and Turnbull 1996 .
From the aspects of computation, the EPA approach needs only the esti-

mate of a density quantile function in the construction of a covariance matrix
for the weighting purpose and for the asymptotic precision of the GLS
estimator derived from this approach. This relative simplicity certainly gives
GLS estimation advantages over the M-estimator approach proposed in Ritov
Ž .1990 if an efficient estimator is considered. The reason is that, for obtaining
an efficient estimator, estimated score functions are involved with the estima-
tion of the density function as well as its derivative. Hsieh and Manski
Ž .1987 , in their Monte Carlo studies for complete data, showed that the
adaptive estimator constructed by using the score estimate is severely sensi-
tive to the smoothing parameters. Here we expect that even more severe
sensitivity will be encountered with the presence of censored data.

In regard to the asymptotical properties, this estimation problem is shown
Ž . Ž .to be adaptive in the sense of Bickel 1982 when condition 22 holds, in

which the two censoring mechanisms are assumed to give the same censoring
schemes on the two samples. Further, in general, the GLS estimator is shown
to be semiparametric efficient in the sense of achieving the Fisher informa-
tion bound.

Further the results of the two-sample problem are easily extended to the
K-sample problem. The key point for this extension being possible is that
independent Kaplan]Meier PL empirical quantile processes will result in
independent generalized Kiefer processes in their strong approximations. So
that, by taking one treatment group as a baseline, there are K y 1 pairs of
GLS estimators and their covariance matrix can be derived without much
effort. This type of problem is important in its own right. In particular, the

Ž .semiparametric version of analysis of variance ANOVA with censored data
should be of interest from a statistical application point of view.

The paper is organized as follows. In Section 2, the empirical process
approach is described and the GLS estimator is derived and its asymptotic
properties are also given. A small simulation study is reported for comparing
the performance of the GLS estimator and the log-rank estimator in both
homogeneous and heterogeneous cases. In Section 3, the asymptotical vari-
ance and the semiparametric efficiency of the GLS estimator are discussed. In
Section 4, the EPA approach is applied to K-sample problems. All the proofs
of theorems and corollaries are given in the Appendix.

2. The empirical process approach. There are two sets of random
Ž .samples X , C g R = R, i s 0, 1, with sample sizes n and n , respec-i j i j 0 1

Ž .tively, and we observe X n C , D , where D s 1 . Here the ran-i j i j i j i j Ž X F C .i j i j
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dom variable X , i s 0, 1, can be log T , i s 0, 1, or any other randomi j i
variables even not related to life time at all. We assume that the joint density

Ž .of X , C relative to the Lebesgue measure on R = R is given byi j i j
Ž . Ž .f X h C . Let F and H , i s 0, 1, be distribution functions with densityi i j i i j i i

functions f and h , respectively. Denote the Kaplan]Meier product]limiti i
˜Ž .PL estimators F of F pertaining to the set of observable samplesi, n ii ỹ1�Ž . 4X n C , D , 1 F j F n . And the PL empirical quantile functions Fi j i j i j i i, n i

are defined by
ỹ1 ˜F u s inf t : F t G u , 0 - u - 1.Ž . Ž .½ 5i , n i , ni i

� Ž .Furthermore, the notion of a generalized Kiefer process K s, t , 0 F s F 1,
4 Ž .t G 0 is recalled here from Csorgo 1983 , page 118. The latter is a separable¨ ˝

Gaussian process such that:
w xi K 0, t s K 1, t s K s, 0 s 0 for s g 0, 1 , t G 0,Ž . Ž . Ž . Ž .

4Ž .
ii EK s, t s 0, EK s, t K sX , tX s t n tX

G s, sX ,Ž . Ž . Ž . Ž . Ž . Ž .
Ž X.where G s, s is the covariance function of a separable Gaussian process

� Ž . 4 Ž . Ž . � Ž . 4B s , 0 F t F 1 , with B 0 s B 1 s 0. The K s, t , 0 F s F 1, t G 0 is a
� Ž . 4 Ž X.Kiefer process if B s , 0 F t F 1 is a Brownian bridge, that is, G s, s s s n

sX y ssX.
We assume that the following smoothness and tail assumptions are satis-

fied by distributions F , i s 0, 1, throughout this paper.i

Ž .A1. The distribution function F is twice differentiable on t , T , whereF F
� Ž . 4 � Ž . 4 Xy` F t s sup x: F x s 0 and ` G T s inf x: F x s 1 and F sF F

