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TOWARDS A GENERAL ASYMPTOTIC THEORY FOR
COX MODEL WITH STAGGERED ENTRY

BY YANNIS BILIAS, MINGGAO GU1 AND ZHILIANG YING2

Iowa State University, McGill University and Rutgers University

A general asymptotic theory is established for the two-parameter Cox
score process with staggered entry data. It extends in several directions
the existing theory developed by Sellke and Siegmund, Slud and Gu and
Lai. An essential tool employed here is a modern empirical process theory,
as elucidated in a recent monograph by Pollard.

Ž .1. Introduction. Cox’s 1972 proportional hazards regression model
has been widely accepted in clinical trials and other follow-up studies. It
relates the hazard rate of a failure time T to a possibly time-dependent p = 1
covariate vector process Z through

1.1 l s N Z u , u F s s exp b9Z s l s ,� 4Ž . Ž . Ž . Ž .Ž . 0

Ž .where l is the unspecified baseline hazard function and b the unknown0
regression parameter vector of primary interest. When all the follow-ups
start at the same time, say 0, the partial likelihood score computed at time t
becomes a martingale with respect to a properly defined filtration and an

welegant martingale-based asymptotic theory has been developed cf. Andersen
Ž .xand Gill 1982 .

In many practical situations, however, subjects under study may be re-
cruited at different times, from which the follow-ups begin. It is known that
under these circumstances, the score process is no longer a martingale, thus
theoretical treatment of it becomes much harder. In particular, the standard
martingale central limit theorem of Rebolledo cannot be applied, at least
directly, to obtain weak convergence of the score process. See Sellke and

Ž . Ž .Siegmund 1983 for a fundamental breakthrough and Slud 1984 and Gu
Ž .and Lai 1991 for some related work.

The design, model and corresponding statistic we shall consider herein
may be described as follows. There are potentially infinitely many individu-

Ž . Ž .als, with whom are attached entry recruiting times t G 0 , failure timesi
Ž . Ž .T G 0 , censoring times C G 0 which could take value ` and p = 1 covari-i i

Ž X.ate vector processes Z . Suppose that t , T , C , Z are independent randomi i i i i
vectors and that the conditional hazard rate of T at s, given t , C , andi i i
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Ž . � Ž .4 Ž .Z u , u F s, is exp b9Z s l s . The t need not be ordered. Furthermore,i i 0 i
suppose only n of them, i s 1, . . . , n are being sampled. Thus at t, the
current calendar time, the ith individual’s failure time T is censored byi

Ž .q � 4 � 4C n t y t . Throughout the sequel, a n b s min a, b , a k b s max a, b ,i i
q y ˜ q� 4 � 4 Ž . Ž . Ž .a s max 0, a and a s max 0, ya . Let T t s T n C n t y t , D t si i i i i

˜ ˜Ž . � Ž . Ž .4qI and R t s j: 1 F j F n, T t G T t . With the above nota-ŽT F C n Ž tyt . . i j ii i i
Ž .tion, the Cox 1975 partial likelihood at calendar time t can then be written

as
Ž .D tin ˜exp b9Z T tŽ .Ž .ž /i i

1.2 L b s .Ž . Ž . Łt ˜is1 Ý exp b9Z T tŽ .Ž .ž /jg R Ž t . j ii

In terms of the usual counting process representation for the score, it is
necessary to consider simultaneously two types of times, the calendar time t
and the survival time s. Unless otherwise stated, it will be assumed through-
out the paper that t G s. Let

N t , s s D t I s I q , Y t , s s I ,Ž . Ž . Ž .Ž .˜ ˜i i ŽT Ž t .F s. ŽT F C n Ž tyt . n s. i ŽT Ž t .G s.i i i i i

n n

Z b ; t , s s Z s exp b9Z s Y t , s exp b9Z s Y t , s .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ýi i i i i
is1 is1

Define a two-parameter score process
n s

1.3 U b ; t , s s Z u y Z b ; t , u N t , du .Ž . Ž . Ž . Ž . Ž .Ý H i i
0is1

Ž . Ž . Ž .It is easy to see that U b ; t, t is the partial likelihood score rb log L b .t
Ž .Earlier, Sellke and Siegmund 1983 showed that, under certain regularity
Ž .conditions, the diagonal process U b ; t, t is approximately a martingale and

Ž .therefore converges weakly with appropriate normalization to a Brownian
motion. A somewhat similar result, also for the diagonal process, can be

Ž .found in Slud 1984 , who considered only the two-sample problem and
showed that weighted log-rank score processes can be approximated by a
time-rescaled Brownian motion provided the weight functions are indepen-
dent of the calendar time. Weak convergence of the two-parameter process

Ž .was recently derived by Gu and Lai 1991 , but only for the two-sample
Ž .model. We refer to Andersen, Borgan, Gill and Keiding 1993 for a summary

of their results.
Our main objective here is to derive functional central limit theorems for

y1r2 Ž .the basic two-parameter process n U b ; ? , ? under the null hypothesis
and the contiguous alternatives and for the corresponding maximum partial
likelihood estimator. Our approach is entirely different from those of Sellke

Ž . Ž .and Siegmund 1983 and Slud 1984 in that it basically ignores the martin-
gale structure and relies, instead, on a modern empirical process theory, as

Ž .elucidated in Pollard 1990 . It will become clear in subsequent developments
that the structure of U is ideally suitable for exploiting the powerful tools of
this empirical process theory. Consequently, we are able to deal with a model
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Ž .far more general than that studied in Gu and Lai 1991 , yet avoiding most of
their heavy technicalities.

The paper is structured in a natural order. Sections 2 and 3 provide
functional central limit theorems for U under the null hypothesis and the
contiguous alternatives. The corresponding maximum partial likelihood esti-
mator is treated in Section 4, where convergence for the cumulative baseline
hazard estimator is also established. An application to sequential tests with
covariate adjustment along with some discussions are given in Section 5.
Some technical lemmas are put together and proved in the Appendix.

2. Convergence of the two-parameter score process. The main ef-
fort of this section is to show convergence of U to a Gaussian random field.

Ž . Ž .Clearly, U b ; t, s s U b ; t, t for s G t. So we only need to consider those
Ž .t, s for which s F t. Furthermore, stability consideration of Z leads us to

w xrestrict t to 0, t* with t* satisfying
n1

2.1 lim inf EY t*, t* ) 0,Ž . Ž .Ý innª` is1

w xand l being bounded on 0, t* . Existence of such t* is tantamount to0
requiring that there is a positive proportion of individuals whose entry times
are 0, a rather restrictive assumption especially in designs of clinical trials

Ž .and other prospective studies. It is not essential to require 2.1 for the
subsequent results to hold, however. But without it, we would have to spend
a substantial portion in our technical development controlling the so-called

Ž .tail instability, as in Lai and Ying 1988 , thereby distracting our attention
�Ž .from the main theme. Throughout the rest of the paper, D# denotes t, s : 0

4F s F t F t* and, except in Section 3, b denotes the true regression param-0
Ž .eter; that is, U b ; t, s is under the null hypothesis.0

The following regularity conditions will be needed as we proceed.

