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OPTIMAL REPEATED MEASUREMENTS DESIGNS:
THE LINEAR OPTIMALITY EQUATIONS1

BY H. B. KUSHNER

Nathan S. Kline Institute for Psychiatric Research

In approximate design theory, necessary and sufficient conditions that
a repeated measurements design be universally optimal are given as
linear equations whose unknowns are the proportions of subjects on the
treatment sequences. Both the number of periods and the number of
treatments in the designs are arbitrary, as is the covariance matrix of the
normal response model. The existence of universally optimal ‘‘symmetric’’
designs is proved; the single linear equation which the proportions satisfy
is given. A formula for the information matrix of a universally optimal
design is derived.

Ž .1. Introduction. In the class RMD t, N, p of repeated measurements
designs}where t is the number of treatments, N the number of subjects and
p the number of periods}a subject is repeatedly exposed to various treat-

w Ž . Ž .ments. Many authors Cheng and Wu 1980 , Kunert 1983 , Hedayat and
Ž .xZhao 1990 assume the response model

1.1 y s t q r q p q b q « , 1 F i F N, 1 F j F p ,Ž . i j dŽ i , j. dŽ i , jy1. j i i j

Ž .in which the design allocates treatment d i, j to the ith subject in the jth
period. t and r are the treatment and carryover effects, p is thedŽ i, j. dŽ i, j. j

Ž .period effect and b is the subject effect. The N independent vectors « s « ,i i i j
1 F j F p, are multivariate normal with mean 0, and p = p covariance
matrix, C.

Our chief interest is to determine all designs which minimize functions
which depend on the proportions of subjects assigned to each treatment
sequence. We use ‘‘proportions’’ in the sense customary in approximate
design theory, the approach of this paper. The functions considered are the
standard information functions.

Previous optimality results contain restrictions on p, t, C, the competing
class of designs and the class of designs proved to be optimal. A necessary
and sufficient condition for universal optimality was given for the case p s 2

Ž .in Hedayat and Zhao 1990 , who also pointed out that most other optimality
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Ž .results relate to the situation t F p. The conditions p s t and p ' 1 mod t
Ž . Ž .appear in Cheng and Wu 1980 and p s t in Kunert 1985 . The case t s 2

Ž . Ž .was treated in Laska and Meisner 1985 and in Matthews 1987 .
w Ž . Ž .xPioneering work Hedayat and Afsarinejad 1978 ; Cheng and Wu 1980

concentrated on the case C s I . However, a subject’s p responses are notp
likely to be independent. Moreover, the optimality of a design usually de-

Ž .pends on C an exception is the case p s 2 . In almost all subsequent work
w Ž . Ž .xKunert 1985 ; Matthews 1987 , C is assumed to be a first-order autore-
gressive matrix, but since this assumption is highly specialized, there re-
mains the open problem of obtaining optimal designs for a general covariance
matrix.

Also, many authors place limitations on the class of competing designs. For
Ž .example, in Cheng and Wu 1980 , some optimality results are proved when

the class of competing designs excludes those in which a treatment is
preceded by itself. Even when the class of competing designs is the full class

Ž .RMD t, N, p , optimality results are often only proved for interesting sub-
w Ž . Ž .xclasses of designs Cheng and Wu 1980 , Section 3; Kunert 1985 .

None of the above limitations, except for p s 2, appear in Hedayat and
Ž . ŽZhao 1990 their assumption that C is a correlation matrix is easy to
.remove . The present paper provides a comparable treatment of the general

optimal design problem in approximate theory.
The main results of this paper are the following. For any p, t and C, a

necessary and sufficient condition that the proportions of subjects on treat-
Ž .ment sequences determine a universally optimal resp. strictly F-optimal

Ždesign is that they satisfy a system of linear equations Theorems 5.3 and
.5.4 . Surprisingly, ‘‘strict F-optimality’’}the optimality of a design with

respect to any strictly concave information function F}is equivalent to the
Ž .universal optimality of the design. A formula 4.13 for the information

Ž .matrix of a universally optimal resp. strictly F-optimal design is derived.
Ž .For any F, the related formula 4.12 can be used both to check a design’s

optimality and to compute the F-efficiency of a nonoptimal design. For any p,
t or C, there exist ‘‘symmetric’’ designs which are universally optimal. In a

Ž .symmetric design Section 3 , equal proportions of subjects are assigned to all
Ž .treatment sequences within a ‘‘symmetry block’’ Section 5 . These propor-

Ž .tions are determined by just one linear equation Theorem 5.5 , which is also
a necessary condition for any optimal design. A symmetric design consisting

Ž .of at most two symmetry blocks always exists Corollary 5.6 .
Ž .In Kushner 1996, 1997 , we study solutions of the optimality equations.

Ž . Ž .We derive the designs of Cheng and Wu 1980 , Kunert 1983 and Matthews
Ž .1987, 1990 and give new universally optimal designs.

2. The information matrix of treatment and carryover effects. In
Ž . Ž .this section, we give a formula Lemma 2.4 for C t , r , the informationd

matrix of treatment and carryover effects. The formula concretely exhibits
the treatment sequence proportions whose determination is the aim of opti-
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mal design theory. The matrix, C ; , which also appears in the formula,
significantly affects a design’s optimality.