Ž .f ) 0 on t , T .F F
A2. For some g ) 0,

X y1f F uŽ .Ž .
5 sup u 1 y u - g .Ž . Ž . 2 y1f F uŽ .Ž .0-u-1

Ž .By applying Theorem 8.4.2 in Csorgo 1983 and assuming the location]scale¨ ˝
Ž .model 3 , we have the strong approximation for the PL empirical quantile

ỹ1functions F , i s 0, 1, in the following form:i, n i

ỹ1 y1F u s m q s F uŽ . Ž .1, n 01

y1q sr n f F u K u , n q « a.s.Ž . Ž .Ž .Ž .1 0 0 1 1 1, n1

6Ž .

and
y1 y1 y1˜7 F u s F u q 1r n f F u K u , n q « a.s.Ž . Ž . Ž . Ž . Ž .Ž .Ž .0, n 0 0 0 0 0 0 0, n0 0

Ž . � 4y1 y1uniformly on d , T with n s n n n , T - min 1, T , T and d sn 0 1 H ŽF . H ŽF . n0 0 1 1y2r3Ž .5n log n , where the two generalized Kiefer processes K , i s 0, 1, arei
Ž . Ž X X. Žindependent and each has covariance function EK s, t K s , t s t ni i

X. Ž X.t G s, s withi
X dusnsX X8 G s, s s 1 y s 1 y s ,Ž . Ž . Ž . Ž .Hi 2 y10 1 y u 1 y H F uŽ . Ž .Ž .Ž .i i
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and the two error terms « and « are of order1, n 0, n1 0

1r4 3r4y3r4O n log log n log nŽ . Ž .Ž .
almost surely.

Žm. Ž .TLet u s u , . . . , u with d - u - T, 1 F i F m. For notational sim-1 m n i
plicity, we suppress the dependence of vector uŽm. on m, that is, uŽm. s u.

Ž . Ž Ž . Ž ..TAlso let G u be the m = 1 vector G u , . . . , G u for G being any1 m
function on u or stochastic process having time scale u. We denote as DŽGŽu..

Ž .the diagonal matrix with main diagonal vector G u . However, we further
Ž Ž y1Ž ...denote the diagonal matrix D s D f F u since it is frequently neededq 0 0

from here on.
Ž . Ž .With 6 and 7 at u, we then have a regression setup with measurement

error on the covariate as follows:

ỹ1 y1 y19 F u s m q s F u q srn D K u, n q « a.s.,Ž . Ž . Ž . Ž .1, n 0 1 q 1 1 1, n1 1

ỹ1 y1 y110 F u s F u q 1rn D K u, n q « a.s.Ž . Ž . Ž . Ž .0, n 0 0 q 0 0 0, n0 0

The following lemma gives a decomposition for the covariance matrices of
Ž . Ž .K u, n and K u, n . These decompositions will enable us to calculate the1 1 0 0

finite sample approximated precision of the GLS estimator of m and s
derived from the above regression setup and its asymptotical covariance
matrix in the next section.

LEMMA 2.1. Let the covariance matrices of Gaussian random vectors
Ž .K u, n be L , i s 0, 1. Then, for i s 0, 1,i i i

11 L s D Cy1D Ž i. CTy1D ,Ž . i Ž1yu. ŽC t . Ž1yu.

Žwhere the matrix C is the linear operator such that Cu s u , u y u , . . . ,1 2 1
.T Ž i. Ž Ž i. Ž i..Tu y u and t s t , . . . , t , withm my1 1 m

u dujŽ i.12 t s , 1 F j F m.Ž . Hj 2 y10 1 y u 1 y H F uŽ . Ž .Ž .Ž .i i

y1 'Ž .Ž Ž Ž ...It is noted that, for fixed u, 1 y u 1 y H F u can be n -consistentlyi i
ỹ1ŽŽ . Ž ..estimated by the empirical probability of X n C ) F u , i s 0, 1.i j i j i, n iŽ i. 'Accordingly, t can be n -consistently estimated by plugging the empiricalj