CONDITION 1. There exists a nonrandom constant B such that the total
< Ž . < t* < Ž . < < <variation Z 0 q H dZ s F B, where the first ? denotes the L -norm fori 0 i 1

a p-dimensional vector and the second one the L -type total variation for a1
p-vector function.

Ž .CONDITION 2. For each k s 0, 1 and 2, there exists G t, s such thatk

n1
Xmklim E Z s Y t , s exp b Z s s G t , s for all t , s g D#,Ž . Ž . Ž . Ž . Ž .Ž .Ý i i 0 i knnª` is1

where am0 s 1, am1 s a and am2 s aa9 for a column vector a.

Ž . Ž . Ž .CONDITION 3. Let K t, s s G t, s rG t, s and1 0

n n
X XK t , s s E Z s Y t , s exp b Z s E Y t , s exp b Z s .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ýn i i 0 i i 0 i

is1 is1
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Ž . w xThen, for each fixed s, K ?, s is continuous on s, t* and

t 2sup K t , s y K t , s ds ª 0.Ž . Ž .H n
00FtFt*

REMARK 1. Conditions 2 and 3 are analogous to conditions B and D in
Ž .Andersen and Gill 1982 , which provided the first martingale-based deriva-

tion of the asymptotic theory for the Cox model. Condition 1 assumes bounded
variation for the covariate processes, a key assumption in applying the
empirical process theory. Constancy on B is not essential, however, but
simplifies our proofs; we believe that B could be random and depend on i, but
needs to have finite moment generating functions.

Ž .REMARK 2. The work of Sellke and Siegmund 1983 requires that condi-
Ž X .tional on t , random vectors Z , C , T are i.i.d. In this case, it is easy to seei i i i

Ž .that K t, s depends neither on n nor on t. So condition 3 is automaticallyn
satisfied.

Let d be the supremum norm for the space of bounded functions on
Ž . < Ž . Ž . <D#: d x, y s sup x t, s y y t, s . The functions could be p-dimen-Ž t, s.g D#

< <sional vectors, for which ? is in the sense of L , which is equivalent to the1
p Ž .L -norm since the space R is finite dimensional. Let B D# be the space of2

wŽ .bounded functions on D# equipped with metric d. Following Pollard 1990 ,
x � 4Definition 9.1 , a sequence of processes X on D# is said to converge inn

Ž . Ž .distribution to X if lim Ef X s Ef X for all f that are bounded andn
Ž .uniformly continuous on B D# .

We first show that two basic processes converge in distribution to Gauss-
ian random fields. Let

M b ; t , s s N t ; s y H s Y t , u exp b9Z u l u du.Ž . Ž . Ž . Ž . Ž .Ž .i i 0 i i 0

Ž . n Ž .Define U b ; t, s s Ý M b ; t, s and1 is1 i

U b ; t , s s Ýn H s Z u M b ; t , du .Ž . Ž . Ž .2 is1 0 i i

sŽ . Ž . Ž . Ž .Note that U b ; t, s s U b ; t, s y H Z b ; t, u U b ; t, du . When b s b ,2 0 1 0
Ž . Ž .we shall omit b in M , U , U and U, that is, M t, s s M b ; t, s ,i 1 2 i i o

Ž . Ž .U t, s s U b ; t, s and so on.1 i 0

THEOREM 2.1. Suppose Conditions 1 and 2 are satisfied. Then
� y1r2 Ž . Ž . 4 � y1r2 Ž . Ž . 4n U t, s , t, s g D# and n U t, s , t, s g D# converge in distri-1 2
bution to two Gaussian processes, j and j , respectively, that have continu-1 2
ous sample paths, mean 0 and covariance functions specified by

s ns1 2XE j t , s j t , s s G t n t , u l u du,Ž . Ž . Ž . Ž .H1 1 1 1 2 2 0 1 2 0
0

s ns1 2XE j t , s j t , s s G t n t , u l u du.Ž . Ž . Ž . Ž .H2 1 2 2 2 2 2 1 2 0
0
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PROOF. Since U is a special case of U when the Z are replaced by 1, we1 2 i
shall only prove the convergence for ny1r2U . Furthermore, in view of2
Condition 2, convergence of finite-dimensional distributions of ny1r2U to2
those of j is clearly true by the classical multivariate central limit theorem2
for independent random vectors. So the issue becomes proving the so-called
tightness, which can be done by dealing with each of the p components of
ny1r2U separately. Thus, with no loss of generality, we may assume p s 1.2

Ž .We shall invoke Theorem 10.7 functional central limit theorem of Pollard
Ž . Ž . Ž .1990 to get the desired convergence. Thus conditions i ] v thereof need to

Ž .be verified. Condition ii follows from Condition 2, the stability assumption,
Ž . Ž .whereas iii and iv hold because, in view of Condition 1, envelopes can be

'chosen to be B*r n for some constant B*.
Ž . Ž . ŽŽ . Ž ..To verify v , define for any t , s g D#, k s 1, 2, r t , s , t , s sk k n 1 1 2 2

w y1r2 Ž . y1r2 Ž .x2 ŽŽ . Ž .. w Ž .E n U t , s y n U t , s and r t , s , t , s s E j t , s y2 1 2 2 2 2 1 1 2 2 2 1 1
Ž .x2j t , s . Now2 2 2

r t , s , t , sŽ . Ž .Ž .n 1 1 2 2

n q1 Ž .s n t yt nC2 2 i is E Z uŽ .Ý H i½ qn Ž .s n t yt nC1 1 i iis1

=

2

dI y I exp b Z u l u duŽ . Ž .Ž .ŽT F u. ŽT G u. 0 i 0 5i i

n q1 Ž .s n t yt2 2 i 2s E Z u I exp b Z u l u du .Ž . Ž . Ž .Ž .Ý H i ŽT n C G u. 0 i 0i iqn Ž .s n t yt1 1 iis1

� 4Clearly r is equicontinuous on D# = D#. It is not difficult to verify that rn n
also converges pointwise to r, a pseudometric on D#. Thus r converges,n

�Ž Žn. Žn..4 �Ž Žn. Žn..4uniformly on D#, to r. Let t , s and t , s be any two sequences1 1 2 2
in D#. It follows that if

r sŽn. , t Žn. , sŽn. , t Žn. ª 0,Ž . Ž .Ž .1 1 2 2

ŽŽ Žn. Žn.. Ž Žn. Žn... Ž .then r s , t , s , t converges to 0. Thus v holds.n 1 1 2 2
Ž .It remains to verify i . To do this, it suffices to show, in view of Lemma