2.1. Notation. I denotes the n = n identity matrix, J the n = n matrixn n
of 1’s and J s J 1 the m = n matrix of 1’s. J 2 is the m = n matrixm , n m , n m , n
whose first row is zero and final m y 1 rows are 1’s. 1 s 11 s J 1 andm m m , 1
12 s J 2 . T m, 1 F m F 2, are, respectively, the Np = t design matrices ofm m , 1
treatment and carryover effects; T 1 and T 2 are the p = t period-treatmenti i
and period-carryover incidence matrices for subject i, so that T m s
wŽ m.X Ž m.X Ž m.X xX 2T , T , . . . , T . The first row of T is zero; for 2 F j F p, the jth row1 2 N i

2 Ž . 1of T is the j y 1 st row of T . Note thati i

2.1 1m s T m1 , 1 F i F N , 1 F m F 2.Ž . p i t

Write T m to designate the matrix T m when it is necessary to indicate thed, i i
Ž . 1 2 1 2design d. In Kunert 1991 , T s T , T s F , T s T , T s F . Letd d i d, i i d, i

N
m y1 m2.2 M s N T , 1 F m F 2.Ž . Ý i

is1

Ž . ; ;2.2. Formulas for C t , r . The matrix C . Define the p = p matrix Cd
by

2.3 C ;s Cy1 y Cy1 J Cy1r1X Cy11 .Ž . p p p

Note that if x is a p-dimensional vector, then

2.4 C ; x s 0 iff x s a1 , a a scalar.Ž . p

LEMMA 2.1. The information matrix of treatment and carryover effects is
given by

C Cd11 d122.5 C t , r s ,Ž . Ž .d ž /C Cd21 d22

Ž m.X n Žwhere C s T ST , 1 F m, n F 2, are t = t matrices and S s I ydmn N
. ;J rN m C .N

Ž .See Cheng and Wu 1980 for the case C s I . An application of Lemma 2.1p
is: when p s 2, optimality is independent of the covariance matrix. For any

; 1 y1Ž .C, C s b , b a scalar, and scalar multiples of information matricesy1 1
Ž .do not affect optimality. See Hedayat and Zhao 1990 for the case C a

correlation matrix.

COROLLARY 2.2. Any design which is optimal when C s C is also optimal0
if

2.6 C s a C q g1X q 1 g X , a a scalar , g a p-dimensional vector .Ž . 0 p p
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Ž .PROOF. The C in 2.6 is the most general solution of the matrix equation,
; y1 ; Ž . Ž .C s a C . Hence, C t , r is the same for the covariance matrices 2.60 d

and C s a C . Consequently, the same situation holds for the information0
matrix of treatment effects. I

An application of Corollary 2.2 is: designs optimal with C s I are alsop
X X woptimal with C s aI q g1 q 1 g , a ‘‘type-H’’ matrix Huynh and Feldtp p p

Ž .x1970 . In fact, for any C of this type,

C ;s ay1 I y J rp .Ž .p p

Ž . Ž .LEMMA 2.3. i The submatrices of C t , r are given byd

N
Xm m ; n n2.7 C s T y M C T y M , 1 F m , n F 2.Ž . Ž . Ž .Ýdmn i i

is1

Ž .ii The row and column sums of C , 1 F m, n F 2, are zero.dmn

2.3. Treatment sequences: proportions and treatmentrcarryover incidence
matrices. Let t denote a treatment sequence characterized by a p-tuple of

Ž .integers, t s t , t , . . . , t , 1 F t F t, where t is the treatment given in the1 2 p j j
jth period, 1 F j F p. The matrices T m depend only on the treatment se-i
quence to which a subject is assigned: T m s T m, where T 1 and T 2 are,t i t t

respectively, the common treatment and carryover incidence matrices for all
subjects assigned to t . If n is the number of such subjects, then N s Ý n ,t t t

where t }and in subsequent sums omitting the domain of t }runs over all
t p treatment sequences. With p s n rN the treatment sequence proportion,t t

2.8 1 s p , p G 0.Ž . Ý t t
t

Ž .2.4. C t , r as a sum over treatment sequences and their proportions. Thed
m ˆ ˆm m ˆ ˆ mmatrices T , T , T , T and their convex means, M , M , M , M . The matri-t t t t d d d d

ˆ ˆ 1 2w xces L , L , L . Let T be the p = 2 t matrix T s T , T . Consistent withd d dmn t t t t

Ž . m m m2.2 , define the convex means, M , M , of the matrices T , T by M sd d t t d
Ý p T m, 1 F m F 2, and M s Ý p T . Let L s Ý p T XC ; T .t t t d t t t d t t t t

LEMMA 2.4. The information matrix of treatment and carryover effects is
given by the sum

X ;2.9 C t , r s N p T y M C T y M .Ž . Ž . Ž . Ž .Ýd t t d t d
t

Ž . Ž .From 2.9 , C t , r may be thought of as the weighted variance of the Td t

matrices occurring with multiplicity Np . A matrix version of a familiart

Ž . X ;identity is C t , r s NL y NM C M . More generally, for any p = 2 td d d d
matrix, T,

X X; ;2.10 C t , r s N p T y T C T y T y N T y M C T y M .Ž . Ž . Ž . Ž . Ž . Ž .Ýd t t t d d
t
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1 2 ˆ ˆ1 ˆ2 ˆ ˆ 1 ˆ 2 ˆw xSet T s J , J rt and define T , T , T , M , M , M and L , thep, t p, t t t t d d d d
centered counterparts of the matrices without the ‘‘hats,’’ by