Ž . Ž i. Ž i.ˆprobability into 12 . We denote this estimator of t as t , i s 0, 1, 1 F j F l,j j
Ž i. Ž Ž i. Ž i..Tˆ ˆ ˆand we denote the vector as t s t , . . . , t . Alternatively, kernel-type1 m

smoothed estimates can be used here as well.
Ž . Ž .Also in the regression setup of 9 and 10 , the regression error is involved

with unknown matrix D s D y1 since f is unknown. We estimate theq Ž f ŽF Žu... 00 0 ˆf by a kernel-smoothed density estimate, f say, based on the Kaplan]Meier0 0
˜PL estimator F with bandwidths, or smoothing parameters, chosen ac-0, n0

Ž .cording to the results given in Marron and Padgett 1987 . Then we plug the
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ˆ y1Ž .PL empirical quantile into f to estimate the density quantile function f F .0 0
An alternative estimate of this density quantile function is obtained through
the first derivative of a smoothed quantile function estimate.

ˆŽ i.With the consistency of vector estimator t , i s 0, 1, and the kernel
estimator of the density quantile function, we then are able to construct an

Ž . Ž .estimate for the covariance structure of the regression setup of 9 and 10 .
Hence the parameters of interest m and s can be simply estimated by a type
of weighted least squares estimator, which turns out to be an approximated

Ž .maximum likelihood estimator MLE in the functional model with measure-
ment error on the covariate. Furthermore, this functional can be thought of
as having replicates tending to ` as n ª `. Therefore, the consistency of this
MLE estimator is ensured.

Next we derive the weighted least squares estimator. From here on, we call
this type of weighted least squares estimator the generalized least squares

ˆŽ . Ž .GLS estimator, and we denote it by u , where u s m, s . That is,
y1

T y1 T y1 y1ˆ ˆ ˆ ˆ ˆ ˆ ˜13 u s X S X X S F u ,Ž . Ž .ž /1 1 1, n1

where
1 ??? 1

TX̂ s y1 y1˜ ˜F u ??? F uŽ . Ž .ž /0, n 1 0, n l0 0

and
y1 y1ˆ ˆ ˆ ˆ ˆ14 S s D 1rn L q 1rn L D ,Ž . 1 q 1 1 0 0 q

y1w x y1with S s D 1rn L q 1rn L D denoting the covariance matrix of1 q 1 1 0 0 q
y1 y1 y1 ˆ y1 ˆw Ž . Ž .x y1random vector D n K u, n y n K u, n , D s D and Lˆ ˜q 1 1 1 0 0 0 q Ž f ŽF Žu... i0 0, n0

Ž i. Ž .ˆobtained by plugging t , 1 F j F m, into L , i s 0, 1, defined in 11 .j i
Ž . Ž .Further, from the regression setup of 9 and 10 , we have the approxi-

mated error of the GLS estimator
y1

T y1 T y1 y1 y1 y1ˆ ˆ ˆ ˆ ˆ ˆ ˆu y u s s X S X X S D n K u, n y n K u, nŽ . Ž .ž /1 1 q 1 1 1 0 0 015Ž .
q o ny1r2 .Ž .p

ˆ Ž .Asymptotic properties of the GLS estimator u based on 15 will be
discussed in Theorem 3.2 in the next section.

At the end of this section, a small simulation study is reported for
comparing the performance of the GLS estimator with the estimator derived
from the original log-rank estimating function in the homogeneous model as
well as in the heterogeneous model. Since the estimation of the weighting
needed in the GLS estimator is involved with kernel function and bandwidth
choices, it seems desirable to bring the performance of the following simple
least squares estimator into comparison:

y1
T T y1ˆ ˆ ˆ ˆ ˜16 u s X X X F u .Ž . Ž .Ž .LS 1, n1

ˆAsymptotic properties of u will also be discussed in the next section.LS
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This simulation is done with 500 replications having equal sample size
Ž .n s 100. The distribution of X is taken as Weibull 1, 1 , and the two0 j

1Ž .censoring random variables C , i s 0, 1, are simulated from Weibull , 1i j 4
1Ž .and Weibull , 1 , respectively. For constructing the GLS and LS estimators,8

the vector of regression points u consists of eight points with equal spacing
between 0.1 and 0.8. And, for simulation simplicity, the normal kernel
function with bandwidth ny1r5 is used in estimating the density quantile
function in the covariance matrix of the regression setup. Simulation aver-

Ž .ages and mean square errors MSEs are reported for estimating m and s ,
both taking values 0.5, 1.0 and 1.5. The case with s s 1 corresponds to the
homogeneous case. The MSE is given in the parentheses right below its
average value. In the last column of Table 1, the average percentage of
uncensored data in the two groups are reported with the percentage of the
second group in the parentheses.