� s Ž . Ž .4 � s Ž . Ž . Ž Ž .. Ž . 4A.1, that both H Z u N t, du and H Z u Y t, u exp b Z u l u du0 i i 0 i i 0 i 0
Ž . qŽ . yŽ .are manageable. Since Z u s Z u y Z u , we may furthermore assumei i i

Z G 0. Nowi

s
qZ u N t , du s Z T I IŽ . Ž . Ž .H i i i i ŽT F s n C . ŽT F Ž tyt . .i i i i

02.2Ž .
s min Z T I , Z T I q .Ž . Ž .� 4i i ŽT F s n C . i i ŽT F Ž tyt . .i i i i

Ž . Ž . qFor each i, Z T I is nondecreasing in s and Z T I isi i ŽT F s n C . i i ŽT F Ž tyt . .i i i i

nondecreasing in t. Thus both have pseudodimension at most 1. By Lemma
Ž . Ž . � s Ž . Ž .45.1 of Pollard 1990 and 2.2 , H Z u N t, du has pseudodimension at0 i i

most 10, and therefore must be Euclidean and certainly manageable. Man-
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� s Ž . Ž . Ž Ž .. Ž . 4ageability of H Z u Y t, u exp b Z u l u du follows from the same0 i i 0 i 0
argument since

s
Z u Y t , u exp b Z u l u duŽ . Ž . Ž . Ž .Ž .H i i 0 i 0

0

snT nCi is min Z u exp b Z u l u du,Ž . Ž . Ž .Ž .H i 0 i 0½
0

Ž .qtyt nT nCi i i Z u exp b Z u l u du .Ž . Ž . Ž .Ž .H i 0 i 0 5
0

Ž . y1r2Therefore, Theorem 10.7 of Pollard 1990 implies that n U converges in2
distribution to a Gaussian random field on D# having continuous sample
path with respect to pseudometric r. Since r is dominated by the Euclidean
metric on D#, the limiting Gaussian random field must also be continuous
with respect to the Euclidean metric. I

We now state the main result of this section.

THEOREM 2.2. Under Conditions 1]3, ny1r2U converges in distribution to
a vector-valued Gaussian random field j on D# with continuous sample path,
mean 0 and covariance function

E j t , s j 9 t , sŽ . Ž .1 1 2 2

s ns1 2 m2s G t n t , u y G t n t , u rG t n t , u l u du.Ž . Ž . Ž . Ž .H 2 1 2 1 1 2 0 1 2 0
0

REMARK 3. It is clear from its covariance function that j has independent
Ž .increments in both s and t directions. Thus the diagonal process j t, t is a

Ž .time-rescaled Brownian motion when dim Z s 1, and a vector-valuedi
Ž .Gaussian process with independent increments when dim Z ) 1.i

REMARK 4. Theorem 2.2 generalizes the result of Sellke and Siegmund
Ž . Ž .1983 in two ways: i convergence occurs on D# instead of on the diagonal

� 4 Ž .line t s s ; ii it does not require that the entry times be independent of
Ž X . Ž .Z , T , C . It also generalizes the result of Gu and Lai 1991 , in which Z isi i i i
either 0 or 1.

Ž .REMARK 5. Suppose that w t, s is a sequence of weight functions on D#n
such that for each t, they have uniformly bounded variations in s and that,
uniformly on D#, it converges in probability to a deterministic function
Ž .w t, s . Then it follows from Theorem 2.2 and Lemma A.3 that the weighted

y1r2 t Ž . Ž .log-rank process n H w t, u U t, du converges in distribution to a Gauss-0 n
Ž .ian process. In the case of testing b s 0, one may choose w t, s s0 n

Ž .ÝY t, s rn, giving rise to the modified Gehan statistic of Slud and Weii
Ž . Ž .1982 ; one may also choose w t, s to be the Kaplan]Meier estimator of then
survival distribution from observations available at time t to get the sequen-
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tial version of the Tarone]Ware statistic. For the latter, the limiting weight
function w does not depend on t and therefore the limiting Gaussian process
has independent increments. Formally, we have the following corollary.

COROLLARY 2.1. Let w be a sequence of functions, converging uniformlyn
Ž . Ž .on D# to w. For each fixed t, w t, ? and w t, ? are left continuous and theirn

total variations are bounded by a constant, independent of t and n. Define
Ž . s Ž . Ž . y1r2 Ž .U t, s s H w t, u U t, du . Then under Conditions 1]3, n U t, s con-w 0 n w

verges in distribution to a Gaussian random field j with mean 0 andw
covariance function

s ns1 2XE j t , s j t , s s w t , u w t , uŽ . Ž . Ž . Ž .Hw 1 1 w 2 2 1 2
0

m2G t n t , uŽ .1 1 2
= G t n t , u y l u du.Ž . Ž .2 1 2 0G t n t , uŽ .0 1 2

Ž .REMARK 6. Gill and Schumacher 1987 initiated use of different weighted
log-rank score processes to obtain a simple goodness-of-fit test in the two-
sample case. Their idea was based on an observation that if lack of fit is
present, then there is a weight function to make the score process have a

Ž .positive drift. See Lin 1991 for an extension to multiple regression. Similar
tests can be constructed for the staggered entry model and their theoretical
foundation is provided by Corollary 2.1.

PROOF OF THEOREM 2.2. We first show that with probability 1,
n1

Xsup Y t , s Z s exp b Z sŽ . Ž . Ž .Ž .Ý i i 0 inŽ .t , s gD# is1

n1
Xy E Y t , s Z s exp b Z s ª 0,Ž . Ž . Ž .Ž .Ý i i 0 in is1

2.3Ž .

n1
Xsup Y t , s exp b Z sŽ . Ž .Ž .Ý i 0 inŽ .t , s gD# is1

n1
Xy E Y t , s exp b Z s ª 0.Ž . Ž .Ž .Ý i 0 in is1

2.4Ž .

Ž . Ž .For 2.4 , it suffices to show, in view of Theorem 8.3 of Pollard 1990 , that
� Ž . Ž X Ž ..4Y t, s exp b Z s is manageable. From Condition 1, total variations ofi 0 i

Ž X Ž ..exp b Z s are bounded by some constant, implying that we can write0 i
X q̃ ỹ q̃ ỹŽ Ž .. Ž . Ž .exp b Z s s Z s y Z s , where both Z and Z are nonnegative,0 i i i i i

˜nonincreasing and bounded by some constant B. Write
X q̃

q2.5 Y t , s exp b Z s s I Z s IŽ . Ž . Ž . Ž .Ž .i 0 i ŽT n C G s. i ŽŽ tyt . G s.i i i

ỹ
qy I Z s I .Ž .ŽT n C G s. i ŽŽ tyt . G s.i i i
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Ž .We now argue that the first term on the right-hand side of 2.5 is manage-
Ž . Ž .able. In view of 5.2 of Pollard 1990 , it suffices to show that both

q̃� Ž .4 � 4I Z s and I have finite pseudodimensions. We knowŽT n C G s. i ŽŽ tyt .qG s.i i i

from Lemma A.2 that the former has pseudodimension 1. The latter also has
�Ž .q qpseudodimension 1 because for any i, j, the set I , I :ŽŽ tyt . G s. ŽŽ tyt . G s.i j