1 2 1 1 2 2ˆ ˆ ˆ2.11 T s T y T s T , T s T y J rt , T y J rt ,Ž . t t t t t p , t t p , t

1 2 1 1 2 2ˆ ˆ ˆ2.12 M s M y T s M , M s M y J rt , M y J rt ,Ž . d d d d d p , t d p , t

ˆ X̂ ; ˆ2.13 L s p T C T .Ž . Ýd t t t
t

Ž .From 2.10 ,
X

;ˆ ˆ ˆ2.14 C t , r s NL y N M C M .Ž . Ž . Ž .d d d d

ˆFinally, define the t = t submatrices of L ,d
X

m ; nˆ ˆ ˆ2.15 L s p T C T , 1 F m , n F 2.Ž . Ž .Ýdmn t t t
t

3. Permuted and symmetric designs, convex combinations of de-
signs. In this section, we discuss permuted designs, the convex combination
of designs and symmetric designs. The exploitation of designs of these types
is the theme of the method of this paper.

3.1. P, the array of proportions. Permuted designs and their information
Ž .matrices. A repeated measurements design d is specified by P s p , thet

t p proportions on the treatment sequences. Sometimes we refer to the design
d by P and indicate the relation between d and P by d l P. Let s denote a

� 4permutation of 1, 2, . . . , t , that is, s is an element of the symmetric group,
Ž Ž . Ž . Ž ..S . Let st be the treatment sequence st s s t , s t , . . . , s t . For eacht 1 2 p

Ž .y1s g S , define a new design, the permuted design, P , by P s p ,t s s s t

designated also by d . Let H be the t = t matrix representing the permuta-s s

tion s . Since d results from a relabelling of the treatments, the d and ds s

incidence matrices of the ith subject and their means are related by

T m s T m H , M m s M mH ,d , i d , i s d d ss s

s g S , 1 F i F N , 1 F m F 2.t

3.1Ž .

Ž . Ž .It follows from 2.7 and 3.1 that

C s H X C H , s g S , 1 F m , n F 2,d mn s dmn s ts

3.2 C t , r s I m H X C t , r I m H , s g S ,Ž . Ž . Ž . Ž . Ž .d 2 s d 2 s ts

3.3 T m s T mH , s g S , 1 F m F 2,Ž . st t s t

Ž . wand, with C t the information matrix of treatment effects see Shah andd
Ž . xSinha 1989 , page 4 ,

3.4 C t s H X C t H , s g S .Ž . Ž . Ž .d s d s ts

3.2. The convex combination of designs. For 1 s ÝI a , a G 0, 1 F i F I,is1 i i
i Ž i.the convex combination of the I designs d l P s p , 1 F i F I, is d li t a
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a Ž a . I i a I i IP s p s Ý a P , where p s Ý a p . We write d s Ý a d . Thet is1 i t is1 i t a is1 i i
d play an important part in the sequel. However, they may not exist in exacta

Ž . Ž .design theory. For example, 1, 2 and 2, 1 are two sequences of integers
Ž . Ž . Ž .whose convex sum, 1, 2 r2 q 2, 1 r2 s 3r2, 3r2 , is not a sequence of

integers.

Ž .3.3. Concavity of C t as a function of d.d

w Ž . x sLEMMA 3.1 Pukelsheim 1993 , pages 74]77 . A , the Schur complement
of A, is a concave, nonincreasing function of A G 0.

Ž . Ž .Let j denote all the fixed effects in 1.1 and let C j denote theird
information matrix.

Ž .THEOREM 3.2. C t is a concave function of d:d

I

3.5 C t G a C t .Ž . Ž . Ž .Ýd i da i
is1

Ž .PROOF. From C j s N Ý p B , where B are fixed matrices,d t t t t

I

3.6 C j s a C j .Ž . Ž . Ž .Ýd i da i
is1

Ž . Ž . sŽ .From 3.6 , Lemma 3.1 and C t s C j for a suitable Schur complement,d d
Ž .we get 3.5 . I

3.4. Optimality of convex combinations of designs. Let F denote a con-
cave information function, defined on the set of symmetric nonnegative
matrices, of the type standard in optimality theory: d is F-optimal if it

Ž Ž ..maximizes F C t . If F is strictly concave, d is strictly F-optimal.d

Ž .LEMMA 3.3. i The set of F-optimal designs is convex: if d , 1 F i F I, arei
F-optimal designs, then so is d . In particular, if d is F-optimal, then so isa

d s Ý a d , 1 s Ý a , a G 0, s g S .a s g S s s s g S s s tt t

Ž . Ž . Ž .ii C t s b tI y J , b a scalar, for every strictly F-optimal d.d t t

Ž . Ž .PROOF. i Equation 3.5 and the concavity of F.
Ž . Ž . Ž .ii Equation 3.4 and Kiefer’s 1975 , Proposition 1 Remark. I

Ž . wŽ . xNOTES. a In a different problem, Silvey 1980 , page 17 notes the
convexity of the set of optimal designs.

Ž . Ž .b Part ii also holds in exact design theory.

