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SIMULTANEOUS SHARP ESTIMATION OF FUNCTIONS
AND THEIR DERIVATIVES1

BY SAM EFROMOVICH

University of New Mexico

A data-driven estimate is given that, over a Sobolev space, is simulta-
neously asymptotically sharp minimax for estimating both the function
and its derivatives under integrated squared error loss. It is also shown
that linear estimates cannot be simultaneously asymptotically sharp mini-
max over a given Sobolev space.

1. Introduction. There are a number of reasons for wishing to estimate
both a function and its derivatives; for instance, first and second derivatives
may be of intrinsic interest as measures of slope and curvature. So far the
attention has focused on estimation where typically derivatives of a rate
optimal estimate are rate optimal estimates of the corresponding derivatives;

Ž .see, for instance, Stone 1982 as well as an interesting discussion in Rice and
Ž .Rosenblatt 1983 .

In this paper we consider the filtering statistical model where on the
� � Ž .interval 0, 1 we observe random processes Y t having stochastic differen-n

tial

1.1 dY t � f t dt � n�1�2 dW t , 0 � t � 1Ž . Ž . Ž . Ž .n

Ž .and W t is a standard Brownian motion. We assume that f is one-periodic,
� �including its � derivatives, and it belongs to the Sobolev class W Q � f :2

1� Ž� .Ž .�2 4 Žk .H f t dt � Q, � � 2, 0 � Q � � where f denotes the kth derivative0
and f Ž0. � f. Recall that the filtering model is equivalent to a density estima-
tion and a nonparametric regression where n is the sample size. Then,

Ž .Tsybakov 1997 has shown that the linear estimate

f̃ t , k , � , QŽ .n

Ž .��kŽk .ˆ� � � t � 1 � j�J n , k , � , QŽ . Ž .Ž .Ý0 0
Ž .1�j�J n , k , � , Q

1.2Ž .

ˆ Žk . ˆ Žk .� � � t � � � tŽ . Ž .ž /2 j�1 2 j�1 2 j 2 j
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is the asymptotically sharp minimax estimate of the kth derivative f Žk .; that
is, for any k � 0, 1, . . . , � � 1 the following relations hold:

21 Žk .˜sup E f t , k , � , Q � f t dtŽ . Ž .Ž .Hf n½ 5
� 0f	W Q2

1 2Žk .� inf sup E f t , k , � , Q � f t dt 1 � o 1Ž . Ž . Ž .Ž .Ž .Hf n½ 5
� 0f f	W Qn 2

1.3Ž .

� P � , Q, k n�2 Ž��k .�Ž2 ��1. 1 � o 1 .Ž . Ž .Ž .
' '� Ž . Ž . Ž . Ž . Ž .Here � t � 1, � t � 2 sin 2� jt and � t � 2 cos 2� jt , j �0 2 j�1 2 j

ˆ 14 � � Ž . Ž .1, 2, . . . is the classical trigonometric basis in L 0, 1 ; � � H � t dY t �2 j 0 j n
� � n�1�2� is the sample Fourier coefficient that estimates the Fourierj j

1 Ž . Ž . Ž .coefficient � � H f t � t dt, and � are iid standard normal; J n, k, � , Qj 0 j j
1�Ž2 ��1.� Ž .�2 � Ž .Ž . Ž .�1�Ž2 ��1. Ž .� n Q 2� � � k � 1 2� � 1 �2 � � k , and P � , Q, k

Ž .�1�Ž . Ž .�2Ž��k .�Ž2 ��1.Ž Ž ..Ž2 k�1.�Ž2 ��1.� 2k � 1 � � k �� � � k � 1 Q 2� � 1 .
The result shows that derivatives of the sharp minimax estimate

˜ Ž .f t, 0, � , Q are not sharp minimax estimates of the corresponding deriva-n
tives of f.

