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MUTUAL INFORMATION, METRIC ENTROPY AND
CUMULATIVE RELATIVE ENTROPY RISK

BY DAVID HAUSSLER1 AND MANFRED OPPER2

University of California at Santa Cruz and University of Wurzburg¨
� 4Assume P : u g Q is a set of probability distributions with a com-u

mon dominating measure on a complete separable metric space Y. A state
u * g Q is chosen by Nature. A statistician obtains n independent observa-
tions Y , . . . , Y from Y distributed according to P . For each time t1 n u *
between 1 and n, based on the observations Y , . . . , Y , the statistician1 ty1

ˆ ˆŽ .produces an estimated distribution P for P and suffers a loss L P , P .t u * u * t
The cumulative risk for the statistician is the average total loss up to time
n. Of special interest in information theory, data compression, mathemati-
cal finance, computational learning theory and statistical mechanics is the

ˆŽ .special case when the loss L P , P is the relative entropy between theu * t
ˆtrue distribution P and the estimated distribution P . Here the cumula-u * t

tive Bayes risk from time 1 to n is the mutual information between the
random parameter Q* and the observations Y , . . . , Y .1 n

New bounds on this mutual information are given in terms of the
Laplace transform of the Hellinger distance between pairs of distributions
indexed by parameters in Q. From these, bounds on the cumulative
minimax risk are given in terms of the metric entropy of Q with respect to
the Hellinger distance. The assumptions required for these bounds are
very general and do not depend on the choice of the dominating measure.
They apply to both finite- and infinite-dimensional Q. They apply in some
cases where Y is infinite dimensional, in some cases where Y is not
compact, in some cases where the distributions are not smooth and in
some parametric cases where asymptotic normality of the posterior distri-
bution fails.

1. Introduction. Much of classical statistics has been concerned with
the estimation of probability distributions from independent and identically
distributed observations drawn according to these distributions. If we let Pu *

ˆdenote the true distribution generating the observations and P the esti-t
mated distribution obtained after seeing t y 1 independent observations,
then the success of our statistical procedure can be defined in terms of a loss
function that measures the difference between the true distribution P andu *

ˆthe estimated distribution P . One such loss function has proven to be oft
importance in several fields, including information theory, data compression,

Received January 1996; revised January 1997.
1Supported by NSF Grant IRI-9123692.
2Supported by a Heisenberg Fellowship of DFG.
AMS 1991 subject classifications. Primary 62G07; secondary 62B10, 62C20, 94A29.
Key words and phrases. Mutual information, Hellinger distance, relative entropy, metric

entropy, minimax risk, Bayes risk, density estimation, Kullback]Leibler distance.

2451



D. HAUSSLER AND M. OPPER2452

mathematical finance, computational learning theory and statistical mechan-
ics. This is the relative entropy function. Further, in these fields, special
importance is given to the cumulative relative entropy loss suffered in a
sequential estimation setting, in which there are n total observations, but
these observations arrive one at a time, and at each time t a new, refined

ˆestimate P is made for the unknown true distribution P , based on thet u *
t y 1 previous observations. This is the setting that we study in this paper.

The average of the cumulative loss over all sequences of n observations
Žgenerated according to the true distribution is the cumulative relative

. � 4entropy risk. For a given family P : u g Q of distributions, two types of risku

are of interest in statistics. One is the minimax risk, which is the minimum
worst-case risk over possible true distributions P , where u * g Q, and theu *
minimum is over all possible sequential estimation strategies. The other is
the Bayes risk, which is the minimum average-case risk over possible true
distributions P drawn according to a prior distribution m on Q, and theu *
minimum is again over all possible sequential estimation strategies. For
cumulative relative entropy loss, the Bayes risk has a fundamental informa-
tion-theoretic interpretation: it is the mutual information between a random
variable representing the choice of the parameter u * of the true distribution

w x w x w xand the random variable given by the n observations, see 15 , 23 and 35 .
This provides a beautiful connection between information theory and statis-
tics.

w x w xThis connection also extends to other fields, as is discussed in 6 and 15 .
In data compression, the cumulative relative entropy risk is the redundancy,
which is the expected excess code length for the best adaptive coding method,
as compared to the best coding method that has prior knowledge of the true

w x w x w xdistribution, see 15 , 28 and 42 . The minimax risk is called the ‘‘informa-
w xtion’’ channel capacity in 18 , page 184. In mathematical finance and gam-

bling theory, the cumulative relative entropy risk measures the expected
reduction in the logarithm of compounded wealth due to lack of knowledge of

Žw x w x.the true distribution 7 and 15 . In computational learning theory, this
risk is the average additional loss suffered by an adaptive algorithm that
predicts each observation before it arrives, based on the previous observa-
tions, as compared to an algorithm that makes predictions knowing the true

Žw x w x.distribution 31 and 32 . Here we assume that the observation at time t is
ˆpredicted by the ‘‘predictive’’ probability distribution P , formed by thet

adaptive algorithm using the previous t y 1 observations, and that when this
tth observation arrives, the loss is the negative logarithm of its probability

ˆunder P . Finally, in statistical mechanics, the Bayes risk can be related tot
Žw x w x.the free energy 43 and 44 .

In this paper, we provide upper and lower bounds on the Bayes risk for
cumulative relative entropy loss in the form of Laplace integrals of the

� 4Hellinger distance between pairs of distributions in P : u g Q . We illustrateu

these bounds in a number of special cases, then use them to characterize the
asymptotic growth rate of the minimax risk in terms of the metric entropy of
� 4P : u g Q under the Hellinger distance. The methods used here have theu
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advantage of simplicity, with proofs amounting to little more than simple
applications of Jensen’s inequality. The results are also quite general. The
bounds apply to both finite- and infinite-dimensional Q. They apply in some
cases where the space of observations is infinite dimensional, in some cases
where it is not compact, in some cases where the distributions are not smooth
and in some parametric cases where asymptotic normality of the posterior
distribution fails. The bounds are also fairly tight. However, in smooth
parametric cases, our general bounds are too crude to give the precise
estimates of the low-order additive constants that were obtained by Clarke

w xand Barron 15, 16 .
The paper is organized as follows. In Sections 2 and 3 we give precise

definitions of the risks that we evaluate and discuss the conditions required
for our bounds to hold. Here we also compare our bounds to those obtained
previously by other authors. The bounds are given in Section 4, followed by
examples in Sections 5 and 6 showing how they can be applied. Then in
Section 7 we give the characterization of the minimax risk. Finally, we
discuss some possible further work in Section 8.

2. Basic definitions, notation and assumptions. The following nota-
tion and assumptions will be used throughout the paper.

Let Y be a complete separable metric space. All probability distributions
on Y discussed in this paper are assumed to be defined on the s-algebra of
Borel sets of Y. Let Q be a set, and, for each u g Q, let P be a probabilityu

distribution on Y. We assume that, for any u / u * g Q, the distributions
associated with u and u * are distinct in the sense that there is a Borel set

Ž . Ž .S ; Y such that P S / P S . In addition, we assume there is a fixedu u *
ws-finite measure n on Y that dominates P for all u g Q i.e., for any Borelu

Ž . Ž . x Ž .set S : Y, n S s 0 implies P S s 0 . We will also make implicitly theu

assumption that any other distribution Q on Y mentioned in the following
results is also dominated by n . None of our results depends on the choice of
the dominating measure n . Hence, for any distribution Q, the Radon-Niko-
dym derivative dQrdn will be abbreviated simply as dQ, following the

w xconvention in Le Cam’s text 41 . Furthermore, all integrals in the following
results are assumed, without specific notation, to be taken with respect to the
measure n , unless otherwise indicated. Thus, for a function f on Y and a
distribution Q on Y, the expectation of f is denoted by

dQ
f dQ s y f y dn .Ž . Ž .H H dnY

Hence, in the special case that Y is countable and n is the counting measure,
for a probability mass function Q on Y,

f dQ s Q y f y .Ž . Ž .ÝH
ygY
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We will also need to treat probability distributions over Q, which we will
refer to as prior distributions. As each u g Q is associated with a distinct
distribution P on a complete separable metric space, we can define prioru

distributions on Q with respect to the Borel sets of the topology of weak
� 4convergence of the P measures. We assume that the set P : u g Q is itselfu u

measurable w.r.t. this topology. All prior distributions m on Q used in this
paper are assumed to be Borel distributions of this type, and suprema over
priors are also assumed to be only with respect to Borel distributions of this

w xtype. Further discussion of these issues can be found in the appendix of 21 .
Finally, for integer- or real-valued functions f and g, we say f ; g if

Ž . Ž . Ž . Ž .lim f n rg n s 1, and f 7 g if lim inf f n rg n ) 0 andn ª ` n ª `

Ž . Ž .lim sup f n rg n - `. All logarithms are natural logarithms unless oth-nª`

Ž .erwise specified. We assume throughout that 0 log 0 s 0 log xr0 s 0, where
x is any nonnegative finite number. We will also employ functions taking

w xvalues in the extended reals y`, q` , and, in particular, use the extended
log function obtained by defining log 0 s y` and log ` s `. Expectations
over extended real-valued functions are defined whenever they do not take
both the value q` with positive probability and the value y` with positive
probability. The expectation is q` if this value has positive probability and
similarly for y`.

3. Statement of the problem: the game of estimating a probability
distribution. We view the problem of estimating a probability distribution

� 4from the set of distributions P : u g Q as a game in which Nature playsu

against the statistician. First, Nature picks u * g Q. We refer to u * as the
Ž . ntrue state of Nature. Then, for some n G 1, a sequence Y s Y , . . . , Y of1 n
i.i.d. random variables is observed, each variable distributed according to P .u *
The particular sequence of values observed for these random variables is
denoted by y n s y , . . . , y . For each time t between 1 and n, the statistician1 n

ˆ ˆ ty1Ž < .forms an estimate P s P y y for the unknown distribution P , basedt t t u *
ty1 ty1 ˆon the values y s y , . . . , y . In particular, for every t and every y , P1 ty1 t

is a distribution over Y called the predictive distribution at time t, and the
set of all such predictive distributions, for all t and y ty1, is called the

ˆŽ .predictive strategy of the statistician, denoted simply as P. Note that in
this formulation the statistician does not estimate the parameter u * itself,
but rather the distribution it represents. This allows the statistician, if

� 4necessary, to use predictive distributions that are not in the set P : u g Q .u

The statistician suffers some loss by using a predictive distribution in
place of the true distribution P . We define this loss as the KL-divergence oru *
relative entropy between the true distribution and the predictive distribution.
For general distributions P and Q, the relative entropy between P and Q is
defined by

dP
5D P Q s dP log .Ž . HK L dQ
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ˆ Ž .If the statistician uses the strategy P, then the risk to the statistician at
time t, when u * is the state of Nature, is given by the average loss

ty1 ˆ5r u * s dP D P P .Ž . Ž .ˆ Ht , P u * K L u * t
ty1Y

The cumulative risk for the first n observations is
n

R u * s r u * .Ž . Ž .ˆ ˆÝn , P t , P
ts1

This paper examines only cumulative risk, which is henceforth referred to
simply as risk, while the risk at time t is referred to as the instantaneous