Ž . 4t, s g D# contains at most three points. Likewise, the second term on the
Ž . � Ž . Ž X Ž ..4right-hand side of 2.5 is also manageable. Hence Y t, s exp b Z s isi 0 i

Ž .manageable. The same argument can be used to prove 2.3 . Note that,
Ž . Ž X Ž ..componentwise, Z s exp b Z s are of bounded variation with a boundi 0 i

independent of i.
Ž . Ž . Ž .Let K t, s be defined as in Condition 3. From 2.3 and 2.4 ,n

< <2.6 sup Z b ; t , s y K t , s ª 0 a.s.Ž . Ž . Ž .0 n
Ž .t , s gD#

w Ž .By Theorem 2.1 and the strong representation theorem Pollard 1990 ,
x Ž .Theorem 9.4 , we have, in another probability space, 2.6 and

< y1r2 <sup n U t , s y j t , s ª 0 a.s.Ž . Ž .1 1
Ž .t , s gD#

Ž .In view of the preceding convergence, 2.6 and Lemma A.3,

n s
y1r22.7 sup n Z b ; t , u y K t , u M t , du s o 1 ,Ž . Ž . Ž . Ž . Ž .Ý H 0 n i p

0Ž .t , s gD# is1

which holds in the original probability space since the statement is now ‘‘in
y1r2 y1r2 ˜probability.’’ Thus convergence of n U to j reduces to that of n U to

j , where

n s
˜2.8 U t , s s Z u y K t , u M t , du .Ž . Ž . Ž . Ž . Ž .Ý H i n i

0is1

y1r2 ˜Convergence of finite-dimensional distributions of n U to those of j is
˜straightforward by the classical multivariate central limit theorem, since U

is a sum of independent random variables. It remains to show tightness for
y1r2 ˜n U, or, equivalently, tightness for

n s
y1r2 y1r2˜n U t , s s n K t , u M t , duŽ . Ž . Ž .Ý HK n i

0is1

y1r2 n s Ž . Ž .because n Ý H Z u M t, du is tight by Theorem 2.1. In analogy withis1 0 i i
y1r2 ˜the proof of Theorem 2.1, it suffices to check that n U satisfies conditionsK

Ž . Ž . Ž . Ž . Ž .i ] v in Theorem 10.7 of Pollard 1990 . As before, ii ] iv are trivial and
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Ž .their verifications are omitted. For v , let

r t , s , t , sŽ . Ž .Ž .ñ 1 1 2 2

y1r2 ˜ y1r2 ˜ 25 5s E n U t , s y n U t , sŽ . Ž .K 1 1 K 2 2

n s1 1 2 X5 5s E K t , u exp b Z u Y t , u l u duŽ . Ž . Ž . Ž .Ž .Ý H n 1 0 i i 1 0n 0is1

n s1 2 2 X5 5q E K t , u exp b Z u Y t , u l u duŽ . Ž . Ž . Ž .Ž .Ý H n 2 0 i i 2 0n 0is1

n1 s ns1 2 X Xy E K t , u K t , u q K t , u K t , uŽ . Ž . Ž . Ž .Ý H n 1 n 2 n 2 n 1n 0is1

=exp b X Z u Y t n t , u l u du.Ž . Ž . Ž .Ž .0 i i 1 2 0

By condition 3, it is easy to see that as n ª `, uniformly on D# = D#, r̃n
Ž .converges to a pseudometric r. Thus v holds. Furthermore, since it is not˜

difficult to show that r is continuous on D# = D#, the limiting Gaussian˜
random field, which has continuous sample path with respect to r, has˜
continuous sample path with respect to the Euclidean metric.

Ž .It remains to verify i , the manageability condition. Note that

n s
y1r2n K t , u M t , duŽ . Ž .Ý H n i

0is1

n
y1r2

qs n K t , T I IŽ .Ý n i ŽT F C n s. ŽT F Ž tyt . .i i i i
is12.9Ž .

n s
y1r2

qyn K t , u I IŽ .Ý H n ŽT n C G u. ŽŽ tyt . G u.i i i
0is1

=exp b X Z u l u du.Ž . Ž .Ž .0 i 0

Because we can deal with K componentwise, we shall assume, without lossn
of generality, that the Z are scalars. We may further assume Z G 0 sincei i
Z s Zq y Zy. In view of its definition,i i i

n <E Ý Z s exp b Z s IŽ . Ž .Ž . ssTjs1 j 0 j ŽŽ tyt .qn C G s. ij jK t , T sŽ .n i n <E Ý exp b Z s IŽ .Ž . ssTjs1 0 j ŽŽ tyt .qn C G s. ij j

K t , TŽ .n , 1 is , say.
K t , TŽ .n , 2 i

� Ž .4 � Ž .4Because of their monotonicity, by Lemma A.2, K t, T , 1rK t, T ,n, 1 i n, 2 i
� 4 � 4qI and I all have pseudodimension 1. Thus, in view ofŽT F C n s. ŽT F Ž tyt . .i i i i

Ž . Ž .formula 5.2 of Pollard 1990 , it is easy to see that the first term on the



SEQUENTIAL ANALYSIS FOR COX MODEL 671

right-hand side of is manageable. On the other hand, the second term on the
Ž .right-hand side of 2.9 can be written as

n
t*

qK t , u I I exp b Z u I l u du.Ž . Ž . Ž .Ž .Ý H n ŽT n C G u. ŽŽ tyt . G u. 0 i ŽuF s. oi i i
0is1

Ž .By Theorem 6.2 of Pollard 1990 , to show manageability of the preceding
integral process it suffices to show that

2.10 K t , u I I I q exp b Z uŽ . Ž . Ž .Ž .� 4n ŽuF s. ŽT n C G u. ŽŽ tyt . G u. 0 ii i i

Ž Ž ..is Euclidean. Since total variations of exp b Z u are uniformly bounded,0 i
they can be expressed as differences of increasing processes; thus they must
be Euclidean by Lemmas A.1 and A.2. Furthermore, it is trivial that
� Ž . 4K t, u I has pseudodimension 1 because it does not involve i, thatn ŽuF s.
� 4I has pseudodimension 1 because of monotonicity and thatŽT n C G u.i i
� 4 �Žq qI has pseudodimension 1 since for any i, j, I ,ŽŽ tyt . G u. ŽŽ tyt . G u.i i

.4 Ž .qI takes at most three points. In view of these, 2.10 is Euclidean.ŽŽ tyt . G u.j
y1r2 ˜Thus n U is tight. Finally, since r is continuous on D# = D#, the˜

topology it induces is smaller than the usual one on D# = D# and therefore
the limiting Gaussian random field has continuous sample path in the usual
sense. I