We show in the next section that the Efromovich�Pinsker data-driven
� Ž .�estimator Efromovich and Pinsker 1984 , which adapts to underlying f but

not to W �Q, is simultaneously sharp optimal. In Section 3 we show that a2
linear estimate cannot be simultaneously sharp minimax and therefore linear
estimates are outperformed by nonlinear ones. This is an interesting addition
to the known list of such examples because, for the Sobolev classes and mean
integrated squared error, a sharp minimaxity is the trademark of linear
estimates.

2. Simultaneously sharp estimate. Set
Ž .s s�1

ˆ ˆ ˆ ˆf t � � � � � � tŽ . Ž .Ý Ýn 0 s j j
1�10 Ž .Ž . j� s�1 s�11�s�n ln n

where
Ž .s s�1	̂ � 1�1 s �1�1 2 �1ˆ ˆ ˆ ˆ ˆ� � 	 	 � n I , 	 � 2 s � � nŽ . Ý ž /s s s s jnln s � 3Ž . Ž .j� s�1 s�1

Ž .and I 
 is the indicator function.

ˆTHEOREM 2.1. The data-driven estimate f is simultaneously asymptoti-n
cally sharp minimax for estimating f 	 W �Q and its derivatives, that is, for2
any k � 0, 1, . . . , � � 1,

21 Žk . Žk .ˆsup E f t � f t dtŽ . Ž .Ž .Hf n½ 5
� 0f	W Q2.1Ž . 2

� P � , Q, k n�2 Ž��k .�Ž2 ��1. 1 � o 1 .Ž . Ž .Ž .
The underlying idea of our estimate is as follows. We notice that for all k

ˆŽ .the minimax estimates 1.2 are linear in � with smoothing weights depend-j
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ing on k. However, if we consider the best smoothing pseudoweights, that
�may depend on f, then it is not difficult to show see the proof below or line

Ž .� 2 Ž 2 �1.3.1 that for all k they are the same and equal to � � � � n . Thus, aj j
simultaneously sharp pseudoestimate exists. Of course, we do not know f and
we cannot precisely estimate the optimal pseudoweights; therefore we employ

Ž .instead a procedure of Efromovich and Pinsker 1984 that mimics that
optimal pseudoweights via a special grouping Fourier coefficients.

PROOF OF THEOREM 2.1. First, direct calculation shows that the estimate

f̌ t , k , � , QŽ . .n

��kŽk .ˆ� � � t � 1 � s � 1 s�2 J n , k , � , QŽ . Ž . Ž .Ž .Ý0 0
1�2� Ž .�1�s� 2 J n , k , � , Q

Ž .s s�1
Žk .ˆ� � � tŽ .Ý j j

Ž .j� s�1 s�1

is also a sharp minimax estimate of f Žk .. Here we simply use the same
Ž .weights dependent on k for subsets of Fourier coefficients. Then the elemen-

Ž . 1�5 2Ž .tary facts that 2 J n, k, � , Q � n ln n for sufficiently large n and that
˜ 2 ˜ ˜2�Ž . 4 � 4 � 4E �� � � takes on its minimum value when � � E �� �E � imply thatf f

the pseudoestimate

Ž .s s�1
Žk . Žk .ˆ ˆ ˆ� 42.2 f t , k , � � � � t � � � � tŽ . Ž . Ž .Ž . Ý Ýn k s 0 0 k s j j

1�10 Ž .Ž . j� s�1 s�11�s�n ln n

Ž 2 2 . Ž Ž 2 �1. 2 .is also sharp minimax whenever � � Ý � � � Ý � � n � wherek s j k , j j k , j
�Ž . Ž .4hereafter the summation is taken over j 	 s � 1 s � 1, . . . , s s � 1 and

2 1� Žk .Ž .�2� � H � t dt.k , j 0 j
Ž .Now we would like to modify the pseudoestimate 2.2 in such a way that it

remains sharp minimax and its weights do not depend on k. Let us consider
Ž �1 . Ž .�1 sŽ s�1. 2weights � � 	 � 	 � n , 	 � 2 s Ý � in the hope that �s s s s j�Ž s�1.s�1 j s