Ž .risk. The cumulative risk has a particularly simple interpretation. For any
ˆ ˆ nstrategy P, define the distribution P on Y by

n
n ty1ˆ ˆ <P y s P y y .Ž . Ž .Ł t t

ts1

In this way, we can identify prediction strategies with joint distributions on
Y , . . . , Y . Then1 n

n dP yŽ .u * tty1 ty1R u * s dP y dP y logŽ . Ž .Ž .ˆ Ý H Hn , P u * u * t ty1ty1 ˆ <dP y yY Y Ž .ts11 t tŽ .
n ˆ5s D P PŽ .K L u *

Ž w x .by the chain rule for relative entropy see, e.g., 18 , page 23 .
Of course, the statistician seeks a strategy that minimizes risk. One

approach assumes that Nature is a strategic adversary and hence selects the
worst case u * for any particular strategy of the statistician. In this case, the
best strategy for the statistician is one that minimizes the worst-case risk,
and the value of the game is the minimax risk

Rminimax s inf sup R u * .Ž .ˆn n , P
P̂ u *gQ

ˆA strategy P that achieves this minimax value is called a minimax strategy.
The other approach is the Bayesian approach, where one seeks to minimize

the average risk. Here we might imagine that Nature chooses u * at random
according to a prior probability distribution m on Q. Then the statistician

Ž .seeks to minimize the average risk according to m , and the value of the
game is the Bayes risk

RBayes s inf dm u * R u * .Ž . Ž .ˆHn , m n , P
ˆ QP

ˆA strategy P that achieves this value is called a Bayes strategy.
In the Bayesian approach, there are two random variables, Q*, giving the

choice of the state of Nature, and Y n s Y , . . . , Y , giving the sequence of1 n
observations. Their joint distribution defines the behavior of Nature. The
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marginal distribution of Y n, defined by

M y n s dm u * P n y n ,Ž . Ž . Ž .Hn , m u *
Q

is of particular importance here. Breaking M down into a product ofn, m

conditional distributions, we can write
n

n Bayes ty1<M y s P y y ,Ž . Ž .Łn , m t , m t
ts1

where
M y tŽ .t , mBayes ty1<P y y s .Ž .t , m t ty1M yŽ .ty1, m

The distributions P Bayes are called predictive posterior distributions. Theset, m

form a Bayes strategy for relative entropy loss, which we call P Bayes. To seem

Ž .this, note that by 1 the difference between the average risk for an arbitrary
ˆ Bayesstrategy P and the strategy P ism

n ˆ n5 5dm u * D P P y D P MŽ . Ž .Ž .H ž /K L u * K L u * n , m
Q

dP n dP n
u * u *ns dm u * dP log y logŽ .H H u *

n ž /ˆ dMdPQ Y n , m

dMn , ms dM logH n , m
n ˆdPY

ˆ5s D M P G 0.ž /K L n , m

It follows that the Bayes risk for relative entropy loss is given by

Bayes n 5 nR s dm u * D P M s I Q*; Y ,Ž . Ž .Ž .Hn , m K L u * n , m
Q

the mutual information between the parameter Q* and the observations Y n.
Ž w xSee 18 , page 18, for a general definition and discussion of mutual informa-

.tion.
It turns out that there is a simple, universal relationship between the

Bayes risk RBayes and the minimax risk Rminimax. This result can be obtainedn, m n
w xwith limited effort from the general results in an early paper of Le Cam 39 .

w xSpecial cases of the result were derived by Gallager 25 and Davisson and
w x w xLeon-Garcia 19 , and the general result is given in 30 .

Ž w x.THEOREM 1 Haussler 30 .

Rminimax s sup RBayes ,n n , m
m

Ž .where the supremum is taken over all Borel probability measures on the
parameter space Q. Moreover,

Rminimax s inf sup R Bayes u * .Ž .n n , Pmm u *gQ
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Several authors have studied the Bayes risk RBayes, or the equivalentn, m

Ž n.mutual information I Q*; Y , for the case of a parametric family of distribu-
� 4 w xtions P : u g Q . Early work by Ibragimov and Hasminskii 35 showed thatu

Ž n. Ž .I Q*; Y ; Dr2 log n when Y is the real line and the conditional distribu-
tions P are a smooth family of densities indexed by a real-valued parameteru

vector u in a compact set Q of dimension D, and certain other conditions
apply. In this case, they were even able to estimate the lower-order additive
terms in this approximation, which involve the Fisher information and the

w xentropy of the prior. Further related results were given by Efroimovich 23
w x w xand Clarke 14 . Clarke and Barron 15 gave a detailed analysis, with

applications, of the risk of the Bayes strategy as a function of the true state of
Nature, discussing the relation of the Bayes risk to the notion of redundancy
in information theory and giving applications to hypothesis testing and
portfolio selection theory. These results were extended to the Bayes and

w x Ž w x.minimax risk in 16 see also 6 . Related lower bounds, which are often
w xquoted, were obtained by Rissanen 49 , based on certain asymptotic normal-

w xity assumptions. Amari 1, 2 has developed an extensive theory that relates
the risk when u * is the true state of Nature to certain differential]geometric
properties of the parameter space Q in the neighborhood of u * involving

Ž w x w x w x.Fisher information and related quantities see also 38 , 54 and 56 .
Some authors have also looked at the value of the relative entropy risk in

w x w x w x w x w xnonparametric cases as well, for example, 5 , 9 , 50 , 53 and 55 . Also, the
issue of consistent estimation of a general probability distribution with

w x w xrespect to relative entropy is addressed in 8 and 28 . However, in the
nonparametric case, more extensive work has been done in bounding the risk

Ž w x w x.for other loss functions see, e.g., 20 and 36 . While this work is too
extensive to summarize here, we do note that some authors have also taken
the general approach that we take here in using notions of metric entropy
Ž .defined later and specifically using the Hellinger distance in obtaining these

Ž w x w x w x w x w x.bounds e.g., 9 ] 12 , 29 , 40 and 52 . The only authors we have found
who have applied this methodology to the relative entropy risk are Wong and

w x Ž . w xShen 53 see Corollary 1, page 360 and Barron and Yang 9 . This work is
somewhat complementary to ours, in that it treats instantaneous risk,
whereas we focus on cumulative risk. The tools that Wong and Shen employ
are considerably more sophisticated, involving bracket entropy methods from
empiricial processes, and it appears that the boundedness assumptions they

Ž . Žmake e.g., in Theorem 6 are a bit stronger than ours see the following
.discussion and at the end of Section 4.2 . Different assumptions and different

Ž .methods using Fano’s inequality are used to obtain related general results
w xin 9 .
In this paper, we describe a new approach, employing the Hellinger metric

and certain Laplace integrals, to bounding both the Bayes and the minimax
risks for the cumulative relative entropy loss. For most Q the bounds are
fairly tight. We show this for Q that satisfy some general conditions. To
describe the conditions needed, for a ) 1, define the a-affinity between

Ž . Ž .a Ž .1yadistributions P and Q by r P, Q s H dP dQ . To obtain useful boundsa
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on the minimax risk, we need to assume that Q is such that there exist some
a ) 1, some constant C ) 0 and some distribution Q on Y such that, for all
u * g Q,

r P , Q - C.Ž .a u *

Call this the ‘‘a-affinity boundedness condition’’ on Q. By fixing a , a separate
condition of this type can be defined for each a ) 1. The condition needed for
the Bayes risk upper bound is similar, except that we need only that the

Ž .expectation of r P , Q is at most C, when u * is drawn at random accordinga u *
to the prior.

A related boundedness condition is used in the investigation of consistent
w xdensity estimation with respect to relative entropy risk in 8 . There it is

assumed that there is some constant C ) 0 and some distribution Q on Y
such that, for all u * g Q,

D P , Q - C.Ž .K L u *

This might be called the ‘‘relative entropy boundedness condition.’’ It is clear
that the minimax risk Rminimax is infinite for Q, even for n s 1, if the relativen
entropy boundedness condition is not satisfied. So this condition is necessary

wfor the analysis of the minimax risk to be nontrivial. It should be noted that
Ž 5 .since D P Q s ` whenever Q does not dominate P, the assumption thatK L

we mentioned in Section 2 that all the distributions P for u g Q have au

common dominating measure is actually weaker than the relative entropy
boundedness condition. Hence, the minimax risk is trivially infinite without
this assumption, showing that we obtain essentially no loss in generality by

xmaking this assumption. In fact, it can be shown that the a-boundedness
condition that we impose in our results on minimax risk is strictly stronger
than the relative entropy boundedness condition for all a ) 1. However, in
some sense, it is not much stronger than the relative entropy boundedness
condition, as it can also be shown that a simple function of the a-affinity, the
I-divergence defined later, approaches the relative entropy as a approaches 1
w x47 . Furthermore, it can be shown that the a-affinity boundedness condition
is weaker than the integrable envelope condition, Hsup dP - `, used inu *g Q u *

w xthe minimax analysis of relative entropy risk in 53 . Further discussion of
the relationship between these conditions is given at the end of Section 4.2.
Note that there we reparametrize by setting a s 1 q l, l ) 0, to avoid
confusion with another usage of a .

In the following sections, we also discuss the sense in which these bound-
edness conditions may be viewed as assuming that the minimax risk is finite
for alternate definitions of the loss function, in this case by using an a-affin-
ity in place of the relative entropy. This viewpoint allows us to bound the
minimax risk for the cumulative relative entropy loss for each n G 1 in terms
of a function of n plus an additive constant that is the minimax risk for
n s 1, but using an a-affinity loss with a ) 1 in place of the relative entropy

Ž .loss see Lemma 7 .
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4. Bounds on mutual information and relative entropy distance to
a mixture. Since we can obtain the minimax risk as a supremum of Bayes
risks, we now focus our attention on the Bayes risk. As noted previously, the

Bayes Ž n.Bayes risk R is the mutual information I Q*, Y between the randomn, m

variable Q* giving the choice of u * according to the prior m and the observa-
tions Y n. We now give general bounds on this mutual information. In
addition, since the risk for a particular state of Nature u * using the Bayes
strategy P Bayes ism

n 5BayesR u * s D P M ,Ž . Ž .n , P K L u * n , mm

n Ž .where M s HP dm u , we will seek bounds for this quantity as well. Then, m u

latter bounds actually address the general problem of bounding the relative
entropy distance from an n-fold product distribution to a mixture of such
distributions.

In obtaining these bounds, we use several notions of ‘‘distance’’ between
probability distributions based on the a-affinities. One such family of dis-

w xtances are the I-divergences introduced by Renyi 47 . For any real a / 1 and´
distributions P and Q, the I-divergence of order a is defined by

1 a 1ya52 I P Q s log dP dQ .Ž . Ž . Ž .Ž . Ha a y 1

For 0 - a - 1, a related set of distances is defined by

1 a 1yaD P , Q s 1 y dP dQŽ . Ž . Ž .Ha ž /1 y a
3Ž .

1 a 1yas a dP q 1 y a dQ y dP dQ .Ž . Ž . Ž .Ž .H1 y a

Ž . a 1yaSince a x q 1 y a y y x y G 0 for any x, y G 0 and 0 F a F 1, the inte-
grand is everywhere nonnegative in the rightmost definition of D , showinga

Ž . Ž .that D P, Q G 0. This is essentially Holder’s inequality. Since ylog x G¨a

Ž 5 . Ž . Ž 5 .1 y x, it follows that I P Q G D P, Q , and hence I P Q G 0 as well.a a a

Since ylog x f 1 y x for x near 1, these quantities are similar when the
Ž .a Ž .1yaa-affinity H dP dQ is close to 1. Finally, for the case a s 1, we define

dQ
5 54 D P , Q s I P Q s D P Q s dQ y dP y dP log .Ž . Ž . Ž . Ž . H1 1 K L ž /dP

Ž .Since log z F z y 1, it follows that y y x y x log yrx G 0 for all x, y G 0.
Hence the integrand in the rightmost expression is everywhere nonnegative.