3. Convergence under contiguous alternatives. Theorem 2.2 shows
y1r2 Ž .that the two-parameter score process n U b ; ? , ? converges in distribu-0

tion to a Gaussian random field, provided b is the true regression parameter0
vector. Based on this, statistical tests with asymptotically correct significance
level may be constructed. Calculation of their asymptotic powers, however,

y1r2 Ž .requires knowing distributional behavior of n U b ; ? , ? under a se-0
quence of contiguous alternatives. This section is devoted to developing a

y1r2 Ž .functional central theorem for n U b ; ? , ? when the true parameter is0'b q br n .0
p 'To be specific, let b be any fixed vector in R and b s b q br n . Forn 0

Ž .each fixed n, we assume that the true probability model is specified by 1.1
with b s b . Accordingly, P and E now stand for probability and expecta-n

Ž . Ž .tion under this parameter specification, as do expectations in 2.1 , 2.7 and
Conditions 1]3 whenever we may refer to them in this section. Notation t*

Ž . Ž .and D# remain the same. Let U b ; t, s and U b ; t, s be the same as in1 2
Section 2.

THEOREM 3.1. Suppose for each n, b is the true parameter vector. Undern
y1r2 Ž . y1r2 Ž .Conditions 1 and 2, n U b , ? , ? and n U b ; ? , ? converge in1 n 2 n

distribution to j and j , where j and j are the same zero-mean random1 2 1 2
fields as those specified in Theorem 2.1.

As explained in the proof of Theorem 2.1, the key is to show the so-called
tightness, which reduces to verification of manageability. It is easy to see that
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proof of Theorem 2.1 can be borrowed, word for word, to show this, since b0
does not play any role. We will not, however, repeat the same argument.

THEOREM 3.2. Under the same assumptions as those of Theorem 3.1,
y1r2 Ž .n U b ; ? , ? converges in distribution to j q mb, where j is the same0

zero-mean Gaussian random field as given in Theorem 2.2 and

s
m23.1 m t , s s G t , u y G t , u rG t , u l u du.Ž . Ž . Ž . Ž . Ž . Ž .H 2 1 0 0

0

PROOF. We can write

ny1r2U b ; t , sŽ .0
n s

y1r2s n Z u y Z b ; t , u M b ; t , duŽ . Ž . Ž .Ý H i 0 i n
0is1

n s
y1r2q n Z u y Z b ; t , uŽ . Ž .Ý H i 0

0is1

3.2Ž .

X X= exp b Z u y exp b Z u Y t , u l u du.Ž . Ž . Ž . Ž .Ž . Ž .n i 0 i i 0

Since we are dealing with convergence in distribution, we may, by construct-
ing a new probability space, assume that for all n, the relevant random

�Ž . 4variables T , C , t , Z : 1 F i F n , which are double arrays, that is, T s Ti i i i i i, n
and so on live in the same probability space.

Ž .The first term on the right-hand side of 3.2 can be expressed by

s
y1r2 y1r23.3 n U b ; t , s y n Z b ; t , u U b ; t , du .Ž . Ž . Ž . Ž .H2 n 0 1 n

0

Ž . wBy using the exponential inequality 7.3 instead of Theorem 8.3 both in
Ž .x Ž .Pollard 1990 , we can show that 2.6 still holds here. In view of Theorem

3.1, we can apply Lemma A.3 and the argument involving the strong repre-
Ž . Ž .sentation, as in proving 2.7 , to show that 3.3 is asymptotically equivalent

to

s
y1r2 y1r23.4 n U b ; t , s y n K t , u U b ; t , du .Ž . Ž . Ž . Ž .H2 n n 1 n

0

y1r2 ˜The last part of the proof Theorem 2.2 for showing convergence of n U to
Ž .j is applicable to 3.4 and thus we have the convergence of the first term on

Ž .the right-hand side of 3.2 to j .
Finally, by the Taylor series expansion, the second term on the right-hand

Ž .side of 3.2 is
n s

X Xy1n Z u y Z b ; t , u Z u exp b Z uŽ . Ž . Ž . Ž .Ž .Ý H i 0 1 0 i
03.5 is1Ž .
=Y t , u l u du b q O ny1r2 ,Ž . Ž . Ž .i 0
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Ž .where O is uniform in t, s g D#. By Lemma A.4 and exponential inequality
Ž . Ž .7.3 of Pollard 1990 , it follows easily that, with probability 1,

n s1
Xmksup Z u exp b Z u Y t , u l u duŽ . Ž . Ž . Ž .Ž .Ý H i 0 i i 0n 0Ž .t , s gD# is1

n s1
Xmky E Z u exp b Z u Y t , u l u du ª 0,Ž . Ž . Ž . Ž .Ž .Ý H i 0 i i 0n 0is1

3.6Ž .

k s 1, 2.

Ž . Ž .From Condition 3, 2.6 and 3.6 with k s 1, we have

ns 1
X Xsup Z b ; t , u Z u exp b Z u Y t , u l u duŽ . Ž . Ž . Ž . Ž .Ž .ÝH 0 i 0 i i 0n0Ž .t , s gD# is1

n3.7Ž . s 1
X Xy K t , u E Z u exp b Z u Y t , u l u duŽ . Ž . Ž . Ž . Ž .Ž .ÝH i 0 i i 0n0 is1

ª 0.

However, it is not difficult to see that

ns 1
X XK t , u E Z u exp b Z u Y t , u l u duŽ . Ž . Ž . Ž . Ž .Ž .ÝH i 0 i i 0n0 is1

n1 Ž .sn tyt qnT nC X Xi i is E K t , u Z u exp b Z u l u duŽ . Ž . Ž . Ž .Ž .Ý H i 0 i 0n 0is1

Ž .is equicontinuous in t, s g D# and converges pointwise to

m2s t , uŽ .
G .H

G t , u l u du1 Ž . Ž .0 0 0

Ž . Ž . Ž .This, combined with 3.5 ] 3.7 , shows that the second term in 3.2 converges
uniformly in D# to

s
m2G t , u y G t , u rG t , u l u du b.Ž . Ž . Ž . Ž .H 2 1 0 0

0

Hence the theorem holds. I

4. Convergence of the maximum partial likelihood estimator. In
this section, we prove uniform strong consistency and functional CLT for the
sequentially computed maximum partial likelihood estimator of b and0

Ž .Nelson]Aalen estimator of L . For each t, s g D#, define the Cox partial0
ˆŽ . Ž .likelihood estimator b t, s as a solution to U b ; t, s s 0. As in Section 2, b0

denotes the true regression parameter. We need the following condition for
ˆthe consistency of b.