3.5. Symmetric optimal designs. A symmetric design generalizes the no-
tion of a dual balanced design, introduced for t s 2 by Laska and Meisner
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Ž .1985 . Design d is symmetric if

3.7 d s d , s g S ,Ž . s t

that is, if the proportions of d satisfy

3.8 p s p , s g S , all t .Ž . st t t

Ž .For a model without fixed subject effects, Laska and Meisner 1985 proved
Ž .that an optimal dual balanced design exists; for model 1.1 , see Matthews

Ž .1987 .

THEOREM 3.4. A symmetric F-optimal design exists.

Ž .PROOF. Use Lemma 3.3 i with a s 1rt!, s g S . The proportions in thes t
F-optimal design

3.9 P s P t!Ž . ÝS sž /
sgSt

Ž .satisfy 3.8 . I

We call d l P the symmetrized design of d l P.S S

4. The information matrix of strictly F-optimal and universally
optimal designs. Here we derive a formula for the treatment effects
information matrix of a design which is either strictly F-optimal or univer-
sally optimal. Important roles in the analysis are played by the quadratic
function associated to a treatment sequence, the quadratic function of the
design and by symmetric and ‘‘symmetrized’’ designs. We briefly discuss the
efficiency of nonoptimal designs.

4.1. The quadratic function associated to a treatment sequence. For each
Ž .treatment sequence, t , define a nonnegative quadratic, q s , byt

X
1 2 ; 1 2ˆ ˆ ˆ ˆq s s tr T q sT C T q sTŽ . ž / ž /t t t t t

4.1Ž .
s qt q 2 qt s q qt s2 , y` - s - `,11 12 22

where
X

t m ; n t tˆ ˆ4.2 q s tr T C T , 1 F m , n F 2, q s q .Ž . Ž .Ž .mn t t 12 21

Ž .NOTE. Equation 4.1 defines a genuine quadratic. For,
X

t 2 ; 2ˆ ˆq s tr T C T s 0Ž .22 t t

ˆ2 X ; ˆ2Ž . wŽ . ximplies 0 s T C T and then, from Pukelsheim 1993 , page 15 andt t
; ˆ2 X ˆ2 2 2Ž .2.4 , 0 s C T , and 1 x s T s T y J rt, where x, a t-dimensionalt p t t p, t

column vector, must vanish since both T 2 and J 2 have zero first rows. Thist p, t
2 2 t t t Ž t .2gives the contradictory 0 s tT y J . Both q s 0 and q q y q s 0t p, t 11 11 22 12

can and do occur.
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LEMMA 4.1. The quadratics corresponding to treatment sequences t and
st are identical:

q s s q s , s g S .Ž . Ž .st t t

Ž . Ž .PROOF. This follows from 3.3 and 2.11 . I

y1 Ž jk .Let C s c , 1 F j, k F p, so that

4.3 C ;s c jk s c jk y c jckrctot , 1 F j, k F p ,Ž . Ž . Ž .˜
where c j are the row sums, and ctot s Ý p Ý p c jk is the total sum, of Cy1.js1 ks1
Let

d t s d tkq 1yn , 1 F j, k F p , 1 F m , n F 2Ž . ž /mn t jq1ym

Ž t0 t0 .where the symbol t is left undefined but 0 ' d s d , 1 F m F t . A0 t m0

convenient computational formula for qt ismn

t ; 11 22q s tr d t C y c d rt , 1 F m , n F 2.Ž . ˜mn mn mn

Ž .4.2. Q s, P , the quadratic of a design. Information matrix of a symmetric
design. For any array of proportions, P, define the quadratic of a design,
Ž . Ž . w Ž . Ž .xQ s, P , and its coefficients, q P q P s q P , bymn 12 21

Q s, P s p q s s q P q 2 q P s q q P s2 ,Ž . Ž . Ž . Ž . Ž .Ý t t 11 12 22
t

Ž . Ž .so that, from 2.15 and 4.2 ,

ˆ4.4 q P s tr L , 1 F m , n F 2.Ž . Ž .mn dmn

Ž .LEMMA 4.2. For any design, P, and its symmetrized design, P , Q s, P sS
Ž .Q s, P .S

Ž .PROOF. Use Lemma 4.1 and 3.9 . I

LEMMA 4.3. Suppose that d l P is a symmetric design. Then

q P q PŽ . Ž .11 12
4.5 C t , r s N m tI y J rt t y 1 ,Ž . Ž . Ž . Ž .d t tž /q P q PŽ . Ž .21 22

C t s N q P y q2 P rq P tI y J rt t y 1Ž . Ž . Ž . Ž . Ž . Ž .Ž .4.6 d 11 12 22 t tŽ .
s N min Q s, P tI y J rt t y 1 ,Ž . Ž . Ž .t ty`-s-`

ˆ m4.7 M s 0, 1 F m F 2.Ž . d

Ž . Ž .PROOF. If d is symmetric, then 3.1 and 3.7 imply that

4.8 M s X m 1X where X is a p = 2 matrix.Ž . d t
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Ž . w 2 x w 2 x Ž .But from 2.1 , M 1 s 1 , 1 . Hence, X s 1 , 1 rt, which, with 4.8 , im-d t p p p p

Ž . Ž . Ž . Ž .plies 4.7 . Similarly, Lemma 2.3 ii , 3.2 and 3.7 imply

a a11 124.9 C t , r s m tI y J , d symmetric, a scalars.Ž . Ž . Ž .d t t mna až /21 22

Ž . Ž .But from 2.14 and 4.7 ,

ˆ4.10 C t , r s NL , d symmetric.Ž . Ž .d d

Ž . Ž . Ž . Ž .Hence, 4.5 follows from 4.4 , 4.9 ] 4.10 and

ˆt t y 1 a s tr C s N tr L , 1 F m , n F 2, d symmetric.Ž . mn dmn dmn

Ž . Ž .Equation 4.6 is obtained by taking Schur complements of 4.5 . I

Ž Ž ..4.3. The maximum of F C t , for any F. The information matrix of ad
Ž .strictly F-optimal resp. universally optimal design.