Ž . Ž 5 .It can be shown that both D P, Q and I P Q are increasing in a fora a

a ) 0.
One important special case of the aforementioned distances is the squared

Hellinger distance

22 ' 'D P , Q s D P , Q s dP y dQ .Ž . Ž . Ž .HHL 1r2
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Unlike the other distances and divergences discussed previously, the distance
Ž . 2D P, Q , that is, the square root of the previously defined D , is a metric,HL HL

since it is symmetric and satisfies a triangle inequality. This metric has been
used to give bounds on the risk of estimation procedures in statistics by many

w x w xauthors, including Le Cam 40 , Birge 10, 11 , Hasminskii and Ibragimov´
w x w x29 and van de Geer 52 .

Ž n.4.1. Basic bounds. Our main theorem gives bounds on I Q*; Y and
Ž n 5 .D P M in terms of the logarithms of two Laplace transforms of theK L u * n, m

Ž .I-divergence, one at the value a s 1 the relative entropy and the other at
some a between 0 and 1.

THEOREM 2. Let m be any prior measure on Q and let 0 - a - 1. For each
u g Q, let Q be an arbitrary conditional distribution on Y given u and let Qn

u u

be the n-fold product of Q . For every n G 1,u

1.

˜ 5y dm u * log dm u exp yn 1 y a I P PŽ . Ž .Ž . Ž .˜H H a u * u
Q Q

F RBayes
n , m

s I Q*; Y nŽ .

˜ 5F y dm u * log dm u exp ynI P Q .Ž . Ž . Ž .˜H H 1 u * u
Q Q

2. For any g ) 0, there exists a subset Q of Q with measure at leastg

1 y 2 eyg under the prior m such that, for all u * g Q ,g

˜ 5ylog dm u exp yn 1 y a I P P y gŽ .Ž . Ž .˜H a u * u
Q

F R Bayes u *Ž .n , Pm

n 5s D P MŽ .K L u * n , m

˜ 5F ylog dm u exp ynI P Q q g .Ž . Ž .˜H 1 u * u
Q

w xThe upper bound of part 1 is similar to results given in 5 and is
mentioned there for the case P s Q. To the best of our knowledge, the lower
bound and the results in part 2 are new.

The proof is given in a series of lemmas and calculations. We prove the
upper bounds of both parts of the theorem first, then the lower bounds. In
establishing the bounds in part 2, we will show that there is a set of
m-measure at most eyg on which the lower bound fails and similarly for the
upper bound. Hence, both bounds hold on the complement of the union of
these two sets, which has m-measure at least 1 y 2 eyg .
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We begin with the upper bounds. This requires the following lemma which
w xhas been previously utilized in the framework of statistical physics 51 .

Ž . Ž .LEMMA 1. Let P s P w be a measure on a set W and Q s Q v be a
Ž .measure on a set V. For any real-valued function u w, v ,

y dQ v log dP w exp u w , vŽ . Ž . Ž .H H
V W

F ylog dP w exp dQ v u w , v .Ž . Ž . Ž .H H
W V

PROOF. First note that by Holder’s inequality, for any real-valued func-¨
tions u and u and 0 F a F 1,1 2

dP w exp a u w q 1 y a u wŽ . Ž . Ž . Ž .H 1 2
W

a Ž .1yas dP w exp u w exp u wŽ . Ž . Ž .Ž . Ž .H 1 2
W

a Ž .1ya

F dP w exp u w dP w exp u w .Ž . Ž . Ž . Ž .H H1 2ž / ž /W W

Ž . uŽw, v .Taking logs, this shows that log H dP w e is convex in u. The resultW
then follows by applying Jensen’s inequality. I

We also use this simple lemma, suggested to us by Meir Feder. Let
Ž .P s P v, w be a measure on the product space V = W, with conditional

Ž < . Ž .distribution P v w on V and marginal distribution P w on W.

LEMMA 2. For any sets W and V, measure P on V = W, and nonnegative
Ž . Ž . Ž .function f v, w such that H dP v, w f v, w s 1,V=W

1.

dP v , w log f v , w F 0.Ž . Ž .H
V=W

2. For any g ) 0,

< ygPr w : dP v w log f v , w G g F e .Ž . Ž .Hž /V

Ž . Ž . Ž .PROOF. For the first part, H dP v, w log f v, w s y` - 0 if f v, wV=W
s 0 on a set of positive measure. Otherwise, note that by Jensen’s inequality

dP v , w log f v , w F log dP v , w f v , w s 0.Ž . Ž . Ž . Ž .H H
V=W V=W
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Ž .For the second part, the case where f v, w s 0 for a set of v positive
measure under the conditional distribution of V given w is similarly trivial,
and otherwise note that

<Pr w : dP v w log f v , w G gŽ . Ž .Hž /V

<s Pr w : exp dP v w log f v , w G exp gŽ . Ž . Ž .Hž /V

<F exp yg dP w exp dP v w log f v , wŽ . Ž . Ž . Ž .H H
W V

<F exp yg dP w dP v w f v , wŽ . Ž . Ž . Ž .H H
W V

s exp yg .Ž .

The first inequality follows from Markov’s inequality and the second from
Jensen’s inequality. I

In establishing the upper bounds, we use Lemma 2 with V s Y n, W s Q
˜ n n n nŽ . Ž . Ž . Ž .and f v, w s H dm u dQ y rdM y . Here we assume all y such˜Q u n, m

that dM s 0 have been removed from the domain of f , so that f is finite.n, m

The conditions of the lemma are satisfied, since this function is nonnegative
and

˜ n nH dm u dQ yŽ .Ž . ˜Q u nn n n˜dm u * dP y s dm u dQ y s 1,Ž . Ž . Ž .Ž . ˜H H Hu * unn ndM yŽ .Q=Y Y Qn , m

Ž n. Ž . nŽ n.since M y s H dm u * P y . Employing Lemma 2 with this choice ofn, m Q u *
f , the following chain of inequalities holds for all u * except for a set of
m-measure at most eyg :

dP n
u *n n5D P M s dP logŽ . HK L u * n , m u *

n dMY n , m

n ˜ ndP H dm u dQŽ . ˜u * Q uns dP log q logH u * nn ˜ž /dMH dm u dQY Ž . n , m˜Q u

dP n
u *nF dP log q gH u * nn ˜H dm u dQY Ž . ˜Q u

dQn
ũn ˜s y dP log dm u q gŽ .H Hu * nn dPY Q u *

dQn
ũn ˜s y dP log dm u exp log q gŽ .H Hu * nn ž /dPY Q u *
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ndQũn˜F ylog dm u exp dP log q gŽ .H H nu *
n dPQ Y u *

nn˜ 5s ylog dm u exp yD P Q q gŽ . Ž .˜H K L u * u
Q

˜ 5s ylog dm u exp ynD P Q q g ,Ž . Ž .˜H K L u * u
Q

where the first inequality follows from Lemma 2, part 2, and the second one
from Lemma 1. The last equality follows from the fact that the KL-divergence

Ž w xis additive over the product of independent distributions see, e.g., 18 , page
. n23 . Note that by our convention that 0 log 0 s 0, for each u *, the set of y

nŽ n.such that dP y s 0 can simply be removed in the first equality and thenu *
reintroduced in the exponent of the second-to-the-last inequality, thus avoid-

˜ n nŽ . Ž .ing any division by 0 for these cases. Similarly, if H dm u dQ y s 0 for a˜Q u

set of y n of positive measure with respect to P n , then all upper bounds fromu *
the second line on are infinite, and the result holds trivially. Otherwise, a set

n ˜ n nŽ . Ž .of y of measure 0 on which H dm u dQ y s 0 can be ignored, avoiding˜Q u

any division by 0 in this regard. Since D s I , this establishes the upperK L 1
bound of part 2 of Theorem 2.

The upper bound of part 1 of Theorem 2 is established in a very similar
manner. Here we note that

dP n
u *n nI Q*; Y s dm u * dP logŽ . Ž .H H u *

n dMQ Y n , m

n ˜ ndP H dm u dQŽ . ˜u * Q uns dm u * dP log q logŽ .H H u * nn ˜ž /dMH dm u dQQ Y Ž . n , m˜Q u

dP n
u *nF dm u * dP log ,Ž .H H u * nn ˜H dm u dQQ Y Ž . ˜Q u

where the inequality follows from Lemma 2, part 1. The remainder of the
proof consists of the identical chain of inequalities as in the preceding proof of
the upper bound of part 2, except that we take expectation over u * and we do
not have the term qg .

We turn now to the lower bounds. Here we use the following lemma, which
Ž .is new, as far as we can tell. Let P s P v, w be a measure on the product

Ž < .space V = W, with conditional distribution P v w on V and marginal distri-
Ž .bution P w on W. For any 0 - l F 1, define

l<dP v wŽ .
Žl.I W ; V s y dP v , w* log dP w .Ž . Ž . Ž .H H ž /<dP v w*Ž .V=W W

Žl.Ž . w x Ž1.Ž .It is easy to see that I W; V is well defined 34 . Note that I W; V s
Ž .I W; V , the mutual information between W and V.
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Ž . Ž < .LEMMA 3. Whenever H dP w dP v w ) 0 for all v and 0 - l F 1,W

1.

I Žl. W ; V y I W ; V F 0.Ž . Ž .

2.

< <Pr w*: dP v w* ) 0 and dP v w*Ž . Ž .H½ V

l< <dP v w dP v wŽ . Ž . yg= log dP w y log dP w G g F e .Ž . Ž .H H ž / 5< <ž /dP v w* dP v w*Ž . Ž .W W

PROOF. This follows from Lemma 2 using the function

< <H dP w dP v w rdP v w*Ž . Ž . Ž .Ž .W
f v , w* sŽ . l< <H dP w dP v w rdP v w*Ž . Ž . Ž .Ž .W

ly1 < <dP v w* H dP w dP v wŽ . Ž . Ž .Ws .
l <H dP w dP v wŽ . Ž .W

The conditions of the lemma are satisfied, since f is nonnegative and

dP v , w* f v , w*Ž . Ž .H
V=W

ly1 < <dP v w* H dP w dP v wŽ . Ž . Ž .Ws dP v , w*Ž .H l <H dP w dP v wŽ . Ž .V=W W

ly1 < <dP v w* H dP w dP v wŽ . Ž . Ž .W
<s dP w* dP v w*Ž . Ž .H H l <H dP w dP v wŽ . Ž .V W W

5Ž .
l < <H dP w* dP v w* H dP w dP v wŽ . Ž . Ž . Ž .W WsH l <H dP w dP v wŽ . Ž .V W

<s dP w dP v wŽ . Ž .H H
V W

s 1. I

n ˜ n n� Ž . Ž . 4Now note that if y : H dm u dP y s 0 has positive measure under˜Q u
n Ž n 5 .the distribution P , then D P M s `. Hence, the lower bound holdsu * K L u * n, m
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trivially. Otherwise, a set of such y n of measure 0 can be ignored, and, using
part 2 of Lemma 3 with W s Q and V s Y n, we can show that the following
inequalities hold except on a set of u * with m-measure at most eyg :

dP n
ũn n ˜5D P M s y dP log dm uŽ .Ž . H HK L u * n , m u * nn dPY Q u *

lndPũn ˜G y dP log dm u y gŽ .H Hu * nn ž /dPY Q u *

lndPũn˜G ylog dm u dP y gŽ .H H u * nn ž /dPQ Y u *

l1yl nn˜s ylog dm u dP dP y gŽ . Ž . Ž .˜H H u * u
nQ Y

n
l1yl˜s ylog dm u dP dP y gŽ .Ž . Ž .˜H H u * u

Q Y

l1yl˜s ylog dm u exp n log dP dP y gŽ .Ž . Ž .˜H H u * u
Q Y

˜ 5s ylog dm u exp ynlI P P y g .Ž . Ž .˜H 1yl u u *
Q

As in the proof of the upper bound, to avoid division by 0 and to apply Lemma
n nŽ n.3, we can remove the set of y such that dP y s 0 from the first line andu *

reintroduce it in the fourth line. Setting a s 1 y l, this establishes the lower
bound of part 2.