Y. BILIAS, M. GU AND Z. YING674

Ž .CONDITION 4. There exists t# in 0, t* such that
n1 t# m2lim inf l E Z s y K t#, s Y t#, sŽ . Ž . Ž .Ý Hmin i n iž nnª` 0is1

=exp b X Z s l s ds s r ) 0,Ž . Ž .Ž .0 0 0/
Ž .where l A of a symmetric matrix A denotes its minimum eigenvalue.min

ˆŽ .THEOREM 4.1. Suppose that Conditions 1 and 4 are satisfied. Then b t, s
is uniformly strongly consistent in the sense

ˆ5 5lim sup b t , s y b s 0 a.s.Ž . 0
nª` t#FsFtFt*

Ž . Ž .PROOF. From 2.3 and 2.4 and an obvious extension of them to cover
k s 2, we know that under Condition 1,

n1
Xmklim sup Y t , s Z s exp b Z sŽ . Ž . Ž .Ž .Ý i i 0 innª` Ž .t , s gD# is1

n1
Xmky E Y t , s Z s exp b Z s s 0 a.s.,Ž . Ž . Ž .Ž .Ý i i 0 in is1

4.1Ž .

for k s 0, 1, 2. Now
n s1 1

U b ; t , s s Z u M t , duŽ . Ž . Ž .Ý H0 i in n 0is1

ns 1
y Z b ; t , u M t , du .Ž . Ž .ÝH 0 in0 is1

4.2Ž .

In view of the manageability in the proof of Theorem 2.1 and the uniform
wŽ . xstrong law of large numbers of Pollard 1990 , Theorem 8.3 , the first term on

Ž . y1 nthe right-hand side of 4.2 goes to 0 uniformly in D#. Likewise, n Ý Mis1 i
also goes to 0 uniformly in D#. Consequently, Lemma A.3 can be applied to

Ž .show that the second term on the right-hand side of 4.2 also goes to 0. Thus

1
4.3 lim sup U b ; t , s s 0 a.s.Ž . Ž .0nnª` Ž .t , s gD#

Ž .By 4.1 , we can easily show that with probability 1,

ns1  1 m2
sup U b ; t , s y E Z u y K t , uŽ . Ž . Ž .Ž .ÝH0 i nn b n0Ž .t , s gD# is1

4.4Ž .
X=Y t , u exp b Z u l u du ª 0.Ž . Ž . Ž .Ž .i 0 0
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�Ž . 4 Ž .Since t, s : t# F s F t F t* ; D#, Condition 4 and 4.4 entail

1 
4.5 lim inf inf l U b ; t , s s r ) 0 a.s.Ž . Ž .min 0 0ž /n bnª` t#FsFtFt*

y1Ž . Ž . ŽSince n rb U b ; t, s has uniformly bounded derivative with respect to
. Ž . Ž .b , 4.5 implies that there exists a neighborhood of b , NN b , such that0 0

1  r0
4.6 lim inf inf inf l U b ; t , s G ) 0.Ž . Ž .min ž /n b 2nª` t#FsFtFt* Ž .bgNN b0

Ž . Ž .From 4.3 , 4.6 and Lemma A.5 follows the desired uniform convergence. I

ˆ'� Ž Ž . . 4THEOREM 4.2. Under Conditions 1]4, n b t, s y b , t# F s F t F t*0
converges in distribution to a vector-valued Gaussian random field h, which
has mean 0 and covariance

E h t , s h9 t , s s my1 t , s m t n t , s n s my1 t , s ,Ž . Ž . Ž . Ž . Ž .Ž .1 1 2 2 1 1 1 2 1 2 2 2

Ž .where m is defined by 3.1 .

An immediate corollary of this is the convergence of the diagonal process
ˆ'� Ž Ž . . w x4 � Ž . w x4n b t, t y b , t g t#, t* to h t, t , t g t#, t* .0

ˆŽ . �PROOF OF THEOREM 4.2. Since b t, s converges to b uniformly on t# F0
4s F t F t* , we have, via the usual Taylor expansion,

ˆU b t , s ; t , s s U b ; t , sŽ . Ž .Ž . 0

 ˆq U b , t , s q o n b t , s y b ,Ž . Ž . Ž .0 p 0b

4.7Ž .

Ž . Ž .where o is uniform for t# F s F t F t*. From 4.7 , 4.4 and Theorem 2.1,p
ˆ' Ž Ž . .we easily conclude that n b ?, ? y b converges to h. I0

Ž .We now discuss estimation of L s . If b were known, then the0 0
ˆŽ .Nelson]Aalen estimator would be L b ; t, s , where0

s nÝ N t , duŽ .is1 iˆ4.8 L b ; t , s s .Ž . Ž . H XnÝ Y t , u exp b Z uŽ . Ž .Ž .0 is1 i i

ˆŽ .Since at time t, the best available estimator for b is b t, t , it is natural to0
ˆ ˆŽ Ž . .use L b t, t ; t, s . Convergence of this estimator is given by the following

theorem.

˜ �Ž . 4THEOREM 4.3. Let D# s t, s : t# F t F t*, s F t . Under Conditions 1]4,
ˆ ˆ ˜'� w Ž Ž . . Ž .x Ž . 4n L b t, t ; t, s y L s , t, s g D# , converges in distribution to a0
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Gaussian random field z with mean 0 and covariance function specified by

dL uŽ .s ns 01 2E z t , s z t , s sŽ . Ž . H1 1 2 2 G t k t , uŽ .0 0 1 2

q a9 t , s my1 t k t , t k t a t , s ,Ž . Ž . Ž .2 2 1 2 1 2 1 1

Ž . s Ž . Ž . Ž .where a t, s s H G t, u rG t, u dL u .0 1 0 0

ˆŽ .PROOF. Again taking the Taylor expansion of L b ; t, s at b s b , we can0
get

ˆ ˆL b t , t ; t , s y L sŽ . Ž .Ž . 0

s n X XÝ Y t , u exp b Z u Z uŽ . Ž . Ž .Ž .is1 i 0 i iˆs L b ; t , s y L s yŽ . Ž . H0 0 2Xn0 Ý Y t , u exp b Z uŽ . Ž .Ž .Ž .is1 i 0 i
4.9Ž .

n
y1r2ˆ= N t , du b t , t y b q o n ,Ž . Ž . Ž .Ž .Ý i 0 p

is1

˜Ž .where o is uniform in t, s g D#. By appealing to the uniform strong law ofp
large numbers as in the proof of Theorem 4.1, it follows that

n X X ns Ý Y t , u exp b Z u Z uŽ . Ž . Ž .Ž .is1 i 0 i i
N t , du s a t , s q o 1 .Ž . Ž . Ž .ÝH i p2Xn0 Ý Y t , u exp b Z uŽ . Ž .Ž . is1is1 i 0 i

Ž . Ž .This, together with 4.8 and 4.9 , gives

s y1r2n ÝM t , duŽ .i1r2n 4.9 sŽ . H Xy1n ÝY t , u exp b Z uŽ . Ž .Ž .0 i 0 i

y aX t , s my1 t , t ny1r2U b ; t , t q o 1 .Ž . Ž . Ž . Ž .0 p

From Theorem 2.2, we know that the second term on the right-hand side of
the preceding equation is tight. The tightness of the first term is easily seen
in view of Theorem 1 and Lemma A.3. Convergence of the finite-dimensional

Ž .distributions of 4.8 to those of z is straightforward by the multivariate
central limit theorem along with a routine variance]covariance calculation.