We can see from Table 1 that the GLS estimator is very competitive with,
even better than, the estimator derived from the log-rank estimating function
in the homogeneous case, s s 1. Further, in estimating m, the latter estima-
tor is biased upward or downward according to whether the value of s is
greater than or smaller than 1. Similar results are also found in several
simulation studies with different choice of u and with different distribution
forms, such as the log-normal distribution. For estimating s , both the GLS
and LS estimators are rather unbiased with not much difference in the mean
square error.

TABLE 1
Comparison of the log-rank, GLS and LS estimators of m and s

Estimating m Estimating s

( )s m Log-rank GLS LS GLS LS %

0.5 0.5 0.46149 0.49513 0.49999 0.50028 0.50013 80
Ž . Ž . Ž . Ž . Ž . Ž .0.00475 0.00184 0.00181 0.00666 0.00713 94

1.0 0.93430 0.98909 0.99799 0.49649 0.49684 80
Ž . Ž . Ž . Ž . Ž . Ž .0.01800 0.00743 0.00788 0.00570 0.00611 89

1.5 1.40393 1.47074 1.48879 0.49273 0.49177 79
Ž . Ž . Ž . Ž . Ž . Ž .0.04173 0.01753 0.01675 0.00682 0.00691 84

1.0 0.5 0.53886 0.49206 0.50227 1.01605 1.01795 79
Ž . Ž . Ž . Ž . Ž . Ž .0.00816 0.00782 0.00835 0.02673 0.02961 94

1.0 1.07500 0.98544 1.01095 1.00883 1.01541 79
Ž . Ž . Ž . Ž . Ž . Ž .0.03541 0.03229 0.03397 0.02525 0.02749 88

1.5 1.59530 1.46306 1.49856 0.99686 1.00130 79
Ž . Ž . Ž . Ž . Ž . Ž .0.06775 0.06114 0.06453 0.02768 0.02901 84

1.5 0.5 0.62105 0.48648 0.50380 1.51685 1.52154 80
Ž . Ž . Ž . Ž . Ž . Ž .0.02880 0.01477 0.01657 0.05035 0.05607 92

1.0 1.22839 0.99396 1.02889 1.50812 1.50602 80
Ž . Ž . Ž . Ž . Ž . Ž .0.11287 0.07738 0.08438 0.06263 0.06605 86

1.5 1.78302 1.48756 1.54155 1.51365 1.51346 80
Ž . Ž . Ž . Ž . Ž . Ž .0.19143 0.15395 0.16720 0.06322 0.06718 81
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3. Asymptotic properties of the GLS estimator. In order to study the
ˆasymptotical properties of the GLS estimator u , we first extend the theory of

strong approximation of the PL empirical quantile process on a fixed interval,
which has been exclusively used in Section 2, to that on an inter-

Ž .y1 y1val tending to 0, T n T . Then we calculate the asymptoticH ŽF . H ŽF .0 0 1 1

variance of the GLS estimator. If we further assume that the equality
Ž y1Ž .. Ž y1Ž .. Ž .H F t s H F t , ; t g 0, 1 , holds, then this two-sample problem is0 0 1 1

ˆadaptive. At the end of this section, the GLS estimator u is shown to be
semiparametric efficient in general in the sense of achieving the semipara-
metric Fisher information bound.