As with the upper bound, the lower bound of part 1 is established easily by
removing the yg terms and taking expectation over u * in the previous chain
of inequalities, using part 1 of Lemma 3 in line 2. This establishes the lower
bounds and completes the proof of Theorem 2. I

A few brief comments about Theorem 2 are in order. First, note that if in
part 2 we let g grow with n in a suitable way, we obtain bounds which
asymptotically hold for almost all u * g Q. An even stronger result is obtained

Ž . ` yg Žn.when we choose g n such that Ý e - `. This holds, for example, if wens1
Ž .let g n grow faster than log n. Then the first Borel]Cantelli lemma shows

that, for m almost all u * g Q, the bounds will be violated only a finite number
of times as n ª `.

It should also be noted that, in the important special case when P s Q, the
upper bound of part 2 of the theorem holds with g s 0, since we can omit the
first few steps of its derivation in this case, where g is introduced. Thus, both
this strengthened upper bound and the given lower bound hold on a set of
measure 1 y eyg in this case.
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Finally, we note that part 2 is related to part 1 in the same way that the
w xstrong redundancy]capacity theorem of universal coding in 42 is related to

the usual theorems concerning average redundancy.
It is possible to state a variant of Theorem 2 using the D -distances. Herea

we also make use of a particular choice for the family of distributions Q thatu

appear in Theorem 2. Another possible choice is explored in Theorem 3. We
will need the following definition.

For each 0 - a - 1 and x ) 0, define

1 y a x y log x y 1Ž . Ž .
6 b x s .Ž . Ž .a 1yaa q 1 y a x y xŽ .

Ž . Ž .Define b 0 s `. It is easily verified that b x is strictly decreasing in x,a a

approaches 1 as x ª ` and approaches ` as x ª 0. Let

dP yŽ .u *
B Q s sup b .Ž .a a ž /dP yŽ .ygY , u * , ugQ u

Clearly, this constant does not depend on the choice of the dominating
measure n .

COROLLARY 1. For every 0 - a - 1 and n G 1,

1.

˜y dm u * log dm u exp yn 1 y a D P , PŽ . Ž .Ž . Ž .˜H H a u * u
Q Q

F RBayes
n , m

s I Q*; Y nŽ .

˜F y dm u * log dm u exp ynB Q D P , P .Ž . Ž .Ž . Ž .˜H H a a u * u
Q Q

2. For any g ) 0, there exists a subset Q of Q with measure at leastg

1 y 2 eyg under the prior m such that, for all u * g Q ,g

˜ylog dm u exp yn 1 y a D P , P y gŽ .Ž . Ž .˜H a u * u
Q

F R Bayes u *Ž .n , Pm

n 5s D P MŽ .K L u * n , m

˜F ylog dm u exp ynB Q D P , P q g .Ž .Ž . Ž .˜H a a u * u
Q

Ž 5 . Ž .PROOF. Since I P Q G D P, Q , the lower bounds follow directly froma a

the lower bounds of Theorem 2. For the upper bounds, we will need the
w xfollowing lemma, which is a simple extension of Lemma 4.4 of 10 .
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LEMMA 4. For any distributions P and Q on Y and any 0 - a - 1,

dQ yŽ .
5D P Q F sup b D P , Q .Ž .Ž .K L a až /ž /dP yŽ .ygY

ŽPROOF. If dP s dQ except on a set of measure 0 w.r.t. the dominating
. Ž 5 .measure n , then D P Q s 0 and hence the result holds. So it suffices toK L

Ž . � Ž . 4consider the case where D P, Q ) 0. Let S s y g Y: dP y s 0 . Separat-a

Ž .ing Y into S and Y y S and factoring a dP out of the integrands in 3 and
Ž .4 in the latter case, we have

dQ dQ
1 y a dP y log y 1 q dQŽ .H H5 ž /D P QŽ . dP dPK L YyS Ss 1yaD P , QŽ . dQ dQa

dP a q 1 y a y q dQŽ .H Hž /ž /dP dPYyS S

dQ yŽ .
F sup b ,a ž /dP yŽ .ygY

since b G 1. Ia

The upper bounds of Corollary 1 follow from Theorem 2 and this lemma by
setting Q s P . Iu u

Whenever dP is uniformly bounded above 0 and below ` for all y and uu

Ž .for some choice of the dominating measure, B Q is finite, and this corollarya

Ž .can be applied. However, in some other cases, B Q s ` for all 0 - a - 1,a

making the upper bound in the Corollary 1 useless. One case where this
occurs is when there are u and u * in Q such that P is not dominated by P .u u *

� 4 Ž . Ž .For example, if Y s 0, 1 and there is a u * such that P Y s 1 is 0 or 1u *
Ž . Ž .and there is also a u where P Y s 1 is not 0 or not 1 , then P is notu u

Ž .dominated by P . We can also have B Q s ` in cases where such lack ofu * a

� 4domination does not occur. For example, if Y s 0, 1 , Q is the open interval
Ž . Ž . Ž .0, 1 and P Y s 1 s u , then B Q s ` not because there are two distri-u a

butions that fail to mutually dominate each other, but because
Ž . Ž .inf dP y rdP y s 0. Such cases can be handled by the resultsy g Y , u , u g Q u * u*

in the following section.

Ž .4.2. The 1 q l -affinity boundedness condition. Here we prove a version
Ž .of Corollary 1 that can be used in cases when B Q s ` for all 0 - a - 1.a

Ž .This new theorem requires only the Bayes version of the weaker 1 q l -
affinity boundedness condition described in Section 3, for some l ) 0. For a
fixed prior m, define

yl1qlBayes ˆR s inf dm u * dP dP .Ž . Ž . Ž .H H1, m , r u *1q l ˆ QP



D. HAUSSLER AND M. OPPER2468

This is the Bayes risk for a game much like the one we are studying, except
Ž .that the relative entropy loss is replaced by the 1 q l -affinity loss, and we

have fixed the number n of observations to 1. Using Jensen’s inequality, it
Bayes ˆcan be verified that when R - `, the minimizing P, that is, the Bayes1, m, r1q l

strategy, is the distribution U s U defined bym

Ž .1r 1ql
1qldm u * dPŽ . Ž .H u *ž /

QdU s ,
Cl, m

where
Ž .1r 1ql

1qlC s dm u * dP ;Ž . Ž .H Hl, m u *ž /Y Q

w xsee Zhu and Rohwer 57 . Hence, for each individual u *, the risk of the Bayes
strategy is

1ql ylR u * s dP dUŽ . Ž . Ž .H1, U , r u *m 1ql
Y

Ž .ylr 1ql
1ql 1qlls C dP dm u * dPŽ . Ž . Ž .H Hl, m u * u *ž /Y Q

and the Bayes risk is

1ql ylBayesR s dm u * dP dUŽ . Ž . Ž .H H1, m , r u *1q l
Q Y

Ž .ylr 1ql
1ql 1qlls C dm u * dP dm u * dPŽ . Ž . Ž . Ž .H H Hl, m u * u *ž /

Q Y Q

Ž .1r 1ql
1qlls C dm u * dPŽ . Ž .H Hl, m u *ž /Y Q

s C1ql .l, m

We have the following theorem.

THEOREM 3. Let 0 - a - 1 and 0 - l F 1. Assume RBayes - `. Then,1, m , r1q l

for every n G 1,

1.

˜y dm u * log dm u exp yn 1 y a D P , PŽ . Ž .Ž . Ž .˜H H a u * u
Q Q

F RBayes
n , m

s I Q*; Y nŽ .
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˜F y dm u * log dm uŽ . Ž .H H
Q Q

1 q o 1 4 1 y aŽ . Ž .Ž .
=exp y n log n D P , PŽ . Ž .˜a u * ual

q RBayes q o 1 .Ž .1, m , r1q l

2. For any g ) 0 there exists a subset Q of Q with measure at least 1 y 2 eyg
g

under the prior m such that, for all u * g Q ,g

˜ylog dm u exp yn 1 y a D P , P y gŽ .Ž . Ž .˜H a u * u
Q

F R Bayes u *Ž .n , Pm

n 5s D P MŽ .K L u * n , m

1 q o 1 4 1 y aŽ . Ž .Ž .˜F ylog dm u exp y n log n D P , PŽ .Ž . Ž .˜H a u * ualQ

q R u * q g q o 1 ,Ž . Ž .1, U , rm 1ql

Ž . Ž .where, in each case for fixed a and l, o 1 is a function f n such that
Ž .f n ª 0 as n ª `. Furthermore, the same results also hold replacing the

Ž . Ž 5 .quantity D P , P with I P P .˜ ˜a u * u a u * u

Ž 5 .PROOF. That D can be replaced by I follows from the fact that I P Q Ga

Ž .D P, Q for all a , as pointed out in the proof of Corollary 1. To prove thea

Žresult for D, we will need a lemma. We recently noticed that a related lemma
w xis given in 53 , Theorem 5, although no explicit relationship with the

.a-affinities is given in the latter result.

LEMMA 5. Assume 0 - a - 1 and l ) 0. Let P, R and U be any distribu-
Ž .1ql Ž .yl Ž .tions on Y. Let c s H dP dU . Let Q s 1 y « R q «U for some « ) 0l

Ž . Ž . w Ž Ž ..xsuch that log log 1r« rlog 1r« F lr2 and « F exp yar 2 1 y a . Then

2 log 1r« 2« log 1r«Ž . Ž .
lr25D P Q F D P , R q q « c ,Ž .Ž .K L a l2 2f « 1 y a f «Ž . Ž . Ž .a a

where

a q 1 y a x y x1yaŽ .
f x s .Ž .a 1 y a

The proof of this lemma is given in the Appendix.
Now let U be the Bayes strategy as defined previously. Since RBayes - `,m 1, m , r1q l

U is well defined. For each u g Q, letm

Q s 1 y « P q «U ,Ž .u u m
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y2rl Ž 2 . Ž .with « s n . It is clear that f « ª ar 1 y a as « ª 0. Hence, bya

Lemma 5, for sufficiently large n, for all u ,

5D P QŽ .˜K L u * u

2 log 1r« 2« log 1r«Ž . Ž .
lr2F D P , P q q « R u *Ž .Ž .˜a u * u 1, U , r2 2 m 1qlf « 1 y a f «Ž . Ž . Ž .a a

R u * q o 1Ž . Ž .4 log n 1, U , rm 1qls D P , P q since l F 1Ž .˜a u * uy4rl nl f nŽ .a

R u * q o 1Ž . Ž .1 q o 1 4 1 y aŽ . Ž .Ž . 1, U , rm 1qls log n D P , P q .Ž .˜a u * ual n

Ž . Ž . BayesSince H dm u * R u * s R , the result then follows from Theo-Q 1, U , r 1, m , rm 1ql 1ql

rem 2. I

Note that no attempt has been made to optimize the constants in this
theorem.