THEOREM 4.4. Let

4.11 b s max min Q s, P .Ž . Ž .
y`-s-`P

Then

Ž .i for any F,

4.12 max F C t s NbF tI y J rt t y 1 .Ž . Ž . Ž . Ž .Ž .d t t
d

Ž . Ž .ii d is F-optimal for F strictly concave resp. universally optimal if and
only if its treatment effects information matrix is

4.13 C t s Nb tI y J rt t y 1 .Ž . Ž . Ž . Ž .d t t

Ž .PROOF. From Theorem 3.4, Lemma 4.2 and 4.6 , for any F,

max F C t s max F C tŽ . Ž .Ž . Ž .d d
d d symmetric

s NF tI y J max min Q s, P rt t y 1 ,Ž . Ž . Ž .t t y`-s-`P

4.14Ž .

Ž .which is 4.12 .
Ž . Ž .Necessity of 4.13 : If F is strictly concave, 4.14 also shows that, in

Ž . Ž .Lemma 3.3 ii , b s Nbrt t y 1 . If d is universally optimal, then, of course, it
Ž .is optimal for the strictly concave F ’s, so 4.13 is also true in this case.

Ž . Ž .Sufficiency of 4.13 : this follows from 4.12 . I

Ž .4.4. Minimax and quadratics. The study of the b in 4.11 is the subject
of this section. We present an analysis for any quadratics, rather than just for

Ž .the quadratics 4.1 . One can, for example, apply these results to the quadrat-
Ž . y1 ;ics obtained from 4.1 with C in place of C , which occur in Laska and

Ž . Ž .Meisner 1985 . Suppose that B x , 1 F i F I, are nonnegative, nonconstanti
Ž . 2quadratics in x: B x s a q b x q c x G 0, y` - x - `, c ) 0, 1 F i F I.i i i i i
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Ž .Define the scalars a, b and the function B x by

B x s max B x , y` - x - `,� 4Ž . Ž .i
1FiFI

4.15 b s min B x ,Ž . Ž .
y`-x-`

4.16 B a s min max B x s b.� 4Ž . Ž . Ž .iy`-x-` 1FiFI

Ž . Ž .The quantity a is uniquely defined by 4.16 , since B x is a convex functioni
Ž .and B x , the maximum of convex functions, is convex and is not constant on

w Ž . Ž .any interval. For simplicity, we use the same symbol ‘‘b’’ in 4.11 and 4.15 .
Ž .When the quadratics are 4.1 , Theorem 4.5 shows that the two b’s are

x � 4identical. Let NN ; 1, 2, . . . , I be the set of indices for which

4.17 b s B a s B a , i g NN .Ž . Ž . Ž .i

Ž .In a neighborhood of x s a, B x depends only on the quadratics whose
Ž . � Ž .4indices are in NN: for d ) 0 sufficiently small, B x s max B x , a y d -ig NN i

x - a q d . With S the simplex in Section 3.2, defineI

I

B x , a s a B x , y` - x - `, a s a , a , . . . , a g S .Ž . Ž . Ž .Ý i i 1 2 I I
is1

Ž . Ž .THEOREM 4.5. i B x, a has the minimax property

4.18 max min B x , a s min max B x , a s b.Ž . Ž . Ž .
y`-x-` y`-x-`agS agSI I

Ž .ii The two equations

4.19a B x , a s bŽ . Ž .
and

I
X X4.19b B x , a s a B x s 0Ž . Ž . Ž .Ý i i

is1

are simultaneously satisfied if and only if

4.20 x s a,Ž .
4.21a a s 0, i f NN ,Ž . i

4.21b 1 s a , a G 0, i g NN ,Ž . Ý i i
ig NN

4.22 BX a, a s a BX a s 0.Ž . Ž . Ž .Ý i i
igNN

Ž . Ž .Moreover, a solution of 4.21 ] 4.22 exists with either one or two nonzero a ’s.i

Ž .PROOF. i It is obvious that

max min B x , a F min max B x , aŽ . Ž .
y`-x-` y`-x-`agS agSI I

s min max B x s min B x s b.Ž . Ž .iy`-x-` y`-x-`1FiFI
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Ž .To prove 4.18 , we show that

4.23 min B x , a s b for some a g S .Ž . Ž . Iy`-x-`
U X Ž . Ž .U UCase 1. There is an i g NN such that B a s 0. Then min B xi y`- x -` i

Ž . Ž . U iU

Us B a s b. Hence, 4.23 holds for a s d .i i i
X Ž . X Ž .Case 2. There are i , i g NN such that B a ) 0 and B a - 0. Then for1 2 i i1 2

aU s yBX a r BX a y BX a , if i s i ,Ž . Ž . Ž .Ž .i i i i 12 1 2

s BX a r BX a y BX a , if i s i ,Ž . Ž . Ž .Ž .i i i 21 1 2
4.24Ž .

s 0, otherwise,
XŽ U . Ž . U Ž .we get B a, a s 0 and therefore 4.23 holds for the a in 4.24 . The

Ž .solutions of 4.22 given in cases 1 and 2 have at most two components of a
nonzero.