To start, we denote T 0 s T y1 n T y1 , and recall that n s n n n .H ŽF . H ŽF . 0 10 0 1 1

The following theorem gives the strong approximation of the PL empirical
Ž . 0quantile process to hold uniformly on d , T with T ª T in a rather slown n n

rate as n ª `. This theorem is an extension of Theorem 8.4.2 of Csorgo¨ ˝
Ž .1983 which has been described in the Remark 8.4.4 of the cited reference as
the concluding remark. And its proof can be done mainly by following the

Ž .scheme already described at the end of Chapter 8 of Csorgo 1983 together¨ ˝
with the improved PL empirical process results in Burke, Csorgo and Horvath¨ ˝ ´
Ž .1988 .

Before stating the theorem we need a polynomial varying tail condition:

Ž y1Ž .. ŽŽ y1A3. For some positive integer k , we have 1 y H F u s O T y0 i i H ŽF .i i
.k 0 . y1u as u ª T , i s 0, 1.H ŽF .i i

It should be noted that the rate of convergence given below will only be taken
as a lower bound. The exact rate is not attempted here. And it could be
significantly faster than that given here.

THEOREM 3.1. Assume that the distribution function F satisfies conditions
y2r3Ž .5

y1A1, A2 and A3. Then, with d s n log n and T ª T at a rate ofn n H ŽF .
Ž .O 1rlog n , we have

y1 y1 y1 y1r2˜'sup n f F y F u y F u y n K u , nŽ . Ž . Ž . Ž .Ž . Ž .n
d FuFTn n17Ž .

k q2y1r4 0s O n log n a.s.,Ž .Ž .
ỹ1where F is the Kaplan]Meier PL empirical quantile function pertaining ton

n i.i.d. samples possibly right censored by independent variables with distri-
bution function H.

The next theorem gives the asymptotic covariance matrix of the GLS
ˆestimator u with n rn ª l, a positive number, as n ª `.0 1

THEOREM 3.2. Given the assumptions in Theorem 3.1 and letting u s
Ž .u , . . . , u be the chosen vector of time points, we have the following:1 m
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1. If u is chosen to be fixed and independent of n, then
y1

2 T y1 y1r2ˆ ˜ ˜18 u y u s N 0, s X S X q o n ,Ž . Ž .d 1 pž /
ˆ Ž .where S is the true value of its estimate S defined in 14 , and1 1

1 ??? 1TX̃ s .y1 y1ž /F u ??? F uŽ . Ž .0 1 0 m

11r4y«Ž .2. If m s O n for some small positive value « - and d F u - ??? -n 14
Ž 0.u F T and tends to be dense on 0, T in the sense that the meshm n

ˆŽ .max u y u ª 0 as n ª `, then the GLS estimator u has its asymp-i i iy1
2 ˜T ˆy1 ˜ y1w xtotic covariance matrix being equal to the limiting form of s X S X

and

a a11 12T y1˜ ˆ ˜19 lim n X S X s ,Ž . 0 ) až /nª` 22

where these entries are as follows and all the integrals are assumed to exist:

T 0 2a s c u l u du,Ž . Ž .H11
0

T 0

a s c u l u s u du,Ž . Ž . Ž .H12
0

T 0 2a s c u s u du,Ž . Ž .H22
0

with

1 y H Fy1 u 1 y H Fy1 uŽ . Ž .Ž . Ž .Ž . Ž .0 0 1 1
c u s ,Ž . y1 y1l 1 y H F u q 1 y H F uŽ . Ž .Ž . Ž .Ž . Ž .0 0 1 1

X y1 y1f F u f F uŽ . Ž .Ž . Ž .0 0 0 0
l u s q ,Ž . y1 1 y uf F uŽ .Ž .0 0

Xy1 y1 y1 y1F u f F u F u f F uŽ . Ž . Ž . Ž .Ž . Ž .0 0 0 0 0 0
s u s q 1 q .Ž . y1 1 y uf F uŽ .Ž .0 0

Ž .Using the same argument for result 1 , we can derive the following
Ž .asymptotic property of the simple least squares estimator defined in 20 :

y1
T T y1ˆ ˆ ˆ ˆ ˜20 u s X X X F u ,Ž . Ž .Ž .LS 1, n1

y1 y1
2 T T y1 T y1r2ˆ ˜ ˜ ˜ ˜ ˜ ˜21 u y u s N 0, s X X X S X X X q o n .Ž . Ž .LS d 1 pž /

Next, we give a sufficient condition under which this estimator is adaptive
Ž .in the sense of Bickel 1982 . Consider a parametric setup in which we