Now let

S Q s sup dP .Ž . H u
Y ugQ

wIf sup dP is not measurable, then any measurable function that ma-u g Q u

Ž . xjorizes it can be used instead in the definition of S Q . We call sup dPu g Q u

Ž .the envelope function for Q. Note that S Q is independent of the choice of
the dominating measure. Since, for all l G 0,

Ž .1r 1ql
1qldm u * dP F sup dP .Ž . Ž .H u * u *ž /

Q u *gQ

It follows that
1qlŽ .1r 1ql

1qlBayes 1ql 1qlR s C s dm u * dP F S QŽ . Ž . Ž .H H1, m , r l , m u *1q l ž /ž /Y Q

for all l ) 0. Hence, whenever Q has an integrable envelope function, that is,
Ž . Bayeswhenever S Q - `, then R - `, and the bounds in part 1 of Theorem1, m , r1q lBayes 2Ž . Ž .3 hold with l s 1 and R replaced with S Q . It is clear that S Q - `1, m , r1q l

whenever Y is finite and whenever Y is a bounded set in Rk for some k G 1
� 4and the densities in P : u g Q are uniformly upper bounded. Hence, Theo-u

rem 3 always applies in these cases.
Ž .Theorem 3 also applies in many cases where S Q is infinite; an example of

such a case is given in the following section. To characterize the types of Q
Ž .and priors m not covered by Theorem 3, let us define the function f l forQ, m

l G 0 by
1

Bayesf l s log RŽ .Q , m 1, m , r1q ll
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for l ) 0 and

f 0 s RBayes ,Ž .Q , m 1, m

Ž .that is, the risk for one observation n s 1 for the relative entropy loss. It
Ž .can be shown that, for any Q and m, f l is a nondecreasing function onQ, m

w . w x Ž .0, ` taking values in 0, ` , and if f l is finite for any l ) 0, thenQ , m

lim f l s f 0 .Ž . Ž .Q , m u , m
lª0

To verify this last property, note that lim RBayes s 1. Hence, bylª 0 1, m , r1q l

l’Hospital’s rule

d
Bayeslim f l s R .Ž . Ž .Q , m 1, m , r1q ldllª0 ls0

It can be verified by direct calculation that the latter quantity is the mutual
Ž . Bayesinformation I Q*, Y , which is the same as R .1, m

It is clear that whenever RBayes is infinite, then RBayes is infinite for all1, m n, m

Ž .n G 1. Thus, there are only three possible cases for the pair Q, m :

Ž . Bayes1. f l - ` for some l ) 0. In this case, R - ` and hence TheoremQ, m 1, m , r1q l

3 applies and may be used to get bounds on RBayes for all n.n, m

Ž . Bayes2. f 0 s `. In this case, R s ` for all n and hence the problem ofQ, m n, m

bounding this quantity is trivial.
Ž . Ž .3. f 0 - ` but f l s ` for all l ) 0. In this case, we say that the pairQ, m Q, m

Ž .Q, m is irregular. These are the only nontrivial cases where Theorem 3
does not apply.

Ž .While it would not be expected that irregular Q, m would show up much
in practice, it is possible to construct one.

� 4 � 4EXAMPLE 1. Let Y s 1, 2, 3, . . . , Q s 3, 4, 5, . . . and, for each u g Q and
Ž . Ž .y g Y, define P Y s y to be 1 y 1rlog u if y s 1, 1rlog u if y s u and 0u

Ž . Ž 2 . ` Ž 2 .otherwise. Let m u s cr u log u , where c s Ý 1r i log i - `. Then itis3
Ž .can be shown that Q, m is irregular.

5. Examples. We now illustrate Theorems 2 and 3 by applying them to a
few simple problems. We begin with a classical case in which each point
u g Q is a vector of D real numbers, Q is a compact set and the prior m is

Ž .specified as a density dm u . To apply Theorem 2, fix u * g Q , where u * is ing

the interior of Q. We assume that the prior dm is continuous and positive at
� 4u *. We also assume that P is a smooth family of probabilities such that theu

Ž .Fisher information matrix at u *, defined by J u * , where

­ ­
J u * s dP log dP y log dP yŽ . Ž . Ž .Hi j u * u u­u ­uY i j usu *
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exists and is positive definite. In this case, we will focus on the bounds on the
risk for individual u *, rather than bounds on the mutual information. Even
the simplest choice Q s P will be sufficient to obtain a useful bound in the
smooth case. For large n, obviously the main contributions to the inner
expectations in Theorem 2 come from small neighborhoods of u *. Hence,
under certain regularity conditions, Laplace’s method can be used to evaluate
these expectations asymptotically. We perform a Taylor expansion of the

˜exponents in Theorem 2 to second order in the difference between u and u *
using the partial derivatives

­
5I P P s 0Ž .a u * u­ui usu *

and
2­

57 I P P s a J u * .Ž . Ž .Ž .a u * u i j­u ­ui j usu *

Note that these results are also valid for a s 1. Hence, Laplace’s method
would yield for the lower bound

˜ 5dm u exp yn 1 y a I P PŽ .Ž . Ž .˜H a u * u
Q

n
U Us dm u * du exp y a 1 y a u y u J u * u y uŽ . Ž . Ž . Ž . Ž .ÝH i i i j j j

D 2R ij

= 1 q o 1 .Ž .Ž .
A similar expression is obtained for the upper bound. By evaluating the
Gaussian integrals, we get

D n 1 D 1
log y log dm u * q log det J u * y log y g q o 1Ž . Ž . Ž .

2 2p 2 2 a 1 y aŽ .
F R Bayes u *Ž .n , Pm

D n 1
F log y log dm u * q log det J u * q o 1 .Ž . Ž . Ž .

2 2p 2

ŽHere we can set g s 0 in the upper bounds, as per the comments following
.Theorem 2. Note that asymptotically the lower bound is optimized by setting

1a s . In this case, for large n, both bounds differ by a constant approxi-2
Ž .mately equal to D log 4 r2 for small g . In this classical case, Clarke and

w x Ž .Barron 15 have determined the exact answer to within o 1 , and it is

D n 1 D
BayesR u * s log y log dm u * q log det J u * y q o 1 .Ž . Ž . Ž . Ž .n , Pm 2 2p 2 2

Thus, our simpler methods do not give the best known additive constants in
the bounds for this classical case, but they do provide good bounds for large n.
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w x Ž .As pointed out by Clarke and Barron 15 , the scaling ; Dr2 log n of the
Bayes risk for the smooth parametric families is strongly related to the
asymptotic normality of the properly normalized posterior distribution. It is
interesting to look at nonregular families of probabilities for which the

Žposterior fails to converge to a nontrivial limit. For conditions that are
w x.necessary for convergence, see 26 . As an example for such nonsmooth

densities, we study the following simple family on R:

8 dP y s eyŽ yyu .I , u g R.Ž . Ž .u � y ) u 4

Ž 5 .Obviously, D P P s `, whenever u ) u * and the Fisher informationK L u * u

does not exist for any u . Hence, the previous analysis is not applicable and we
1have to resort to the more sophisticated upper bounds. Specializing to a s ,2

we easily find

D P , P s 2 1 y ey< uyu * < ,Ž . Ž .1r2 u * u

5 < <I P P s u y u * .Ž .1r2 u * u

This result clearly shows the difference from the smooth families. The
distances D and I do not behave locally like a quadratic function for u1r2 1r2
close to u *, but have a linear scaling. Hence, a different scaling of the risk at
u * and the mutual information is also expected.

Ž .An explicit result using Theorem 3 is easily obtained for the prior dm u
1 y< u <s e . Note that the envelope of Q is not integrable, so we must obtain2

Ž . Bayesdirect bounds on R rather than using S Q . To upper bound R1, m , r 1, m , r1q l 1ql
1ql ˆ ylŽ . Ž . Ž .s inf H dm u * H dP dP , it suffices to choose any distribution UP̂ Q u *

Ž . Ž .1qlŽ .yland bound the expectation of c u * s H dP dU . Here we can setl u *
1 y< y < l <u * <Ž . Ž . Ž . Ž .dU y s e . In this case, we have c u * - e and H dm u * c u * - `l Q l2

for all l - 1. To evaluate the bounds, we use the fact that, for a ) 1,

`
y< u * < ya <u * < y <u * < ya <u * <1 e y e e q e

y< u <ya <uyu * <du e s q .H2 2 a y 1 2 a q 1Ž . Ž .y`

1Hence, for a s , we get2

n
< <log q u * y g q o 1Ž .ž /2

F R Bayes u *Ž .n , Pm

4n log n 1 q o 1Ž .Ž .
l <u * < < <F log q e q u * q g q o 1 .Ž .ž /l

Hence, an asymptotic scaling ; log n for the risk is observed. This gives a
factor of 2 difference compared to the risk of a smooth one-dimensional family
of densities.

Finally, we will consider an example where both the parameter space and
the space of observations are infinite dimensional. We assume that an

Ž .unknown real continuous function u x with 0 F x F 1 is corrupted by a
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Gaussian white-noise process. The statistician observes n random functions
Y , t s 1, . . . , n, which, conditioned on u , are independent realizations of thet
process

x
9 Y x s u z dz q s W x .Ž . Ž . Ž . Ž .H

0

Ž . Ž .Here W x is a standard Wiener process with W 0 s 0 and covariance
w Ž . Ž .x Ž .E W x W x s min x , x . In this case, it is easy to calculate the I-diver-1 2 1 2

gences explicitly for all a . Let P be the measure corresponding to theu

Ž .random process Y x and let the dominating measure n be the Wiener
w xmeasure. Then, from the Cameron]Martin formula 13 , the Radon-Nikodym

derivative is found to be
dP 1 11 1u 210 s exp u x dW x y u x dx .Ž . Ž . Ž . Ž .H H2dn s 2s0 0

Inserting this into the definition of the I-divergences, we obtain
a 1 2511 I P P s u x y u * x dx .Ž . Ž . Ž .Ž .Ž . Ha u * u 22s 0

Ž .For the case where the prior over the space of functions u x is a Gaussian
w Ž . xmeasure such that u x is a realization of a Gaussian random process , our

bounds can be evaluated in closed form. We will restrict ourselves to the case
Ž n.of the mutual information I Q*; Y and use the fact that, for Gaussian

processes and c ) 0,
c 21˜ ˜y dm u * log dm u exp y u x y u * x dxŽ . Ž . Ž .Ž . Ž .H H H2Q Q 0

1 clks log 1 q cl q .Ž .Ý k2 1 q clkk

12Ž .