XŽ .Case 3. The derivatives B a , i g NN, have the same sign. This case cannoti
Ž .occur because B x would be strictly increasing or decreasing in a neighbor-

Ž .hood of x s a and could not attain the minimum 4.23 there.
Ž . Ž .ii For an x and a satisfying 4.19 ,

I I

4.25 b s a B x F a B a s a B a q a B a .Ž . Ž . Ž . Ž . Ž .Ý Ý Ý Ýi i i i i i i i
is1 is1 igNN ifNN

But
4.26 b ) B a , i f NN ,Ž . Ž .i

Ž . Ž . Ž . Ž .and if 4.21a were not true, 4.17 , 4.25 and 4.26 would give a contradic-
Ž . Ž . Ž . Ž .tion. If 4.20 were not true, then 4.17 and 4.25 with 4.21 inserted gives

the contradictory

b s a B x - a B a s b.Ž . Ž .Ý Ýi i i i
igNN igNN

Ž . Ž . Ž .Hence 4.20 is true and 4.22 results from 4.19b . I

The concluding result of this section is an algorithm for calculating a, b
Ž . Ž .and the set NN. Let 1 F i, j F I. An intersection point of B x and B x , thati j

Ž .is, a point x , y such thati j i j

y s B x s B x ,Ž . Ž .i j i i j j i j
XŽ . XŽ .is called admissible if B x F 0 and B x G 0. In this definition, we doi i j j i j

Ž . Ž 2 .not exclude i s j, in which case x , y s yb r2c , a y b r4c is stilli i i i i i i i i
called an admissible ‘‘intersection’’ point.

Ž . Ž . Ž .LEMMA 4.6. i B x and B x have at most one admissible intersectioni j
point.

Ž .ii
b s max yi j

1FiFjFI
Ž .x , yi j i j

admissible

Ž . Ž .iii a s x , where m, n is any pair such that b s y .m n m n
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Ž . Ž . Ž .INDICATION OF PROOF. Use max B x, a s max B x and 4.18 .a g S 1F iF I iI

� Ž .4 Ž .For the set of quadratics q s , define a, b and q s byt

4.27 q s s max q s , y` - s - `,� 4Ž . Ž . Ž .t
t

4.28 b s min q s ,Ž . Ž .
y`-s-`

4.29 q a s min max q s s b.� 4Ž . Ž . Ž .ty`-s-` t

Ž .Let TT be the set of treatment sequences at which minimax 4.29 is achieved:

4.30 b s q a s q a , t g TT.Ž . Ž . Ž .t

When C is known, a, b and TT can be rapidly determined by Lemma 4.6. From
Ž .4.21a , in an optimal design,

4.31 p s 0, t g TT.Ž . t

Hence the support of any optimal design is a subset, possibly proper, of TT.

4.5. Design efficiency. The F-efficiency of design d is defined as

4.32 eff d s F C t rF C U t ,Ž . Ž . Ž . Ž .Ž . Ž .F d d

U Ž .where d is any design and d is F-optimal. The denominator in 4.32 is
Ž . Ž .given by 4.12 . If d l P is symmetric, the numerator in 4.32 is obtained

Ž .from 4.6 , yielding

4.33 eff d s b rb, d symmetric,Ž . Ž . d

where

b s min Q s, P s q P y q2 P rq P .Ž . Ž . Ž . Ž .d 11 12 22y`-s-`

Ž .We omit F in 4.33 because, for symmetric d, F-efficiency is independent
of F.

Ž .5. The optimality equations. The matrix equation 4.13 can be consid-
ered to be a very complicated system of equations for the proportions of a

Ž .universally optimal resp. strictly F-optimal design. However, it is possible
ˆŽ .to reduce 4.13 to a system of linear equations featuring the matrices Ldmn

ˆ m Ž . Ž .and M . These matrices are much simpler than C t . The entries in C t , rd d d
ˆ ˆare quadratic functions of the proportions and those of L and M are lineard d

functions of the proportions. In this section, if R is a 2 t = 2 t matrix, then the
Ž . qt = t submatrices R , 1 F i, j F 2, are defined as in 2.5 . R denotes thei j

Moore]Penrose inverse of R. If w is a scalar, then wqs 1rw, w / 0 and
0qs 0.
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ˆs5.1. The matrix L .d

LEMMA 5.1. If R G 0 is a 2 t = 2 t matrix, then
q2s5.1 tr R F tr R y tr R tr R .Ž . Ž . Ž .11 12 22

wŽ . x Ž . XPROOF. From Pukelsheim 1993 , page 75 , for T s I , X , X a t = tt t t
matrix,

XX s q q5.2 T RT s R q X q R R R X q R R .Ž . Ž . Ž .t 22 21 22 t 22 21

Set X s xI , x a scalar. Then R s F T XRT s R q xR q xR q x 2R andt t 11 12 21 22