ŽŽ . . Ž . ŽŽ . . Ž .suppose that G x y m rs s F x and G x y m rs s F x with0 0 0 1 1 1
Ž .known distribution form G. Under the location]scale model assumption 3 ,
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these two pairs of location and scale parameters satisfy

s s s rs ,1 0

m s m y sm .1 0

Suppose that censoring mechanisms C , i s 0, 1, the same as in Theoremi j
3.2, are applied on the two samples, respectively. Then the parametric Fisher

Ž .T 2information matrix for u s m , s is s I , i s 0, 1, wherei i i i i

aŽ i. aŽ i.
11 12I s ,i Ž i.ž /) a22

where

T 0 2Ž i. Ž i.a s c u l u du,Ž . Ž .H11
0

T 0
Ž i. Ž i.a s c u l u s u du,Ž . Ž . Ž .H12

0

T 0 2Ž i. Ž i.a s c u s u du.Ž . Ž .H22
0

Ž i.Ž . Ž Ž y1Ž ...with c u s 1 y H F u .i i
Ž .From the expression of I , i s 0, 1, and c u in Theorem 3.2, it is clear thati

if

22 cŽ0. u s cŽ1. u , u g 0, T 0 ,Ž . Ž . Ž . Ž .

Ž .then the Fisher information matrix for m, s in this two-sample parametric
Ž .problem is equal to the matrix in 19 . Therefore, when the strict condition

Ž .22 holds, the semiparametric two-sample location]scale model with right-
censored data is adaptive in the same sense as that in the case of complete

w Ž . Ž . xdata. See Bickel, Klaassen, Ritov and Wellner 1993 or Hsieh 1995 .
Furthermore, the GLS estimator should be semiparametric efficient given

Ž .that condition 22 holds.
ˆ Ž .In fact, in general the GLS estimator u defined in 13 is semiparametric

efficient in the sense of achieving the Fisher information bound. This result is
stated in the next theorem. It is noted that the homogeneous regression

Ž . Ž .model considered in Ritov and Wellner 1988 , Ritov 1990 and Bickel,
Ž .Klaassen, Ritov and Wellner 1993 will cover the homogeneous case, s s 1,

of this two-sample problem. And the Fisher information bound for the param-
Ž .eter m given in these references is exactly equal to a in 19 . Furthermore,11

by using the R and L operators and the martingale techniques developed in
Ž .Ritov and Wellner 1988 , the Fisher information bound for the location and

scale parameters in our two-sample location]scale model can also be calcu-
lated based on the same line as their arguments and found to be exactly

2 Ž .equal to s multiplying the matrix given in 19 . To avoid replication, the
proof of the following theorem is therefore omitted here.
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THEOREM 3.3. Given the assumptions made in Theorem 3.2, the GLS
ˆ Ž .estimator u defined in 13 is a regular and semiparametric efficient estimator.

Ž .As an alternative way of estimating m, s , a semiparametric efficient
Ž .estimator can be obtained by using Ritov’s 1990 M-type estimators with a

system of two estimating equations with estimated score functions corre-
sponding to the location and the scale parameters, respectively. Nevertheless,
if finite sample properties, like robustness, are concerned, then the GLS
estimator might be more desirable, since Ritov’s M-type estimator derived
from estimated score equations can be very sensitive to the smoothing

Ž .parameters used. See Hsieh and Manski 1987 . In this aspect, the GLS
estimator is better because only the estimate of the density function is
needed, not its derivative. As an alternative to remedy this type of sensitivity

Ž . Ž .problem, the B-spline method used in Faraway 1992 and Jin 1992 could be
a useful technique here as well.

REMARK 1. In regard to the convergence rate given in Theorem 3.1, the
rate ny1r4 is not essential for our first-order asymptotic result, since we need
only the rate ny« for some small positive number « . Further if the rate in
assumption A3 is exponential, instead of polynomial, then we have to make

Ž .y1T tend to T at a rate of O 1rlog log n . And then the convergence raten H ŽF .
in Theorem 3.1 is changed accordingly.

