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RECOVERING EDGES IN ILL-POSED INVERSE PROBLEMS:
OPTIMALITY OF CURVELET FRAMES1

BY EMMANUEL J. CANDÈS AND DAVID L. DONOHO

Stanford University

We consider a model problem of recovering a function f (x1, x2) from
noisy Radon data. The function f to be recovered is assumed smooth apart
from a discontinuity along a C2 curve, that is, an edge. We use the continuum
white-noise model, with noise level ε.

Traditional linear methods for solving such inverse problems behave
poorly in the presence of edges. Qualitatively, the reconstructions are
blurred near the edges; quantitatively, they give in our model mean squared
errors (MSEs) that tend to zero with noise level ε only as O(ε1/2) as ε→ 0.
A recent innovation—nonlinear shrinkage in the wavelet domain—visually
improves edge sharpness and improves MSE convergence to O(ε2/3).
However, as we show here, this rate is not optimal.

In fact, essentially optimal performance is obtained by deploying the
recently-introduced tight frames of curvelets in this setting. Curvelets
are smooth, highly anisotropic elements ideally suited for detecting and
synthesizing curved edges. To deploy them in the Radon setting, we construct
a curvelet-based biorthogonal decomposition of the Radon operator and build
“curvelet shrinkage” estimators based on thresholding of the noisy curvelet
coefficients. In effect, the estimator detects edges at certain locations and
orientations in the Radon domain and automatically synthesizes edges at
corresponding locations and directions in the original domain.

We prove that the curvelet shrinkage can be tuned so that the estimator will
attain, within logarithmic factors, the MSE O(ε4/5) as noise level ε→ 0.
This rate of convergence holds uniformly over a class of functions which
are C2 except for discontinuities along C2 curves, and (except for log terms)
is the minimax rate for that class.

Our approach is an instance of a general strategy which should apply in
other inverse problems; we sketch a deconvolution example.

1. Introduction. Suppose we wish to recover an object f (t)—a function in
L2(Rd)—but we are able to observe data only about g(u)= (Kf )(u), where K is
a linear transformation, such as a Radon transform or convolution transform. Such
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linear inverse problems arise in scientific settings ranging from medical imaging
to physical chemistry to extragalactic astronomy. Moreover, we assume that the
data are noisy, so that we observe y(u) given by

y(u)= (Kf )(u)+ z(u), u ∈U,

where z is a noise (whether stochastic or deterministic, we do not as yet specify).
We are interested in recovering f from the data y. For definiteness, we use the
L2(Rd) norm ‖f̂ − f ‖2 to measure quality of recovery.

One’s first impulse might be to attempt the estimate f̂ =K−1y. However, in the
cases of most interest scientifically, K is not invertible, in the sense that K−1 does
not exist as a bounded linear operator; such inverse problems are called ill-posed.
For reviews of these concepts, see Bertero [1], O’Sullivan [55] and Wahba [64].

It is now standard to approach inverse problems by the method of regulariza-
tion [62], in which one applies, rather than K−1, a linear operator of the form
(KTK + λ�)−1KT . This typically produces a reconstruction in which certain
features of the original are “smoothed away.” This phenomenon is very evident
in imaging applications, such as medical and seismic, where often the reconstruc-
tions by the method of regularization are seen to be blurred versions of the origi-
nal.

This blurring phenomenon is particularly of concern when the underlying object
has edges and when the location and size of these edges are of central interest. Such
edge-dominated situations are relatively common in imaging applications, where
the edges signify boundaries between different parts of a scene or different layers
in the earth, or different organs in the body. It would be of interest to obtain sharper
reconstructions for objects with edges.

The phenomenon of blurring and the goal of edge recovery have been studied
by many researchers over the last few years; a partial listing of articles specifically
devoted to this theme would include [10, 14, 38, 39, 45, 58, 60, 61].

Many creative ideas have been brought to bear on this problem, including
Markov random fields, anisotropic diffusions, level-set methods, total variation
regularization methods and nonconvex optimization techniques.

Many of the cited articles propose heuristically valuable methods, which, when
applied to concrete imaging problems at currently practical scales of resolution
and noise, produce visually appealing results using currently available computing
resources. However, in our opinion, much of the cited work, though practically
valuable, lacks a theoretical perspective that would allow one to say that the
problem is really well understood. What are the ultimate limits of performance
in recovering objects with edges from indirect, noisy observations? What methods
can attain that performance?