Ž̂k . ˆŽ � 4. Ž � 4.are close to � for sufficiently large s. Note that f t, 0, � � f t, k, �k s n s n s
Ž .and therefore, to finish the proof, we need to establish two facts: i the

ˆ Ž � 4. Ž .pseudoestimate f t, k, � is sharp minimax; ii this pseudoestimate isn s
Ž̂k .Ž . Ž .well approximated in the minimax sense by f t . The latter fact is provedn

Ž .following along lines of the proof in Efromovich and Pinsker 1984 where the
case k � 0 is considered. We leave the details to the interested reader. The

Ž .fact in i is verified below.
It suffices to show that

21 Žk .ˆ � 4sup E f t , k , � � f t dtŽ .Ž .Ž .Hf n s½ 5
� 0f	W Q2

21 Žk .ˆ � 4� 1 � o 1 sup E f t , k , � � f t dt .Ž . Ž .Ž . Ž .Ž .Hf n k s½ 5
� 0f	W Q2

2.3Ž .
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Direct calculations, based on the Parseval identity, show that

21 Žk .ˆ � 4E f t , k , � � f t dtŽ .Ž .Ž .Hf n s½ 5
0

�2�1 �1 2 2 �1 2 2 �1� n � n 	 Ý � � n Ý � � 	 � nŽ .Ž . Ž .Ý s k , j j k , j s
1�10 Ž .1�s�n ln n

� 2 s 	Ž .Ý s
1�10 Ž .s�n ln n

� n�1 � � 2 n�1 2 s 	 � 	 � n�1Ž . Ž .Ý k , sŽ s�1. s s
1�10 Ž .1�s�n ln n

� 2 s 	 .Ž .Ý s
1�10 Ž .s�n ln n

On the other hand,

21 Žk .ˆ � 4E f t , k , � � f t dtŽ .Ž .Ž .Hf n k s½ 5
0

� n�1 Ý � 2 Ý � 2� 2 � Ý � 2 � n�1 � 2Ž . Ž . Ž .Ý ž /k , j j k , j j k , j
1�10 Ž .1�s�n ln n

� 2 s 	Ž .Ý s
1�10 Ž .s�n ln n

4 2 �1 �1� � �� n 2 s 	 � 	 � nŽ . Ž .Ý k , Ž s�1.s�1 k , sŽ s�1. s s
1�10 Ž .1�s�n ln n

� 2 s 	 .Ž .Ý s
1�10 Ž .s�n ln n

Ž .These two relations yield 2.3 . �

3. Linear estimates are not simultaneously sharp. The previous
section shows that the simultaneously sharp minimax estimation of a func-
tion and its derivatives is possible. On the other hand, the suggested estimate

Ž . �is nonlinear while the sharp minimax estimates 1.2 are linear of course, the
Ž . �parameters � , Q are assumed to be given for the linear estimates . We now

show that linear estimates cannot be simultaneously asymptotically sharp
minimax. Such an issue is of a special interest in the nonparametrics

Ž .literature; see, for instance, the discussion in Nemirovskii 1985 and Donoho,
Ž .Johnstone, Kerkyarcharian and Picard 1996 .

� Ž .THEOREM 3.1. Assume that f 	 W Q with a given � , Q , and let k and r2
be integer and 0 � k � r � � . Then there is no linear estimate that is simulta-
neously asymptotically sharp minimax for estimating f Žk . and f Žr ..
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Ž̂ � 4.PROOF. First, consider a subclass of smoothing linear estimates f t, � j
� ˆ Ž . � 4� Ý � � � t . Direct calculation shows that for m 	 k, r ,j�0 j j j

21 Žm. Žm.ˆE f t , � � f t dt� 4 Ž .Ž .H ž /f j½ 5
0

�
2 �1 2 2 �1� � n � � � � nŽ .Ý m j j j

j�0
3.1Ž .