REMARK 2. So far, in our two-sample setting, we require censoring ran-
� 4dom variables C , i s 0, 1, defined in Section 2, to be independent andi j

identically distributed in each of the two groups. Based on the recent results
Ž .of Zhou 1991, 1992 , the ‘‘identically distributed’’ assumption can be taken

off. That is, random variables C can be nonidentically distributed accordingi j
to H , j s 1, . . . , n . Correspondingly, the strong approximations of the PLi j i

Ž . Ž .empirical quantile functions given in 6 and 7 are still valid with general-
Ž .ized Kiefer processes whose covariance functions, given in 8 , will have Hi

being replaced by ny1Ýn i H . And similar results as in Theorem 3.2 can alsoi 1 i j
be derived.

4. K-sample problem and semiparametric ANOVA. In this section,
we discuss the K-sample problem. The semiparametric version of analysis of

Ž .variance ANOVA can be regarded as a special case in which the assumption
of homogeneity on within-treatment variations is assumed. This type of
homogeneity corresponds to the valid condition of equal normal variances in
the classic ANOVA setting.

Throughout the discussion in this section, we extend the notation used for
Ž .the two-sample setting in the previous sections to a K s k q 1 -sample

problem without repeating their definitions explicitly. For example, the k q 1
Ž .samples of random variables are denoted as X , C , i s 0, . . . , k, j si j i j

1, . . . , n , and so forth. Also the within-group and between-group indepen-i
dence of X and C are assumed as well. For this K-sample problem, wei j i j
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similarly assume the location]scale model as

x y mi
23 F x s F , i s 1, . . . , k .Ž . Ž .i 0 ž /si

By applying the empirical approach used in Section 2, we can estimate
ˆŽ .u s m , s , i s 1, . . . , k, by the corresponding GLS estimator, u say.i i i i

� 4 � 4In order to test for the equality among m , i s 1, . . . , k or s , i s 1, . . . , k ,i i
ˆ ˆŽ .we need to construct the covariance matrix of the vector of u , . . . , u . For1 k

Ž .this purpose, it is essential to observe from 15 that, for each i s 0, . . . , k,
Ž .the generalized Kiefer process K n , t is exclusively generated from the PLi i

empirical quantile processes pertaining to the Kaplan]Meier PL empirical
ỹ1quantile function F , so that they are mutually stochastically independent.i, n i

Ž .Finally, with the results in Theorem 3.1 and 15 and the independency
Ž .between these generalized Kiefer processes K n , ? , i s 0, . . . , k, we cani i

ˆ ˆderive the asymptotic covariance matrix of u y u and u y u , i / j, in thei j
following corollary. Its proof will be also omitted.

COROLLARY 4.1. Assume that the distribution functions F , i s 0, . . . , k,i
satisfy conditions A1 and A2, and right-censoring mechanisms C are inde-i j

Ž .pendent of X for each 1 F j F n . Let the location]scale model 23 hold fori j i
ˆ Ž .F , i s 0, . . . , k. Then the GLS estimator u defined in 13 has the followingi i

asymptotic covariance structure:

ˆ ˆcov u y u , u y už /i j

1 y1y1
T y1 T y1 y1 y1 y1 T y1˜ ˜ ˜ ˜ ˜ ˜s s s X S X X S D L D S X X S X ,ž / ž /i j i i q 0 q j jn0

24Ž .

where S , 1 - i F k, are likewise defined as S and recall that D s D y1 .i 1 q Ž f ŽF Žu...0 0

Ž .With the above corollary we are able to do an analysis of variance ANOVA
in the semiparametric setting. From the ANOVA point of view, two types of
preliminary tests of the homogeneity of s , i s 0, . . . , k, are of interest. Thei
first type is H Ž1.: s s 1, i s 0, . . . , k, when the equality of the K treatments0 i
effect is concerned. If the F is corresponding to the standard treatment,0
while the others are innovative ones, then the second type of hypothesis H Ž2.:0
s s s , i s 1, . . . , k, for some unknown s is needed for testing the equality ofi
these k innovative treatments.

To test H Ž1. and H Ž2., a corresponding x 2 testing statistic can be con-0 0
structed by applying the above corollary. After not rejecting the homogeneity
assumption as a valid condition for the ANOVA, the corresponding x 2

testing statistic can also be constructed concerning the equality among m ,i
i s 0, . . . , k.