In this article, we develop a theoretical perspective on these questions using
tools from harmonic analysis and statistical decision theory. We are able to
decompose the inverse problem in a new way and obtain insights about the degree
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of attainable performance which are quite different from those which might be
inferred from the literature cited above.

In this Introduction we develop the theme of decomposing an inverse problem,
both from a classical viewpoint and from a new viewpoint and discuss insights
derivable from these decompositions, leading up to a statement of our main results.
We hope that many readers will be able to follow us through the introduction, even
if later sections involve analysis of a type they do not intend to pursue in detail.

1.1. The SVD paradigm. It is now standard to decompose inverse problems
by singular value decomposition methods, defined as follows. We let ‖·‖2 stand
equally for the L2(dt) and L2(du) norms, and let 〈, 〉 and [, ] denote the
respective inner products. If K∗K is a compact operator we let (eν(t)) denote
its eigenfunctions, k2

ν its eigenvalues, and hν(u) the normalized image hν(u) =
(Keν)(u)/‖Keν‖ of these. If no kν is zero, we have the reproducing formula

f =∑
ν

k−1
ν [Kf,hν]eν.

A reconstruction rule may be based on this formula, and the idea that the
“important” coefficients 〈f, eν〉 occur early in the series. Then, picking weights wν
which are near 1 for small ν and near 0 for large ν we get a Windowed SVD
reconstruction formula:

f̂w =
∑
ν

wνk
−1
ν [y,hν]eν.(1.1)

Weights are chosen so that (wν/kν) ∈ �2. As the eigenvalues of the compact
operator K∗K tend to zero this weighting is necessary so that division by near-
zero elements does not prevent convergence of the series.

The windowed SVD method, at least theoretically, includes many other
approaches to inversion as special cases, simply by suitable choice of the window

function wν ; see [1] for example. Thus, if we pick wν = k2
ν

k2
ν+λ , we get the method

of regularization, and if we pick wν = (1− (1− µk2
ν)
m) we get the mth iterative

damped backprojection [1].
The singular system decomposition has led to applications in a variety of fields.

See Bertero, De Mol, and Pike [2] for a physics-oriented treatment, and Johnstone
and Silverman [42, 43] for a statistics-oriented example. In fact, the intensive work
by many researchers building an extensive edifice of SVD applications qualifies
the SVD as a paradigm for analyzing and solving linear inverse problems.

1.2. Limitations of SVD. Despite the great popularity of schemes based
explicitly or implicitly on SVD, the method suffers from performance limitations.
These are rooted in the fact that the basis functions (eν), (hν) derive from the
operator under study, not from the object to be recovered. Thus, if the same
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operator K occurs in two different fields of scientific inquiry, the basis functions
will be the same, even though the type of object to be recovered may be quite
different in the two fields. One can easily imagine that in one field of scientific
inquiry the f to be recovered could be very efficiently represented in terms of
the basis set used, while in the other area, the object is poorly approximated
by finite sums of basis terms eν even when a fairly large number of terms is
used.

Efficient representation of the object f by singular functions eν is essential.
Suppose that (for definiteness) the object is observed in white noise, so that the
observed singular coefficient obeys

[y,hν] = kνθν + εzν,
where (zν) is a Gaussian white noise sequence, ε is the noise level, and θν =
〈eν, f 〉 is the component of f in the direction eν . Then, if we use the best
window (wν) possible for the function under consideration we would have a mean-
squared error within a factor of 2 of∑

ν

min(θ2
ν , k

−2
ν ε2),(1.2)

which we take as a proxy for the difficulty in recovering f . This expression
shows that in order to have accurate reconstructions, it is important that there be
very few θν which are large, and that those which are large be located at those
components ν where kν is also large.

In short, even when the SVD window (wν) is chosen optimally for the specific
function at hand, it is necessary for the coefficients (θν) to have a certain
distribution of energy in the singular system basis. Otherwise, the windowed SVD
method will have poor MSE properties.

In many realistic examples one does not have the desired agreement between
the energy distribution of the object and the decay of the singular values. Suppose
we are considering a two-dimensional inverse problem involving deconvolution,
and suppose we impose circular boundary condition so that the singular functions
are known explicitly—they are sinusoids. Suppose that the object to be recovered
has a discontinuity along a smooth curve. Then its Fourier coefficients θν typically
decay as |ν| →∞ only like 1/|ν|3/2, which is rather slow; in consequence, the
expression

∑
ν min(θ2

ν , k
−2
ν ε2) will tend to zero slowly with ε.