I

5. Score process with covariate adjustment and concluding re-
marks. As an application of the preceding general theory, we consider the
problem of testing the effect of one covariate component while adjusting for
effects of other components. In addition to the previous notation, introduce d ,

X Ž X. XŽ . Ž Ž . XŽ ..g , X and W specified through b s d , g and Z s s X s , W s . Sup-i i i i i
pose, for simplicity, it is desired to test H : d s 0, while g is treated as a0 0
nuisance parameter.
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If g , the true value of g , is known, then a relevant two-parameter Cox0
Ž .score process with staggered entry is V g ; t, s , where0

V g ; t , sŽ .
n s ÝX u exp g 9W u Y t , uŽ . Ž . Ž .Ž .j j js X t y N t , du .Ž . Ž .Ý H i iž /Ýexp g 9W u Y t , uŽ . Ž .0 Ž .j jis1

5.1Ž .

Ž .Since g is unknown in this setup, we propose to use V g ; t, s , where g isˆ ˆ0 t t
an estimator of g from the available data at time t and is defined as a0
solution to

n ÝW u exp g 9W u Y t , uŽ . Ž . Ž .Ž .t j j j
5.2 W u y N t , du s 0.Ž . Ž . Ž .Ý H i iž /Ýexp g 9W u Y t , uŽ . Ž .0 Ž .j jis1

Tests that incorporate covariate adjustment are useful in reducing bias
Ž .and increasing efficiency. Tsiatis, Rosner and Tritchler 1985 showed, under

the assumption that W and X are independent, that the finite-dimensionali i
y1r2 Ž . y1r2 Ž .distributions of n V g ; t, t and those of n V g ; t, t are asymptoti-ˆt 0

cally equivalent and the limiting process is a time-rescaled Brownian motion.
The more general case in which W and X may be dependent is studied ini i

Ž .Gu and Ying 1995 , where it is shown that the limiting process of
y1r2 Ž .n V g ; t, t is still a time-rescaled Brownian motion.ˆt

The preceding asymptotic theory enables us now to derive a functional
central limit theorem for the more general two-parameter process

y1r2 ˜� Ž . Ž . 4n V g ; t, s , t, s g D# . Letˆt

n n
X XX t , s s X s exp g W s Y t , s exp g W s Y t , s ,� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýi 0 i i 0 i i

is1 is1

n n
X XW t , s s W s exp g W s Y t , s exp g W s Y t , s .� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýi 0 i i 0 i i

is1 is1

It is clear that, under Condition 2, the following limits are well defined with
probability 1:

n s1
m t , s s lim X u y X t , uŽ . Ž . Ž .Ž .Ý Hx w innª` 0is1

X= W u yW t , u 9exp g W u Y t , u l u du,Ž . Ž . Ž . Ž . Ž .Ž .Ž .i 0 i i 0

n1 t m2 Xm t s lim W u yW t , u exp g W u Y t , u l u du,Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ý Hw w i 0 i i 0nnª` 0is1

n s1 2 Xm t , s s lim X u y X t , u exp g W u Y t , u l u du.Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ý Hx x i 0 i i 0nnª` 0is1
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Ž .THEOREM 5.1. Suppose that Conditions 1]3 are satisfied and m t ) 0.w w
y1r2 ˜� Ž . Ž . 4Then n V g ; t, s , t, s g D# converges in distribution to a Gaussianˆt

2 Ž .process j with mean 0 and covariance function s t n t , s n s , whereadj adj 1 2 1 2

5.3 s 2 t , s s m t , s y m t , s my1 t mX t , s .Ž . Ž . Ž . Ž . Ž . Ž .adj x x x w w w x w

Ž . Ž .It is clear from 5.3 that the ‘‘diagonal’’ process j t, t has independentadj
increments. In fact with some elementary algebra, one can show directly that

2 Ž .its variance function s t, t is increasing in t. From Theorem 5.1 followsadj
immediately Corollary 5.1 for the convergence of weighted log-rank statistics.

Ž .COROLLARY 5.1. Let w t, s be a sequence of weight functions as inn
Ž . t Ž . Ž .Corollary 2.1. Define weighted log-rank process V t s H w t, s V t, ds .w 0 n

� y1r2 Ž . 4Then under the same conditions as in Theorem 5.1, n V t : t# F t F t*w
converges in distribution to a Gaussian process with mean 0 and covariance
function

˜tnt2 2˜ ˜ ˜s t , t s w t , s w t , s s t n t , ds ,Ž . Ž . Ž . Ž .Hw , adj
0

Ž .recalling that w is the limit of w . In particular, if w t, s does not involve t,n
then the limiting process V has independent increments.w

PROOF OF THEOREM 5.1. Proof of Theorem 5.1 becomes rather straightfor-
Ž .ward in view of Theorems 2.2 and 4.2. Expanding V g ; t, s at g and in viewˆt 0

Ž .of Theorem 4.2 and 4.7 ,

V g ; t , s s V g ; t , s y m t , s my1 tŽ . Ž . Ž .Ž .ˆt 0 x w w w
n

t 1r2= W u y W t , u M t , du q o n ,Ž . Ž . Ž . Ž .Ž .Ý H i i p
0is1

5.4Ž .

˜Ž . Ž .where o is uniform in t, s g D#. From 5.4 we can apply the samep
Ž .argument as in Section 2 to show tightness of V g ; t, s . Convergence of itsˆt

finite-dimensional distributions follows from a simple covariance calculation.
I

We have developed in this paper a general asymptotic theory useful for
statistical inference related to Cox’s proportional hazards regression with
staggered entry data. It has been known that the usual approach via counting
processes and their associated martingales is in general not suitable. Our
method makes use of a modern empirical process theory, which treats uni-
and multi-parameter processes in a unified way. It greatly simplifies proofs of
the so-called tightness as well as producing asymptotic results in great
generality. The results we obtained include functional central limit theorems
for the two-parameter Cox score process, the related maximum partial likeli-
hood estimator of the regression parameter vector and the Nelson]Aalen
estimator of the cumulative baseline hazard function. Convergence under
contiguous alternatives is also derived. In addition, we have shown how these
results may be used to derive convergence of a weighted log-rank score
process for testing one covariate component while adjusting for others.



SEQUENTIAL ANALYSIS FOR COX MODEL 679

The main application of the results and the tools developed in this paper is
to sequential tests under the Cox model. However, there are other situations
which could benefit from the present investigation. For example, Lin, Shen,

Ž .Ying and Breslow 1996 recently proposed a one-arm sequential design
whose asymptotic behavior can be derived by applying the techniques devel-
oped here. Furthermore, a parallel theory for the accelerated failure time
Ž .AFT model may be developed along the same line. Note that there appears
to be no result for the AFT model parallel to that of Sellke and Siegmund
Ž .1983 . Another area in which our approach may be adopted is the type of
truncation model arising from analysis of warranty data as described in

Ž .Kalbfleisch, Lawless and Robinson 1991 .