5.3 tr R s F tr R q 2 x tr R q x 2 tr R , all x .Ž . 11 12 22

Ž . Ž .Ž .q Ž .In 5.3 , set x s y tr R tr R to obtain 5.1 . I12 22

Ž .LEMMA 5.2. i For any d,

ˆ5.4 C t , r F NL .Ž . Ž .d d

Ž .ii If d is optimal, then

ˆs5.5 C t s NL .Ž . Ž .d d

Ž . Ž .PROOF. i This follows from 2.14 .
Ž . Ž .ii From 5.4 ,

s ˆs5.6 C t s C t , r F NL .Ž . Ž . Ž .d d d

Ž . Ž .From 4.4 , Lemma 5.1 and 4.13 ,

ˆs 25.7 N tr L F N q P y q P rq P s tr C t .Ž . Ž . Ž . Ž . Ž .Ž .d 11 12 22 d

Ž . Ž . Ž .Equation 5.5 follows from 5.6 and 5.7 . I

5.2. First form of the optimality equations.

ˆm ˆ mŽ . Ž .THEOREM 5.3. With a, b and TT given in 4.28 ] 4.30 , T , M int d
Ž . Ž . ; Ž . Ž2.11 ] 2.12 and C in 2.3 , d is a universally optimal resp. strictly

.F-optimal design in approximate design theory iff the treatment sequence
proportions, p , satisfy the linear equationst

X X
1 ; 1 1 ; 2ˆ ˆ ˆ ˆ5.8 p T C T q a T C T s b tI y J rt t y 1 ,Ž . Ž . Ž .Ž . Ž .Ý ž /t t t t t t t

tgTT
X X

2 ; 1 2 ; 2ˆ ˆ ˆ ˆ5.9 p T C T q a T C T s 0,Ž . Ž . Ž .Ý ž /t t t t t
tgTT

; ˆ1 ˆ25.10 C p T q aT s 0,Ž . Ý ž /t t tž /
tgTT

5.11 p s 0, if t f TT.Ž . t
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ˆ Ž . Ž . Ž .PROOF. With L given in 2.15 , we will prove 5.8 ] 5.10 in the formdmn

X ˆ ˆ5.8 L q aL s b tI y J rt t y 1 ,Ž . Ž . Ž .d11 d12 t t

X ˆ ˆ5.9 L q aL s 0,Ž . d21 d22

X ; 1 2ˆ ˆ5.10 C M q aM s 0.Ž . ž /d d

Let f be a symmetric optimal design and g s dr2 q fr2, an optimal design
ˆ ˆ ˆŽ .from Lemma 3.3 i . Set A s L , B s L and D s L s Ar2 q Br2. Fromf d g

Ž . Ž . Ž .5.2 for R s A, B and D, 4.13 and 5.5 ,
Xq qX q A A A X q A AŽ . Ž .t 22 21 22 t 22 21

Xq q5.12Ž . q X q B B B X q B BŽ . Ž .t 22 21 22 t 22 21
Xq qs X q D D D X q D D , for all X .Ž . Ž .t 22 21 22 t 22 21 t

q Ž . X XSetting X s yD D in 5.12 , we obtain 0 s Y A Y q W B W, wheret 22 21 22 22
Y s yDq D q Aq A and W s yDq D q Bq B , implying 0 s Y XA Y22 21 22 21 22 21 22 21 22

X wŽ . xs W B W, and from Pukelsheim 1993 , page 15 ,22

5.13 0 s A Y s B W .Ž . 22 22

Ž .From 2.13 , the row and column sums of A , B and D , 1 F m, n F 2,mn mn mn

Ž .vanish and, therefore, so do those of Y. From 4.10 and Lemma 4.3, A smn

Ž .Ž . Ž .q P tI y J rt t y 1 , 1 F m, n F 2, where f l P, and from Section 4.1,mn t t
Ž . Ž . qq P / 0. Hence, the first equality in 5.13 implies 0 s Y s yD D y22 22 21

Ž . Ž .a I y J rt and then the second equality in 5.13 impliest t

5.14 W s a I y J rt q Bq B .Ž . Ž .t t 22 21
X ˆ ˆŽ . Ž . Ž .Equations 5.13 ] 5.14 give 5.9 : 0 s B q aB s L q aL . Equation21 22 d21 d22

Ž .X Ž . Ž . Ž .X5.8 follows from 4.13 , 5.5 and 5.9 :

y1 ˆ ˆ ˆq ˆb tI y J rt t y 1 s N C t s L y L L LŽ . Ž . Ž .t t d d11 d12 d22 d21

ˆ ˆ ˆq ˆs L q aL L Ld11 d12 d22 d22

ˆ ˆs L q aL .d11 d12

Ž . Ž . Ž . Ž . Ž .Finally, from 4.13 , 5.3 with R s C t , r , 2.14 and 4.4 ,d

2Nb s tr C t F tr C q 2 xC q x CŽ .d d11 d12 d22
X

1 2 ; 1 2ˆ ˆ ˆ ˆs NQ x , P y N tr M q xM C M q xM ,Ž . ž / ž /d d d d

5.15Ž .