This is a general phenomenon and continues outside the special case of
deconvolution. Whenever the object to be recovered has edges, and the SVD
has sinusoidal structure, SVD-based approaches, and cognate approaches such as
damped backprojection and the method of regularization, will have trouble.

In many typical cases, SVD-based methods are nearly optimal among linear
methods, so we can infer that if the SVD-based methods have poor MSE
properties, so will other linear methods.
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1.3. Ubiquity of edges. Objects with discontinuities along edges arise in many
important inverse problems arising in imaging applications.

For example, in seismic inverse problems, the object to be recovered represents
bulk material properties as a function of depth, and so can be expected to change
discontinuously across layer boundaries. Geophysicists have used “layer cake”
models of the earth with considerable success for many years.

In biomedical imaging, the object to be recovered might represent either the
material density or the metabolic activity as a function of space; discontinuities
represent changes in material–metabolic properties across organ boundaries.
Biomedical imaging researchers have used piecewise constant “phantoms” in
evaluating their imaging algorithms for years, with good success. They seem to
regard piecewise constant imagery as a reasonable starting model even today.

Notice that the typical model in such applications concentrates essentially all the
information in the edges, and yet such edge-dominated objects are precisely the
type causing problems for the standard SVD methods for reconstructing inverse
problems. This mismatch, as mentioned above, is at the source of a considerable
body of recent research.

1.4. An alternative strategy. The SVD focuses exclusively on properties of the
forward operator rather than the object to be recovered. In essence, it diagonalizes
the forward operator. There is an interesting alternative strategy. Using language
from harmonic analysis, which we will now begin to employ more and more
heavily, the strategy is to develop a new decomposition which is much better
adapted to the type of edge-dominated object we need to recover while providing
an almost diagonal representation of the operator. Below, we argue that such
a strategy may lead to algorithms which, for typical edge-dominated objects of
interest, enjoy dramatically lower MSE than the classical SVD approach.

In this article, we consider as a model problem a mathematical caricature of
image processing, the case where typical objects are functions of two variables
with discontinuities along edges and which are otherwise smooth. We develop
decompositions of both the inverse problem and the object to be recovered using
a newly developed tool: frames of curvelets. These new frames serve almost as well
as the SVD for diagonalizing the forward operator K of certain inverse problems,
while doing much better for representing objects with edges.

We consider specifically the problem of noisy Radon inversion where the data
are obtained in the so-called white noise model,

Y (dt, dθ)= (Rf )(t, θ) dt dθ + εW(dt, dθ).(1.3)

Here R denotes the Radon transform, taking functions f (x1, x2) on R2 into
functions (Rf )(t, θ) on R × [−π,π) formed by integration along lines of
codirection θ and distance t from the origin; W(θ, t) denotes a Wiener sheet
(i.e., the primitive of white noise); ε is a noise level and f is the object to be
recovered. For SVDs of the Radon transform, see [12, 35]. Over the last decade, the
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white-noise model has proven to be a fruitful theoretical tool. Although the model
is continuous and real data are typically discretely sampled, the asymptotic theory
deriving from the white-noise model has typically been found to lead directly to
comparable asymptotic theory in a sampled data model. Without belaboring this
point we can cite general theory [3, 54], examples of the very clean derivations of
optimal procedures possible in the white-noise model [16, 18, 20, 24, 27, 30, 41,
56, 57] and many successful applications of this principle to sampled data [17, 28,
29, 31–33, 54]. (We are of course aware of [34].)

For some readers this model may seem initially rather remote; they may be
helped by the observation that what it really says is: each integral

∫
ν(t, θ)Y (dt dθ)

of the observed data Y is normally distributed with mean
∫
ν(t, θ)f (t, θ) dt dθ and

variance ε2 ∫ ν(t, θ)2 dt dθ .
We develop an operator-biorthogonal decomposition of the Radon transform

based on curvelet frames. Using this decomposition, we propose a method
that yields dramatic benefits in asymptotic mean-squared error over previous
approaches, and in fact a near-optimality. In the remainder of the introduction we
develop further background for stating our result.

1.5. Objects with singularities along curves. Suppose we have an object f
supported in [0,1]2 which is smooth away from a discontinuity across a C2 curve.
It is well known that, in this setting, wavelets offer an improvement on traditional
representations like sinusoids, but wavelets are far from optimal.