2
2 2 �1 2 2 �1�� � � n � � � � � � n ,Ž . Ž .ž /m j j j j j

2 1Ž Žm.Ž ..2 Ž .2 m �where � � H � t dt 
 j � 1 . One can verify directly or refer tom j 0 j
Ž .�Tsybakov 1997 that for estimating the mth derivative, the sharp smoothing

Ž . 2 Ž 2 �1. � 2 4weights in 1.2 are equal to � � � � � � n where � �m j m j m j m j

Ž � 2 �1 2 Ž 2 �1.. Ž . Ž2 �arg max Ý � n � � � � n ; the right side of 1.3 i.e.,��� 4 : f 	 W ŽQ .4 j�0 m j j jj 2
. � 2 �1 2 Ž 2 �1.Ž Ž .. �the minimax risk is equal to Ý � n � � � � n 1 � o 1 . Thej�0 m j m j m j

Ž .analysis of these results reveals the familiar saddlepoint property of 3.1
�that is the key idea of the sharp minimax estimation. Also note that J 
 Jk r

Ž .and J � J ; here J is the shorthand for J n, m, � , Q .k r m
Thus, if a smoothing linear estimate is simultaneously sharp minimax

then

Jr
22 m 2 m�1 � 43.2 j � � � � o 1 J , m 	 k , r .Ž . Ž .Ž .Ý j m j r

j�1

On the other hand, direct calculation shows that for some c � 0,1

Jr
22 m 2 m�1 � 43.3 j � � � � c J , m 	 k , r .Ž . Ž .Ý k j r j 1 r

j�1

Thus, if a simultaneously minimax smoothing estimate exists then

Jr
22 r�1 2 rc J � j � � �Ž .Ý1 r k j r j

j�1

J Jr r
2 22 r 2Žr�k . 2 k 2 r�1� 2 j � � � � 2 J j � � � � o 1 J .Ž .Ž . Ž .Ý Ýj r j r j k j r

j�1 j�1

This contradiction proves the desired assertion for the smoothing linear
estimates.

ˆ ˆŽ . Ž . Ž � 4.An arbitrary linear estimate f t may be written as f t � f t, � �j
� ˆ � ˆ ˆ ˆŽ . Ž . Ž .Ý b � t � Ý � � � b � t where b is a linear combination of 1 andj�0 j j j�0 j j j j j

ˆ� 4� , l � j .l
Using the previous notation, let  be independent Bernoulli randomm j

variables that take on the values �� with equal probabilities. Then we usem j
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a traditional method of estimating a minimax risk from below by a Bayes risk
with � �  . Writej m j

21 Žm. Žm.ˆsup E f t � f t dtŽ . Ž .Ž .Hf ½ 5
� 0f	W Q2

� 2
2 ˆ ˆ� � E � � � b � Ý ž /½ 5m j j j j m j

j�0

� �2
2 2 2ˆ ˆ� � E � � �  � � E b½ 5Ý Ýž /½ 5m j j j m j m j j

j�0 j�03.4Ž .
� 2

2 ˆ� � E � � � Ý ž /½ 5m j j j m j
j�0

�
2 �1 2 2 �1� � n � � � � nŽ .Ý m j m j m j

j�0

2
2 2 �1 2 2 �1�� � � n � � � � � � n ,Ž . Ž .ž /m j m j j m j m j

ˆ �1�2 ˆŽwhere � �  � n � . To get the first equality, the independence of � �j m j j j j

ˆ ˆ. � 4� and b as well as the equality E � � �  � 0 have been used, andm j j j j m j
the last line has been obtained by a direct calculation.

Ž . Ž . 2The last line in 3.4 is identical to 3.1 with the minimax � in place ofm j
� 2; thus the general case is converted to the case studied above of thej
smoothing linear estimates. �
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