ˆ 1 ˆ 2 X ; ˆ 1 ˆ 2Ž . wŽ . Ž .xand setting x s a in 5.15 , gives b F b y tr M q aM C M q aM .d d d d
ˆ 1 ˆ 2 X ; ˆ 1 ˆ 2 XwŽ . Ž .x Ž .Hence, 0 s tr M q aM C M q aM , equivalent to 5.10 . Id d d d

5.3. Second form of the optimality equations. Define treatment-period
proportion sums by P j s Ý p d m s Ý p , P jk s Ý p d md n sm t t t t sm t m n t t t tj j j k

Ý p , 1 F j, k F p, 1 F m, n F t,and treatment proportion sums byŽ t , t .sŽm , n. tj k

P s Ý p P j , 1 F m F t. Set P j0 s P 0 j s P 00 s P 0 s 0, 1 F j F p, 1 Fm js1 m m n m n m n m
m, n F t.
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THEOREM 5.4. The optimality equations in Theorem 5.3 are equivalent to
Ž .5.11 and the following linear system:

b td y 1 rt2 t y 1 q art w uŽ . Ž . Ž .m n m
p

j , k j , ky1 jks P q aP c , 1 F m , n F t ,˜Ž .Ý m n m n
j, ks1

p
11 2 jy1, k jy1, ky1 jkyw urt q ac rt s P q aP c , 1 F m , n F t ,˜ ˜Ž .Ým m n m n

j, ks1

P j s w s q 1rt , 1 F m F t , 1 F j F p ,m m j

jk Ž . Žwhere a, b and TT are as given in Theorem 5.3 and c in 4.3 ; s s 1 y˜ j
Ž . j. Ž . Ž . Ž .2ya r 1 q a , 1 F j F p; w s w P y prt , 1 F m F t; w s 1 q a rm m
Ž Ž Ž . p.. Ž .y1 p Ž . j j1 Žp q a 1 q p y ya ; u s 1 q a Ý ya c . If a s y1, formulas˜js1

.for s and u are obtained by taking limits.j

Ž . Ž . m Ž m .INDICATION OF PROOF. Sum 5.8 ] 5.10 using T s d , 1 F j F p,t t jq 1ym

1 F m F t for 1 F m F 2. I

5.4. Symmetry blocks, inequivalent treatment sequences, symmetric and
² :symmetrized designs. The ‘‘symmetry block,’’ k , a set of treatment se-

² : � 4quences, is defined by k s t : t s sk , s g S s the orbit of k under S .t t
² : Ž . Ž . Ž .card k s t s t t y 1 ??? t y k q 1 , where k s number of distinct inte-k

Ž .gers in k s k , k , . . . , k . Call k equivalent to k iff k s sk , s g S . Let1 2 p 1 2 1 2 t
k run over a set of inequivalent treatment sequences. Then

p ² :all t treatment sequences s kD
k

Ž .is a disjoint union. In a symmetric design, P s p , proportions are the samet

for every treatment sequence in a symmetry block:

² :5.16a p s p , if t g k ,Ž . t k

² :5.16b 1 s card k p , p G 0,Ž . Ý k k
k

Ž .where the k in 5.16b }and in subsequent sums in this section}runs over a
set of inequivalent treatment sequences. In any design, P, let

5.17a P s pŽ . Ýk t
² :tg k

² :denote the sum of proportions over symmetry block k . Thus

5.17b 1 s P .Ž . Ý k
k

Ž .The proportions of the symmetrized design 3.9 are given by
S ² : ² :5.18 p s P rcard k , if t g k .Ž . t k
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5.5. A condition necessary for an optimal design and necessary and suffi-
cient for a symmetric optimal design.

Ž .THEOREM 5.5. i The equation

5.19 0 s P qX aŽ . Ž .Ý k k
kgTT

is a necessary condition that d be universally optimal, where P is given ink

Ž . Ž .5.17a and the k in 5.19 runs over inequivalent treatment sequences in TT.
Ž . Ž . Ž .ii A symmetric design is optimal iff 5.11 and 5.19 hold.

Ž . Ž .PROOF. Lemma 4.2, Theorem 4.4 i and Theorem 4.5 imply 5.19 . If d is
Ž . Ž .symmetric and 5.19 holds, then 4.6 and Theorem 4.5 imply that d is

optimal. I

NOTE. We write simply ‘‘optimal’’ in Theorem 5.5 because it is true for
any F.

COROLLARY 5.6. If TT contains two or more inequivalent treatment se-
quences, then there exists a universally optimal symmetric design, consisting

² : ² :of just two symmetry blocks, k and k , with sum of proportions P ,1 2 k i

1 F i F 2, given by

P s yqX a r qX a y qX a ,Ž . Ž . Ž .Ž .k k k k1 2 1 2

P s qX a r qX a y qX aŽ . Ž . Ž .Ž .k k k k2 1 1 2

5.20Ž .

Ž .and proportions p s P r t . If all treatment sequences in TT are equivalent,k k ki i i
² :that is, if TT s k , then there exists a universally optimal symmetric design

Ž .with common proportion p s 1r t .k k

Ž . Ž .PROOF. Equation 5.20 results from 5.19 when just two P ’s are nonzero.k

Ž .If TT consists of two symmetry blocks, then the derivatives in 5.20 are
automatically of opposite sign. Otherwise, choose k and k to be any1 2

X Ž .treatment sequences in TT such that q a have opposite signs. Ik i
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