To make this concrete, consider approximating such an f from the bestm-terms
in a Fourier expansion adapted to [−π,π ]2 (say). The squared error of such
an m-term expansion f̃ Fm would obey

‖f − f̃ Fm ‖2
2 �m−1/2, m→∞.(1.4)

For comparison, consider an approximation f̃ Wm from the bestm-terms in a wavelet
expansion; then

‖f − f̃ Wm ‖2
2 �m−1, m→∞,(1.5)

which is considerably better. However, from [21, 23, 26] we know that there exist
dictionaries of (nonorthogonal) elements, and procedures for selecting from those
dictionaries that will yield m-term approximations obeying

‖f − f̃ Dm ‖2
2 �m−2, m→∞.(1.6)

The relative disadvantage of Fourier and wavelets methods for purposes of
efficient representation has an immediate counterpart in solving inverse problems.
Suppose we have data from the Radon transform with white noise, (1.3), again
with a smooth f having a discontinuity along a generic C2 curve. If we apply the
SVD in this setting, we get the result

MSE(WINDOWED SVD, f )� ε1/2, ε→ 0.
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In recent work described further below, [18] proposed a wavelet-based method for
solving inverse problems of this kind, called the wavelet-vaguelette decomposition.
If we apply the WVD in this setting (see also Section 9 below) we get
an improvement over SVD,

MSE(THRESHOLDED WVD, f )� ε2/3, ε→ 0.

However, results farther below in this paper establish that the minimax mean-
squared error will in this setting be O(ε4/5−δ) for each δ > 0. Hence, when we
consider inverse problems involving otherwise smooth objects having discontinu-
ities along edges, a representation based on wavelets, though an improvement on
linear or SVD methods, is substantially suboptimal.

1.6. Sparse representations by curvelets. In recent work [8, 9], we introduced
tight frames of curvelets, systems with the following properties:

1. There is a collection (γµ) with µ running through a discrete index set M which
makes a tight frame for L2(R2). This means there is a reproducing formula

f =∑
µ

〈f,γµ〉γµ

and a Parseval-type relation,

‖f ‖2
L2(R2)

=∑
µ

|〈f,γµ〉|2.

2. The set M has a seven-index structure µ = (s, k1, k2; j, k; i, �, ε) to be
described below, whose indices include parameters for scale, location, direction
and microlocation.

3. The elements of the tight frame with substantial L2-norm obey a special
“anisotropic scaling law”: the width of the effective support of these elements
is effectively proportional to the length squared. The frame elements become
successively more anisotropic at progressively finer scales.

4. The number of distinct directions at a given scale grows as scale−1.

The last two properties are quite different from those of preexisting multiscale
representations such as wavelets, where the aspect ratios of basis–frame elements
remain fixed as one moves to finer scales and the number of distinct directions
remains fixed also.

The construction is briefly reviewed in Section 2 below. Details of the
construction and heuristic insights are provided in [8, 9].

Our motivation leading to this construction (and to the choice of name) was
the problem of representing otherwise smooth objects which have a discontinuity
along aC2 curve. In [8] it is shown that if f hasC2 smoothness away from a simple
discontinuity along a C2 curve, the curvelet coefficients αµ = 〈f,γµ〉 obey∑

µ

|αµ|p <∞
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for each p > 2/3. It follows from this and the tight frame property that for such f ,
m-term curvelet approximations f̃ Cm made using the m terms with biggest curvelet
coefficients obey, for each δ > 0,

‖f − f̃ Cm ‖2 ≤Cδm−2+δ, m→∞.
Comparing with the results (1.4)–(1.6) we see that m-term approximations in the
curvelet frame are almost rate optimal, and in fact perform far better than m-term
sinusoid or wavelet approximations, in an asymptotic sense.

1.7. Operator-biorthogonal curvelet decomposition. Obviously, the curvelet
representation is far more effective in representing objects with edges than
wavelets or more traditional representations. Interestingly, curvelets also afford
an almost-diagonal representation of the Radon operator, or equivalently its Gram
operator R∗R.

The operator-biorthogonal curvelet decomposition (BCD) has the following
ingredients, stated for a general operator K , of which the Radon operator R is
a particular case.

1. We start with (γµ) a curvelet tight frame for L2(dx1 dx2). This is intended to
play the part that was played in the SVD theory by the eigenfunctions (eν).
In short, curvelets are used in place of singular functions.