Here l , k s 1, 2, . . . , `, are the eigenvalues of the process on the intervalk
12 2w x Ž .0, 1 . Specializing to the Wiener process, we get l s 1rp k y fork 2

k s 1, 2, 3 . . . . Using
`1 c 1 'log 1 q s log cosh cŽ .Ý 21ž /22 2p k yks1 Ž .2

and
` '1 c c 's tanh cÝ 2122 4c q p k yks1 Ž .2

1and setting a s in the lower bound and a s 1 in the upper bound, we get2

' ' '1 n n n
nlog cosh q tanh F I Q*; YŽ .ž / ž /2 2s 8s 2s

' ' '1 n n n
F log cosh q tanh .ž / ž /2 s 4s s
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Hence, asymptotically,

' '3 n 3 n
n1 q o 1 F I Q*; Y F 1 q o 1 .Ž . Ž . Ž .Ž . Ž .

8s 4s

Notice that, in the preceding examples, it was always the case that,
1asymptotically, the best bounds were obtained with the value a s . In2

general, for large n, the value of the Laplace transform

˜ 5dm u exp yn 1 y a I P PŽ .Ž . Ž .˜H a u * u
Q

˜in the lower bound of Theorem 2 is largely determined by those u such that
Ž 5 .I P P is near 0, that is, such that P is close to P . The same also holds˜ ˜a u * u u * u

for the corresponding Laplace transform

˜ 5dm u exp ynI P PŽ . Ž .˜H 1 u * u
Q

in the upper bound. However, it can be shown that, as the distributions P
and Q become close, in the sense that dPrdQ ª 1 uniformly, then

5I P Q 1Ž .1 ª .
51 y a I P Q a 1 y aŽ . Ž .Ž .a

Hence, we might expect to very often get the best asymptotic lower bound in
1 Ž .Theorem 2 by choosing a s , so as to minimize 1ra 1 y a . This choice also2

1has another desirable property, since, as mentioned previously, for a s , the2

distance D used in Corollary 1 and Theorem 3 is then the squared Hellingera

distance, which has some nice metric properties that we will exploit later in
applications of the bounds. For these reasons, in what follows, we will for

1simplicity restrict ourselves to the case a s , using the notation2

D P , Q s D2 P , Q .Ž . Ž .1r2 HL

6. Bounds on the cumulative risk for countable Q. Recall that we
have assumed that, for all distinct u , u * g Q, the conditional densities dPu

Ž .and dP differ on a set of positive measure and hence D P , P ) 0. Weu * HL u u *
can make this assumption without essential loss of generality, since, other-
wise, we can replace Q by a set of equivalence classes with the property that

Ž .u ' u * iff dP s dP except on a set of measure 0 in a natural way, withoutu u *
changing the risks we are interested in calculating.

� 4 Ž . Ž . Ž .Suppose Q is countable, say Q s u . Let H Q* s yÝ m u log m ui i i i
denote the entropy of the random variable Q*, distributed according to the
prior measure m. The entropy of Q* may be infinite. Then

Bayes Ž n. Ž .COROLLARY 2. For all n, R s I Q; Y F H Q* andn, m

lim RBayes s H Q* .Ž .n , m
nª`
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Bayes Ž n. Ž .PROOF. Recall that R s I Q*; Y . If H Q* is infinite, then clearlyn, m

lim sup I Q ; Y n F H Q* .Ž . Ž .
nª`

Ž .Assume H Q* is finite. Let

< n n < n < nH Q* Y s y dM y m u y log m u y ,Ž . Ž . Ž . Ž .ÝH n , m i i
nY i

the conditional entropy of Q given Y n. Note that this quantity is nonnegative.
Ž .When H Q is finite, it is easily verified that

n < nI Q*; Y s H Q* y H Q* YŽ . Ž . Ž .

Ž w x . Ž n. Ž .see, e.g., 18 , page 20 and thus lim sup I Q*; Y F H Q* in this casenª`

as well.
1For the lower bound, using Theorem 2 with a s and Fatou’s lemma,2

n
n 2lim inf I Q*; Y G lim inf y m u log m u exp y D P , PŽ . Ž . Ž . Ž .Ý Ýi j HL u ui j2nª` nª` i j

n
2G y m u lim inf log m u exp y D P , PŽ . Ž . Ž .Ý Ýi j HL u ui j2nª`i j

s y m u log m uŽ . Ž .Ý i i
i

s H Q* . IŽ .

w x Ž .This result generalizes a similar result in 16 Corollary 1 by removing
the additional conditions assumed there. More general results, including the

w x Ž w x.preceding corollary, follow from results in Pinsker’s book 45 see also 4 .
Applying Theorem 1 and taking the supremum over m in Corollary 2,

minimax < <it follows that if Q is finite, then, for all n, R F log Q andn
minimax < <lim R s log Q . It also follows that if Q is infinite, thennª` n

lim Rminimax s `.nª` n
w xIn the case that Q is finite, the results of Renyi 48 show further that the´

Ž n. Ž .difference I Q*; Y y H Q* converges to 0 exponentially fast in n. We also
obtain this result as follows.

COROLLARY 3. For all n,

n

n < <H Q* y I Q*; Y F Q y 1 max dP dP .Ž . Ž . Ž . H' u ui jž /< <1Fi-jF Q Y
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PROOF. From Theorem 2,
n

nI Q*; Y G y m u log m u dP dPŽ . Ž . Ž .Ý Ý H'i j u ui jž /Yi j

s y m u log m uŽ . Ž .Ý i i
i

nm uŽ .jy m u log 1 q dP dPŽ .Ý Ý H'i u ui jž /m uŽ . Yii j/i

n

G H Q* y m u dP dPŽ . Ž .Ý Ý H'j u ui jž /Yi j/i

n

< <G H Q* y Q y 1 max dP dP ,Ž . Ž . H ' u ui jž /< <1Fi-jF Q Y

Ž .where the second inequality follows from ylog 1 q x G yx. I

Assuming as before that the densities dP and dP are different for j / i,u u ji

an application of the Cauchy inequality yields H dP dP - 1 for j / i.'Y u ui j

Hence, the corollary shows exponential convergence.
Finally, let us note that Theorem 2 and Corollary 1 can also be used to

n Ž .characterize the mutual information between Q* and Y Bayes risk in the
general case when Q is uncountably infinite but finite dimensional. This was

w xdemonstrated in 33 . Here, in the sequel, we focus instead on the minimax
risk.

7. Bounds on minimax risk using covering and packing numbers,
and metric entropy. For each u *, u g Q, let

h u *, u s D P , P .Ž . Ž .HL u * u

As mentioned previously, we assume that, for distinct states of Nature
u , u * g Q, the conditional distributions P and P differ on a set of positiveu u *

Ž .measure. Under this assumption, Q, h is a metric space. We show how
bounds on the minimax risk can be obtained by looking at properties of this
metric space. These are the packing and covering numbers, and the associ-

w xated metric entropy, introduced by Kolmogorov and Tikhomirov in 37 and
Ž w x w x w xcommonly used in the theory of empirical processes see, e.g., 12 , 22 , 27

w x.and 46 .
Ž .For the following definitions, let S, r be any complete separable metric

space.

Ž w x.DEFINITION 1 Metric entropy, also called Kolmogorov «-entropy 37 . A
� 4partition P of S is a collection p of Borel subsets of S that are pairwisei

disjoint and whose union is S. The diameter of a set A : S is given by
Ž . Ž .diam A s sup r x, y . The diameter of a partition is the supremum ofx, y g A

Ž .the diameters of the sets in the partition. For « ) 0, we denote by DD S, r«
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the cardinality of the smallest finite partition of S of diameter at most « , or
Ž .we use ` if no such finite partition exists. The metric entropy of S, r is

defined by

KK S, r s log DD S, r .Ž . Ž .« «

Ž .We say S is totally bounded if DD S, r - ` for all « ) 0.«

Ž .DEFINITION 2 Packing and covering numbers . For « ) 0, an «-cover of S
Ž .is a subset A : S such that for all x g S there exists a y g A with r x, y F

Ž .« . We denote by NN S, r the cardinality of the smallest finite «-cover of S, or«

we use ` if no such finite cover exists. For « ) 0, an «-separated subset of S is
Ž .a subset A : S such that, for all distinct x, y g A, r x, y ) « . We denote by

Ž .MM S, r the cardinality of the largest finite «-separated subset of S. This«

quantity is infinity if arbitrarily large such sets exist.

w xThe following lemma is easily verified 37 .

LEMMA 6. For any « ) 0,

MM S, r F DD S, r F NN S, r F MM S, r .Ž . Ž . Ž . Ž .2 « 2 « « «

ŽIt follows that the metric entropy KK and the condition defining total«

.boundedness can also be defined using either the packing or the covering
numbers in place of DD , to within a constant factor in « .«

Kolmogorov and Tikhomirov also introduced an abstract notion of the
w xdimension of a metric space in their seminal paper 37 . In the following, the

metric r is omitted from the notation, being understood from the context.

w xDEFINITION 3. The upper and lower metric dimensions 37 of S are
defined by

KK SŽ .«
dim S s lim supŽ .

log 1r«Ž .«ª0

and

KK SŽ .«
dim S s lim inf ,Ž .

log 1r««ª0 Ž .

Ž . Ž . Ž .respectively. When dim S s dim S , then this value is denoted dim S and
called the metric dimension of S. Thus,

KK SŽ .«
dim S s lim .Ž .

log 1r««ª0 Ž .

1Using the results given in the theorems from Section 4, with a s , we can2

obtain bounds on the minimax risk Rminimax in terms of the metric entropy ofn
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Ž .the space Q, h . For every « ) 0, let

5D P PŽ .˜K L u u * 2˜b « s sup : u , u * g Q and D P , P F « .Ž . Ž .˜HL u u *2½ 5D P , PŽ .˜HL u u *

Let
yl1qlminimax ˆR s inf sup dP dP .Ž . Ž .H1, r u *1q l

P̂ u *gQ

This is the minimax analog of RBayes , used in Section 4.2 to obtain general1, m , r1q l

bounds on the Bayes risk. It is the minimax risk for a game much like the one
we are studying, except that the relative entropy loss is replaced by the
Ž .1 q l -affinity loss, and we have fixed the number n of observations to 1.

Ž .LEMMA 7. Assume Q, h is totally bounded. Then, for all n G 1,

1.

1 n« 2
minimaxR G sup ylog q exp yn ½ 5ž /ž /MM Q , h 2Ž .«G0 «

n« 2

G sup min KK Q , h , y log 2Ž .«½ 58«G0

and
2.

Rminimax F inf KK Q , h q b « n« 2 F inf KK Q , h q b Q n« 2 .Ž . Ž . Ž . Ž .� 4 � 4n « « 1r2
«G0 «G0

Furthermore, for any l ) 0 such that Rminimax - `,1, r1q l

1 q o 1 4« 2 n log nŽ .Ž .
minimax minimaxR F inf KK Q , h q q R q o 1 ,Ž . Ž .n « 1, r1q l½ 5l«G0

Ž . Ž . Ž .where in each case o 1 is a function f n such that f n ª 0 as n ª `.