If the hypothesis of equality of F , i s 0, . . . , k, is of interest, then thei
corresponding x 2 testing statistic can be regarded as a type of generalized

Ž .t-test. For the two-sample problem with complete data, O’Brien 1988 pro-
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posed another type of generalization of t-test based on the regression of the
group membership on the pooled order statistics and its square value. The
idea of using the square rank is also to accommodate the possible heterogene-
ity between the treatment effects. However, our x 2 testing statistic not only
works for the censored data, but also, from a parsimonious point of view, it
will indicate the direction of deviation of the data from the homogeneity
hypothesis.

We remark that a x 2 testing statistic for the two-sample location]scale
model assumptions can be easily constructed, as a by-product, based on the

Ž . 2regression setup 9 in Section 2. On the other hand, the corresponding x
testing statistic for testing the K-sample model assumption seems quite
involved and is not known to the author.

APPENDIX

In this Appendix, the proofs are only sketched to show the key points and
ideas involved.

Ž .PROOF OF LEMMA 2.1. Let W u be the standard Wiener process with
Ž .positive time scale z. Consider the random vector W u , where 0 - u -1

Ž .??? - u . Then the covariance matrix of W u , L say, satisfiesm

L s Cy1D CTy1 .ŽC u..

Ž .With the definition of the covariance structure 8 of the generalized Kiefer
process and the above result, we prove the lemma. I

PROOF OF THEOREM 3.1. With assumption A3 and Theorem 8.2.1 of Csorgo¨ ˝
Ž .1983 , page 122, we have the result related to small increments of a
generalized Kiefer process

k q3r41r2 1r20sup sup K t q s, n y K s, n s O n log n h a.s.Ž . Ž . Ž .Ž .n
0FsFT yh 0FtFhn n n

Ž .By applying Theorem 5.5 of Burke, Csorgo and Horvath 1981 , taking¨ ˝ ´
Ž 1r2Ž .2 k 0q5 r2 .h s O n log n and then following the development of Theoremsn

8.3.1, 8.4.1 and 8.4.2, we prove our result. I

Ž .PROOF OF THEOREM 3.2. Based on 15 with the vector u being fixed, the
ỹ1 ˆ ỹ1 Ž i.Ž . Ž Ž .. ˆstrong consistency of estimators F u , f F u and t , 1 F j F m, will0, n 0 0, n j0 0

Ž .ensure result 1 of this theorem.
Ž .For result 2 , we consider the strong approximation of the PL empirical

Ž .quantile process on d , T ensured by Theorem 3.1. Therefore, the errorn n
Ž . Ž . Ž .terms in 15 are still valid since the two error terms in 10 and 9 are of
Ž y3r4Ž .k 0q2 .order O n log n and m is chosen to have order smaller than

Ž 1r4. Ž .O n . Then, by applying result 1 , we can have the asymptotical variance
2 ˜T ˆy1 ˜ y1w xof the GLS estimator as s X S X .
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By Lemma 2.1, we further have

a aˆ ˆ11 12T y1˜ ˆ ˜lim n X S X s lim ,0 ž /) anª` nª` ˆ22

where, letting u F uU F u , j s 1, . . . , m y 1,j j jq1

¡ y1 U y1 Umy1 1 y H F u 1 y H F uŽ . Ž .1 Ž . Ž .ž / ž /0 0 j 1 1 j2U~a s 1 y uˆ Ž .Ý11 j U Uy1 y1¢u y u l 1 y H F u q 1 y H F uŽ . Ž .jq1 j Ž . Ž .js1 ž / ž /0 0 j 1 1 j

=

2U Uy1 y1 ¦f F u f F uŽ . Ž .Ž . Ž .0 0 jq1 0 0 j ¥yU U §1 y u 1 y ujq1 j

1 y H Fy1 u 1 y H Fy1 u0 Ž . Ž .Ž . Ž .Ž . Ž .0 0 1 1T 2s 1 y uŽ .˙ H y1 y1l 1 y H F u q 1 y H F uŽ . Ž .0 Ž . Ž .Ž . Ž .1 1 0 0

y1­ f F uŽ .Ž .0 0
= duž /­ u 1 y u

s a .11

a and a are calculated likewise. I12 22
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