2. Based on the forward operator K and our choice of (γµ), we obtain
systems (Uµ) and (Vµ) in L2(dt dθ).

3. In fact the systems are generated according to the relations

Kγµ = κsVµ, K∗Uµ = κsγµ.
Here, the scalars κs are defined by certain scaling properties of the operator K ,
and are called quasi-singular values; in effect they normalize the functionsKγµ
and (K∗)−1γµ, so that the systems (Uµ) and (Vµ) obey ‖Uµ‖ � 1, ‖Vµ‖ � 1.

4. The systems (Uµ) and (Vµ) obey the generalized biorthogonality relations

[Uµ,Vµ′ ] = 2s
′−s〈γµ, γµ′〉.

5. The systems are frames: for (Uµ) we have(∑
µ

〈Uµ,g〉2
)1/2

� ‖g‖L2(dt dθ),

∥∥∥∥∥∑
µ

aµUµ

∥∥∥∥∥
2

≤ C‖(aµ)‖�2

and similarly for (Vµ).
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To summarize: the BCD may be viewed as an analog of the SVD in which
curvelets play the role of the eigenbasis eν and dual curvelets Uµ and Vµ play
the role of the dual functions hν and the κs play the role of approximate singular
values.

An immediate consequence of the BCD construction is the reproducing
formula,

f =∑
µ

[Rf,Uµ]κ−1
s γµ,(1.7)

which makes sense for every f which is a finite linear combination of γµ’s. This
shows that the curvelet coefficient 〈γµ,f 〉 can be obtained from noiseless Radon
data Rf by simply using the Uµ frame coefficient.

This formula directly associates behavior in the Radon domain with behavior
in the object domain. The Radon domain data are analyzed by a bank of
functions (Uµ) and each output coefficient scales a corresponding synthesized
behavior γµ in the object domain. Since the γµ correspond at fine scales to highly
localized directionally oriented elements, the formula may be said at fine scales
to be reading off the existence of edges at certain locations and orientations in the
object domain from behavior of the Radon transform.

1.8. Statistical estimation. In the reproducing formula (1.7), the κs in (1.7)
are tending to zero as s→∞, so the reproducing formula is very sensitive to the
presence of nonzero terms at large values of s. In particular, it would be rather
foolish to use this formula as is on inaccurate data. For dealing with noisy data,
we propose a rule of the general form

f̂ =∑
µ

δ([Y,Uµ]κ−1
s , ts)γµ,

where δ(·, t) is a scalar thresholding nonlinearity with threshold t , and ts are
appropriate scale-dependent thresholds.

This makes sense; because the curvelet transform has its big coefficients
at unpredictable locations (depending on the location of the edge curve), we
cannot say a priori where the “important coefficients” will be; therefore we apply
thresholding.

We are able to obtain the following result for Radon inversion in the white noise
model (1.3). Suppose that f is compactly supported and C2 smooth away from
a C2 curve. Then for each δ > 0,

MSE(THRESHOLDED BCD, f )=O(ε4/5−δ), ε→ 0.(1.8)

A heuristic explanation for the exponent 4/5 is given in Section 6 below.
As we have seen, linear SVD damping methods and nonlinear wavelet shrinkage

methods achieve MSE convergence rates O(ε1/2) and O(ε2/3), respectively. Thus
the curvelet-based approach to Radon inversion can substantially outperform
existing methods.
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In fact we obtain a stronger result, valid uniformly over a class of such f . The
proof is given in Section 7. It follows from a lower bound we develop in Section 8
that no measurable procedure can possibly achieve better than a result of order ε4/5

in this problem. The rate result (1.8) is therefore essentially unimprovable for
a class of otherwise smooth objects with edges.

1.9. Contents. Section 2 reviews the construction of curvelets. Section 3 con-
structs a stable biorthogonal decomposition of the Laplacian based on curvelets.
Based on this, Section 4 constructs the operator-biorthogonal decomposition of
the Radon transform. Section 5 interprets the resulting dual analyzing elements.
Section 6 gives a heuristic indicating why the 4/5 law may be expected to hold.
Section 7 gives the proof of our main result, a strengthening of (1.8). Section 8
proves that no result better than this can be expected, uniformly over a class of
objects with edges. Section 9 discusses generalizations, for example, to deconvo-
lution problems; we believe that results of the kind proved here hold for a wide
variety of inverse problems. It also points out that despite the existence of a rather
voluminous literature on “edge-preserving methods,” no previously known meth-
ods seem to approach the 4/5 law. Finally, proofs of key estimates supporting our
main result are given in Section 10.