� 4PROOF. To establish the first inequality of part 1, let A s u , . . . , u be1 M
an «-separated subset of Q of maximal size and let m be the discrete prior
distribution on Q that is uniform over the elements of A. Using Theorem 1
and Corollary 1, we have

Rminimax G RBayes
n n , m

2 ˜nh u *, uŽ .˜G y dm u * log dm u exp yŽ . Ž .H H 2Q Q

2M M1 1 nh u , uŽ .i js y log exp yÝ ÝM M 2is1 js1
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n« 2

G log M y log 1 q M y 1 exp yŽ . ž /ž /2

1 n« 2

G ylog q exp y .ž /ž /M 2

Since this holds for all « , it follows that

1 n« 2
minimaxR G sup ylog q exp y .n ½ 5ž /ž /MM Q , h 2Ž .«G0 «

To complete the proof of part 1, simply note that

� 4ylog x q y G ylog 2 max x , y s ylog 2 q min ylog x , ylog y .Ž . Ž .Ž .

It follows that

n« 2
minimaxR G sup min log MM Q , h , y log 2.Ž .n «½ 52«G0

Since KK s log DD F log MM , replacing « with «r2, the second inequality2 « 2 « «

follows.
� 4We now turn to the upper bounds in part 2. Let P s p , . . . , p be any1 M

partition of Q of diameter at most « . For any prior measure m on Q, let
Ž .m s m p . Then we use Theorem 1 and the upper bound given in Theorem 2i i

as follows:

Rminimax s sup RBayes
n n , m

m

˜ 5F sup y dm u * log dm u exp ynD P PŽ . Ž . Ž .˜H H K L u * u½ 5
Q Qm

˜dm u * dm uŽ . Ž .
5s sup y m log m exp ynD P PŽ .˜Ý ÝH Hi j K L u * u½ 5m mp pm i ji ji j

2F sup y m log m exp yb « n«Ž .Ž .Ý i i½ 5
m i

s sup y m log m q b « n« 2Ž .Ý i i½ 5
m i

s log M q b « n« 2 .Ž .

The second inequality follows by ignoring all but the ith term in the inner
sum whenever the index on the outer sum is i and noting that, because the
diameter of p is at most « ,i

2 ˜ 25D P P F b « h u *, u F b « «Ž . Ž .Ž .Ž .˜K L u * u



MUTUAL INFORMATION AND RISK 2481

˜for all u *, u g p . The last equality follows from the fact that the entropy of ai
finite distribution is maximal for the uniform distribution. Since the particu-
lar partition of diameter « can be chosen arbitrarily in the preceding chain of

minimax Ž . Ž . 2inequalities, it follows that R F KK Q, h q b « n« for any « . Thisn «

establishes the first inequality of part 2. The second inequality follows since
Ž . Ž . Bayesb « F b Q for all « . The third inequality, but with sup R in place1r2 m 1, m , r1q l

of Rminimax, follows by an argument similar to that used for the first inequal-1, r1q l

ity, using Theorem 3. Since maximin F minimax always, we have
sup RBayes F Rminimax, and from this we obtain the result stated in them 1, m , r 1, r1q l 1ql

theorem. I

The method used in obtaining the upper bound in the preceding result is a
Ž w x w x.familiar one see, e.g., 4 and 31 . The method for obtaining the lower bound

by choosing a discrete prior on a well-separated set of u is also similar in
many respects to standard lower-bound methods, such as those that use

Ž w x w x w x.Fano’s inequality or Assouad’s lemma see, e.g., 9 , 11 and 55 , but the
method is particularly clean in the present framework, giving a fairly good
match to the upper bound.

In some cases, KK may not be a continuous function of « , and even so it«

may not be obvious what kinds of asymptotic bounds on the risk Rminimax aren
implied by Lemma 7. For such cases, we make the following definitions.

Ž . Ž .Fix a totally bounded Q and let f x and f x be any continuous,l u
Ž .nondecreasing, unbounded functions on 0, ` such that

KK Q , h KK Q , hŽ . Ž .« «
13 lim inf G 1 and lim sup F 1.Ž .

f 1r« f 1r««ª0 Ž . Ž .«ª0l u

Ž .For every positive real n, let « n be the unique solution to the equationl
Ž . 2 Ž . Ž .f 1r« s n« , and let « n be the unique solution to the equation f 1r« sl u u

n« 2. Let

1
2F n s f s n« n ,Ž . Ž .l l lž /« nŽ .l

1
2F n s f s n« n .Ž . Ž .u u už /« nŽ .u

14Ž .

Then we have the following lemma.

LEMMA 8. For every integer n G 1,

1.

Rminimax
n

lim inf G 1.
F nr8nª` Ž .l



D. HAUSSLER AND M. OPPER2482

Ž . Ž . Ž .2. If lim b « - `, then, for any function g n such that g n ª ` as« ª 0
n ª `,

Rminimax
n

lim sup F 1,
F ng nŽ .Ž .nª` u

and if there exists l ) 0 such that Rminimax - `, then1, r1q l

Rminimax
n

lim sup F 1.
F ng n log nŽ .Ž .nª` u

PROOF. Using Lemma 7 and the definitions of f and F , we havel l

minimax min KK , nr8 « 2 nr8R Ž . Ž .Ž .« Žn r8. ln llim inf G lim inf
F nr8 F nr8nª` nª`Ž . Ž .l l

KK 2nr8 « nr8Ž . Ž .« Žn r8. llG min lim inf , lim infž /F nr8 F nr8nª` nª`Ž . Ž .l l

f 1r« nr8Ž .Ž .l lG min lim inf , 1ž /F nr8nª` Ž .l

s 1.
Ž . Ž . Ž .Now let N s N n s ng n . Let lim b « s b - `. Then we also have« ª 0

minimax KK q bn« 2 NR Ž .« ŽN . un ulim sup F lim sup
F ng n F NŽ . Ž .Ž .nª` nª`u u

f 1r« N bŽ .Ž .u uF lim sup qž /F N g nŽ . Ž .nª` u

b
s 1 q lim sup

g nŽ .nª`

s 1.
The last inequality follows similarly, using the last inequality of Lemma 7. I

Ž . Ž .Essentially, when F n and F n log n are close asymptotically, as canl u
often be arranged, this lemma shows that asymptotic growth rates for

minimax Ž . 2R can be obtained by ‘‘solving’’ the equation KK Q, h s n« . Thisn «

w x w xgeneral approach was developed by Le Cam 40 and Birge 10, 11 in the´
context of other loss functions. We illustrate it now by applying Lemma 7 to

Ž .establish a simple relationship between the metric dimension of Q, h and
the asymptotic growth rate of the minimax risk Rminimax.n

THEOREM 4. Assume there exists l ) 0 such that Rminimax - `.1, r1q l

1. If Q is finite, then
minimax < <R ª log Q as n ª `.n
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Ž .2. If dim Q, h s 0, then

Rminimax g o log n .Ž .n

Ž .3. If dim Q, h s D where 0 - D - `, then

D
minimaxR ; log n.n 2

Ž . Ž .4. If dim Q, h s ` but Q, h is totally bounded, then

Rminimax g O n but Rminimax f O log n .Ž . Ž .n n

Ž .5. If Q, h is not totally bounded, then

if Rminimax - ` then Rminimax 7 n else Rminimax s ` for all n.1 n n

Actually, only the upper bounds in parts 2 and 3 of the theorem require the
assumption that there exists l ) 0 such that Rminimax - `.1, r1q l

PROOF. As mentioned after Corollary 2, part 1 follows from that corollary
and Theorem 1. Parts 2 and 3 and the second half of part 4 follow easily
from Lemma 8 by plugging in the appropriate rates for f and f and solvingl u
for F and F . We illustrate this for part 3; the others are similar. Sincel u

Ž .dim Q, h s D where 0 - D - `, we may choose

f x s f x s D log x .Ž . Ž .l u

Ž . 2Solving D log 1r« s n« , we find that

D
« n s « n ; log n ,Ž . Ž . (l u 2n

Ž .and hence by 14

D
F n s F n ; log n.Ž . Ž .l u 2

From the lower bound of Lemma 8, it follows that

Rminimax
n

lim inf G 1.
Dr2 log nr8nª` Ž . Ž .

Ž .Let g n s log n. From the second upper bound of Lemma 8, it follows that

Rminimax
n

lim sup F 1.2Dr2 log n log nŽ . Ž .nª`

The result in part 3 follows.
To verify the first half of part 4 and part 5, first note that the minimax risk

Rminimax is nondecreasing in n. Furthermore, if Rminimax is finite, then it cann n
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grow at most linearly, as is seen in the following series of inequalities:
minimax n 5R s inf sup D P RŽ .n K L undist. R on Y ugQ

n 5 nF inf sup D P QŽ .K L u
dist. Q on Y ugQ

5s n inf sup D P QŽ .K L u
dist. Q on Y ugQ

s nRminimax .1

Hence, for any Q, either Rminimax s ` for all n or Rminimax is finite andn n
bounded by nRminimax for all n.1

Ž . minimaxIf Q, h is totally bounded, then we must have R - ` by part 2 of1
minimax Ž .Lemma 7. Hence, R g O n in this case.n

Ž . Ž .If Q, h is not totally bounded, then MM Q, h is infinite for some « ) 0.« 00

In this case, the first lower bound from part 1 of Lemma 7 shows that

n« 2
0minimaxR Gn 2

for all n G 1. Hence, Rminimax 7 n in this case, if it is not infinite. In

The preceding theorem generalizes the standard results for the case when
Q is a finite-dimensional vector-valued parameter space, but does not give
much information about the infinite-dimensional case. As mentioned previ-
ously, several authors have studied the minimax risk in infinite-dimensional
Ž .i.e., nonparametric density estimation under other loss functions and re-
lated it to the metric entropy of Q under Hellinger distance. Using Lemma 7,
we can give a general characterization of the asymptotic growth rate of the
minimax risk Rminimax in terms of the metric entropy of Q in most infinite-n
dimensional cases as well.

Ž .In infinite-dimensional cases, instead of growing like D log 1r« , the
Ž . Ž .a Ž . bmetric entropy KK Q, h usually grows like 1r« log 1r« for some a ) 0«

andror b ) 1. A classical example is the following. Let Q be the Lipschitz
Ž . w x < Ž . <class F C, L of densities on Y s 0, 1 satisfying sup dP y F Cp, d y gw0, 1x u

Žk .Ž .and having derivatives dP y of order k F p with the Lipschitz conditionu

< Ž p.Ž . Ž p.Ž . < < < d w xon the pth derivative dP y y dP y9 F L y y y9 for y, y9 g 0, 1 .u u

Ž .Since the functions in F C, L are uniformly bounded, they have anp, d

integrable envelope function and hence Rminimax - ` for all l ) 0. As shown1, r1q lw xby Barron and Yang 9 , a further restriction to uniformly lower-bounded
densities makes the Hellinger distance equivalent to the L -distance on this2
class of functions and does not change the metric entropy of this class

w xasymptotically. By a result of Clements 17 , the metric entropy of Q under
Ž . y1rŽ pqd . Ž .the L -distance is given by KK Q, L 7 « . Hence, KK Q, h 72 « 2 «

«y1rŽ pqd ..
The asymptotic growth rate of the minimax risk Rminimax for the precedingn

example, and many others, can be determined using the following conse-
quence of Lemma 8.
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minimax Ž .THEOREM 5. Assume there exists l ) 0 such that R - `. Let l x be1, r1q l

a continuous, nondecreasing function defined on the positive reals such that,
for all g G 0 and C ) 0,

1.
g

l Cx l xŽ .Ž .Ž .
lim s 1

l xxª` Ž .
and

2.
g

l Cx log xŽ .Ž .Ž .
lim s 1.

l xxª` Ž .
Then

1.
1

minimax 'If KK Q , h ; l , then R ; l n .Ž . Ž .« nž /«

2. If, for some a ) 0,
a1 1

KK Q , h 7 l ,Ž .« ž / ž /« «

then

Ž .a
Ž .2r aq2minimax a rŽaq2. 1rŽaq2.If lim b « - `, then R 7 n l nŽ . Ž .n

«ª0

else
Ž .b

Rminimax
n

lim inf ) 0Ž .2r aq2a rŽaq2. 1rŽaq2.nª` n l nŽ .
and

Rminimax
n

lim sup - `.Ž .2r aq2 Ž .ar aq2a rŽaq2. 1rŽaq2.nª` n l n log nŽ . Ž .