APPENDIX

� 4 � 4LEMMA A.1. Suppose that f and g are manageable with respect to ai i
� 4 � 4 � 4common envelope F . Then f q g are manageable with respect to 2 F .i i i i

The proof is trivial in view of the definition of manageability.

Ž .LEMMA A.2. Let T be a subset of the real line. Suppose that f t isi
� Ž . 4nondecreasing in t for every i s 1, . . . , n. Then f t : t g T has pseudodimen-i

sion 1.

wŽ . xPROOF. For any fixed i, j, following Pollard 1990 , Definition 4.3 , we
�Ž Ž . Ž .. 4need to show that the set f t , f t , t g T cannot surround any point ini j

2 � 4 2R . This is clear because ? is a well-ordered subset in R . I

w x w x 2LEMMA A.3. Let D s a, b = c, d ; R . Suppose that

˜< < < <lim sup h t , s y h t , s q J t , s y J t , s s 0,Ž . Ž . Ž . Ž .� 4n n n
nª` Ž .t , s gD

˜Ž . Ž .where h is continuous on D, and, for each fixed t, J t, ? and J t, ? are leftn n
continuous, with their total variations bounded by a constant B, independent
of n and t. Then

s s
˜A.1 lim sup h t , u J t , du y h t , u J t , du s 0,Ž . Ž . Ž . Ž . Ž .H Hn n n

nª` c cŽ .t , s gD

s s
˜A.2 lim sup h t , u J t , du y h t , u J t , du s 0.Ž . Ž . Ž . Ž . Ž .H Hn n n n

nª` c cŽ .t , s gD

�Ž . w xREMARK. The lemma also holds when D s t, s : s F t, t g a, b and
w x4 Ž . Ž .s g c, d , because we can extrapolate the functions via h t, s s h t, t ,n n

whenever s G t.
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Ž .PROOF. First, since h converges uniformly to h and J t, ? has boundedn n
variation,

s s
A.3 lim sup h t , u J t , du y h t , u J t , du s 0,Ž . Ž . Ž . Ž . Ž .H Hn n n

nª` c cŽ .t , s gD

s s
˜ ˜A.4 lim sup h t , u J t , du y h t , u J t , du s 0.Ž . Ž . Ž . Ž . Ž .H Hn n n

nª` c cŽ .t , s gD

Ž . Ž . Ž .From A.4 we know that A.1 implies A.2 .
Since h is continuous, we can find partitions a s t - t ??? - t s b and0 1 n0

Ž Ž ..c s s - s ??? - s s d and constants h s h t , s such that the simple0 1 m i j i j0

function
m n0 0

h t , s s h IŽ . Ý Ý« i j ŽŽ t , s.g Ž t , t x=Ž s , s x.iy 1 i jy1 j
js1 is1

< Ž . Ž . <satisfies sup h t, s y h t, s - « . ThusŽ t, s.g D «

s s
˜h t , u J t , du y h t , u J t , duŽ . Ž . Ž . Ž .H Hn n

c c

s
F h t , u y h t , u J t , duŽ . Ž . Ž .H « n

c

s
˜q h t , u J t , du y J t , duŽ . Ž . Ž .H « n n

c

s
˜q h t , u y h t , u J t , duŽ . Ž . Ž .H « n

c
m n0 0

˜< < < <F 2« B q 2 h sup J v , u y J v , uŽ . Ž .Ý Ý i j n n
Ž .v , u gDjs1 is1

ª 2« B as n ª `.
Ž . Ž .This in conjunction with A.3 implies A.1 . I

LEMMA A.4. Let T be a compact subset in Rd. Suppose that the set of
� 4 < Ž .triangular array f with envelopes F satisfies, for all t, s g T, f t yni ni ni

Ž . < 5 5 � 4 Ž .f s F F t y s . Then f is Euclidean therefore manageable with re-ni ni ni
� 4spect to F .ni

PROOF. For « small enough, the number of points in T that are «
Ž .dq1 � 4distance apart must be less than 1r« . But for any a ,i

1r2 1r2n n
2 2 2 5 5a f t y a f s F a F t y s .Ž . Ž .Ž .Ý Ýi ni i ni i ni

is1 is1

� 4 Ž n 2 2 .1r2Thus the number of points in f that are « Ý a F apart must beni is1 i ni
Ž .dq1less than 1r« . I



SEQUENTIAL ANALYSIS FOR COX MODEL 681

� 4 d dLEMMA A.5. Let f : n G 1, a g A be a set of functions from R to R .n, a

Ž . Ž . Ž .Suppose that i ru f u are nonnegative definite for all n, a and u ;n, a

Ž . 5 Ž .5 Ž .ii sup f u ª 0 as n ª `; iii there exists a neighborhood of u ,a n, a 0 0
Ž .denoted by NN u , such that0

 f uŽ .n , a
lim inf inf inf l ) 0,min ž /unª` Ž . agAAugNN u0

where, as in Condition 4, l denotes the minimum eigenvalue. Then theremin
exists n such that for every n G n and a g AA, f has a unique root u0 0 n, a n, a

5 5and sup u y u ª 0.a g AA n, a 0

Ž .PROOF. We first show the existence of the root. From iii , we can find n0
and r ) 0 such that

 f uŽ .n , a
min l G r for all n G n and a g AA.min 0ž /u5 5uyu Fr0

5 5Thus for all u such that u y u s r,0

u y u 9 f u y f uŽ . Ž . Ž .0 n , a n , a

<s u y u 9 f u q u u y u y f uŽ . Ž . Ž .Ž . us10 n , a 0 0 n , a 0


3s u y u 9 f u q u* u y u u y u G r ,Ž . Ž . Ž .Ž .0 n , a 0 0 0u

5 Ž . Ž .5 2 Ž .implying f u y f u G r . By Theorem 2 and its proof of Goffmann, a n, a 0
Ž . Ž� 5 5 4. � 51965 , we know that the image f u : u y u F r contains y: y yn, a 0

Ž .5 2 4 Ž .f u F r r3 . From this and ii we have the existence of the root.n, a 0
Furthermore, because r may be chosen arbitrarily small, we can select a

5 5sequence of roots u such that sup u y u ª 0.n, a a n, a 0
To prove uniqueness, suppose for some n G n and a , there is another root0

u U . Definen, a

q t s u U y u 9 f u q t u U y u .Ž . Ž . Ž .Ž .n , a n , a n , a n , a n , a n , a

Ž . Ž . Ž . Ž .Clearly q 0 s 0 and q9 t G 0 with q9 0 ) 0. So q 1 ) 0, contradicting the
assumption that u U is a root of f . In, a n, a
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