Ž . Ž .a Ž .PROOF. Consider part 2 first. Since KK Q, h 7 1r« l 1r« , we may«

choose

f x s ax al x and f x s bx al xŽ . Ž . Ž . Ž .l u

Ž . 2for suitable constants 0 - a F b. Solving f x s nrx , we find thatl

Ž .1r aq2N
x ; ,1rŽaq2.ž /l NŽ .
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Ž .where N s nra. Here we use property 1 of l x . Hence,
Ž .1r aq21rŽaq2.l NŽ .

« n ; ,Ž .l ž /N

Ž . Ž .and thus, by 14 and again using property 1 of l x ,
Ž .2r aq2a rŽaq2. 1rŽaq2.F n 7 n l n .Ž . Ž .l

By similar reasoning,
Ž .2r aq2a rŽaq2. 1rŽaq2.F n 7 n l n .Ž . Ž .u

From the lower bound of Lemma 8 and property 1, it follows that

Rminimax
n

lim inf ) 0.Ž .2r aq2a rŽaq2. 1rŽaq2.nª` n l nŽ .
From the second upper bound of Lemma 8, it follows that, for any unbounded,

Ž .increasing function g n ,

Rminimax
n

lim sup - `.Ž .2r aq2Ž . Ž .1r aq2 ar aq2a rŽaq2.nª` n l ng n log n g n log nŽ . Ž .Ž . Ž .Ž .
Ž . Ž .Part 2 b follows easily from this, using property 2 of the function l x . For
Ž . Ž .part 2 a , note that, from the first upper bound of Lemma 8, if lim b « -« ª 0

`, then the log n factors can be removed from the preceding lim sup, yielding
the desired result. Part 1 follows by a similar argument, essentially by setting
a s 0 and a s b s 1, so that most terms in the denominators of the previous
expressions go away, and tracking the lim inf and lim sup more precisely. I

Ž . Ž .Note that, in finite-dimensional cases, we have KK ; D log 1r« s l 1r« ,«
minimax 'Ž . Ž .and part 1 of Theorem 5 gives R ; l n s Dr2 log n, as obtained inn

the previous theorem. Part 1 generalizes this to infinite-dimensional cases in
Ž Ž .. bwhich, for example, KK ; C log 1r« for b ) 1. To illustrate part 2, note«

that, in the case when Q is the Lipschitz class described previously with a
Ž .uniform lower bound on the densities, the condition lim b « - ` holds,« ª 0

Ž . y1rŽ pqd .and hence, using Theorem 5 and the fact that KK Q, h 7 « , we get«

Rminimax 7 n1rw2Ž pqd .q1x .n

Finally, note that, as a ª `, the lower bounds in Theorem 5 show that
Rminimax approaches a linear growth rate, the fastest possible for finiten
minimax risk. So this theorem covers all the interesting growth rates.

Theorem 5 is not applicable in all cases. In particular, it can be shown that
the condition that Rminimax - ` in Theorem 5 and the preceding results of1, r1q l

this section cannot be removed. For example, this condition is violated by the
Ž . minimaxQ defined in Example 1. In this case, Q, h is totally bounded and R ;n

2 'Ž .n, yet KK ; 1r« , which would yield via Theorem 5 an estimated rate of n«
minimax 'for R . This is off by a factor of n . Of course, the lower bounds inn
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Theorem 5 and the preceding results are valid in this and any other case
without any special assumptions, but, in this case, we see that they are not
tight.

8. Discussion, open problems, further work. We have shown that,
wunder relatively weak assumptions in particular, whenever there exist a

Ž .distribution U and a l ) 0 such that the 1 q l -affinity between P and U isu

xuniformly bounded for all u g Q , one can obtain explicit bounds on the
Ž n.mutual information I Q*; Y between the true parameter and the observa-

tions in terms of a Laplace transform of the Hellinger distance in Q, and from
these one can obtain bounds on the cumulative minimax risk in estimating a
distribution in Q under relative entropy loss in terms of the metric entropy of
Q with respect to Hellinger distance. In fact, in each case, only the upper
bounds depend on the assumptions; the lower bounds hold for any Q. We also
show by example that some assumptions are needed to get the type of general
characterizations of the mutual information and minimax risk in terms of the
Hellinger distance that we obtain. It remains open to get a useful characteri-
zation of these quantities for the cases where our assumptions do not hold,
and to get more precise bounds when they do.

w xIn 34 we also show how general bounds on instantaneous risk in estimat-
ing a distribution for various other loss functions can be derived in a very
simple manner from the bounds on cumulative relative entropy risk. While
the resulting bounds are not usually as tight as those obtained by more direct
methods for specific Q, this approach does have the advantage of giving a
simple, unified and general treatment to this problem, moreover, one in
which no more sophisticated mathematical methods than Jensen’s inequality
are needed to derive the results. In the future, we hope to further explore the
applications of these results to specific estimation problems, such as the
‘‘concept learning’’ or ‘‘pattern classification’’ problems examined in current
machine learning and neural network research. Some initial results along

w x w x w x Ž w x w x.these lines can be found in 33 , 44 and 57 see also 24 and 41 .
There are also several other directions for further research one might

pursue. Apart from general tightening of the bounds, these include treating
the case of nonindependent observations, extending the results giving bounds
for individual u * in Theorems 2 and 3 to the case where P is not au *
distribution in Q but is ‘‘close to’’ a distribution Q and giving a more complete

Ž n.characterization of the mutual information I Q*; Y in terms of the metric
entropy properties of Q for the infinite-dimensional case, as was done for the

w xfinite-dimensional case in 33 .

APPENDIX

Here we give the proof of Lemma 5.

LEMMA 9. Assume 0 - a - 1 and l ) 0. Let P, R and U be any distribu-
1ql yl Ž .tions on Y. Let c s H dP dU . Let Q s 1 y « R q «U for some « ) 0l



D. HAUSSLER AND M. OPPER2488

Ž . Ž . w Ž Ž ..xsuch that log log 1r« rlog 1r« F lr2 and « F exp yar 2 1 y a . Then

2 log 1r« 2« log 1r«Ž . Ž .
lr25D P Q F D P , R q q « c ,Ž .Ž .K L a l2 2f « 1 y a f «Ž . Ž . Ž .a a

where

a q 1 y a x y x1yaŽ .
f x s .Ž .a 1 y a

PROOF. We use the easily verified fact that, for 0 - a - 1 and 0 - x - 1,
Ž . � Ž . 4f x is positive and decreasing in x. Let Y s y: dP y s 0 . For y g Y ya 0

Ž . Ž . Ž . Ž . Ž . Ž . Ž .Y , let S y s dQ y rdP y and T y s dU y rdP y . Then, using 3 and0
Ž .4 and the definition of b , we havea

515 D P Q s dP b S f S q dQ.Ž . Ž . Ž .Ž . H HK L a a
YyY Y0 0

Consider two cases for y g Y y Y .0

Ž . 2 Ž .1. S y ) « or T y ) « . Here we note that, since

1 y « dR y q « dU y dU yŽ . Ž . Ž . Ž .
S y s G « s «T y ,Ž . Ž .

dP y dP yŽ . Ž .
Ž . 2in either case S y ) « . Hence,

« 2 q 2 log 1r« y 1 2 log 1r«Ž . Ž .
216 b S y F b « s F ,Ž . Ž . Ž .Ž .a a 2 2f « f «Ž . Ž .a a

since b is decreasing.a

Ž . 2 Ž .2. S y F « and T y F « . In this case,

S y q log 1rS y y 1 log 1rS yŽ . Ž . Ž .Ž . Ž .
b S y s FŽ .Ž .a f S y f S yŽ . Ž .Ž . Ž .a a

log 1r« q log 1rT yŽ . Ž .Ž .
F

f S yŽ .Ž .a

17Ž .

log 1r« log 1rT yŽ . Ž .Ž .
F q ,2 f S yf « Ž .Ž . Ž .aa

Ž . 2 Ž .where in the last inequality we use the fact that S y F « and f x isa

decreasing in x for 0 - x - 1, and in the previous inequality we use the
Ž . Ž . Ž .fact that S y G «T y and that log x is increasing.

Let
1

W « s dP log .Ž . H
2 TŽ . Ž .y : S y F« and T y F«
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Ž . Ž . Ž .From 15 , 16 and 17 it follows that

2 log 1r«Ž .
5D P Q F dP f S q dQ q W «Ž . Ž .Ž . H HK L a2f «Ž . YyY Ya 0 0

2 log 1r«Ž .
F D P , Q q W « ,Ž . Ž .a2f «Ž .a

18Ž .

Ž . Ž . Ž . Ž 2 .since D P, Q s H dPf S q H dQ and 2 log 1r« rf « G 1.a YyY a Y a0 0

Note now that

1 a 1yaD P , Q s 1 y dP 1 y « dR q « dUŽ . Ž . Ž .Ž .Ha ž /1 y a

1 a 1yaF 1 y dP 1 y « dRŽ . Ž .Ž .Hž /1 y a

1 1a 1ya 1yaF 1 y dP dR q 1 y 1 y «Ž . Ž . Ž .Ž .Hž /1 y a 1 y a

1 1yas D P , R q 1 y 1 y «Ž . Ž .Ž .a 1 y a
«

F D P , R q .Ž .a 1 y a

Hence,

2 log 1r« 2« log 1r«Ž . Ž .
519 D P Q F D P , R q q W « .Ž . Ž . Ž .Ž .K L a2 2f « 1 y a f «Ž . Ž . Ž .a a

Ž . Ž Ž ..lr2Finally, note that T y F « implies that «rT y G 1 and
Ž . Ž . Ž . Ž .lr2log log 1r« rlog 1r« F lr2 implies that log 1rg F 1rg for all g F « .

Ž . Ž .Hence, when log log 1r« rlog 1r« F lr2,

1
W « s dP logŽ . H

2 TŽ . Ž .y : S y F« and T y F«

lr2« 1
F dP logH ž /2 T TŽ . Ž .y : S y F« and T y F«

l1
lr2F « dPH ž /2 TŽ . Ž .y : S y F« and T y F«

1ql yll r2s « dP dUŽ . Ž .H
2Ž . Ž .y : S y F« and T y F«

1ql yll r2F « dP dUŽ . Ž .H
s « lr2c .l

Ž .The result follows then from inequality 19 . I
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