2. Curvelet construction. We now briefly discuss the curvelet frame; for
more details, see [8]. The construction combines several ingredients, which we
briefly review.

1. Ridgelets, a method of analysis very suitable for objects which are discontinu-
ous across straight lines;

2. Multiscale ridgelets, a pyramid of analyzing elements which consists of
ridgelets renormalized and transported to a wide range of scales and locations;

3. Bandpass filtering, a method of separating an object out into a series of disjoint
scales.

We briefly describe each component in turn, and then their combination. There
is a difference between this construction and the one given in [8] at large scales.

2.1. Ridgelets. The theory of ridgelets was developed in the Ph.D. thesis of
Emmanuel Candès [5, 4]. In that work, Candès showed that one could develop
a system of analysis based on ridge functions

ψa,b,θ (x1, x2)= a−1/2ψ
(
(x1 cos(θ)+ x2 sin(θ)− b)/a).(2.1)

He introduced a continuous ridgelet transform Rf (a, b, θ)= 〈ψa,b,θ (x), f 〉 with
a reproducing formula and a Parseval relation. He showed how to construct frames,
giving stable series expansions in terms of a special discrete collection of ridge
functions. The approach was general, and gave ridgelet frames for functions
in L2[0,1]d in all dimensions d ≥ 2. For further developments, see [5–7].
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Reference [22] showed that in two dimensions, by heeding the sampling pattern
underlying the ridgelet frame, one could develop an orthonormal set for L2(R2)

having the same applications as the original ridgelets. The orthoridgelets are
indexed using λ = (j, k, i, �, e), where j indexes the ridge scale, k the ridge
location, i the angular scale, and � the angular location; e is a gender token.
Roughly speaking, the orthoridgelets look like pieces of ridgelets (2.1) which are
windowed to lie in discs of radius about 2i ; θi,� = �/2i is roughly the orientation
parameter, and 2−j is roughly the thickness.

Throughout the paper ξ ∈ R2 will index bidimensional frequencies and in the
frequency plane we will often make use of polar notation (ω, θ),

ξ(ω, θ)= (ω cosθ,ω sin θ), ω > 0, θ ∈ [0,2π).
A formula for orthoridgelets can be given in the frequency domain (the notation ·̂
is used for the Fourier transform)

ρ̂λ
(
ξ(ω, θ)

)= ω−1/2(ψ̂j,k(ω)wei,�(θ)+ ψ̂j,k(−ω)wei,�(θ + π))/2.(2.2)

Here the ψj,k are Meyer wavelets for R [49, 52], wei,� are periodic wavelets
for [−π,π), indices run as follows: j, k ∈ Z, � = 0, . . . ,2i−1 − 1; i ≥ i0, and, if
e = 0, i =max(i0, j), while if e= 1, i ≥max(i0, j); i0 is an arbitrary nonnegative
integer that we may take to be zero. Notice the restrictions on the range of i, �.
Let7 denote the set of all such indices λ. (For general information about wavelets,
see [51, 53].)

2.2. Multiscale ridgelets. Think of orthoridgelets as objects which have
a “length” of about 1 and a “width” which can be arbitrarily fine. The multiscale
ridgelet system renormalizes and transports such objects, so that one has a system
of elements at all lengths and all finer widths.

The construction begins with a smooth partition of energy function w(x1, x2)

≥ 0, w ∈ C∞0 ([−1,1]2) obeying
∑
k1,k2

w2(x1 − k1, x2 − k2)≡ 1. Define a trans-
port operator, so that with index Q indicating a dyadic square Q = (s, k1, k2)

of the form [k1/2s, (k1 + 1)/2s) × [k2/2s, (k2 + 1)/2s), by (TQf )(x1, x2) =
f (2sx1 − k1,2sx2 − k2). The multiscale ridgelet with index µ= (Q,λ) is then

ψµ = 2sTQ(wρλ).

In short, one transports the normalized, windowed orthoridgelet.
Letting Qs denote the dyadic squares of side 2−s , we can define the subcollec-

tion of monoscale ridgelets at scale s:

Ms = {
(Q,λ) :Q ∈Qs, λ ∈7}

.

It is immediate from the orthonormality of the ridgelets that each system of
monoscale ridgelets makes tight frame, in particular obeying the Parseval relation∑

µ∈Ms

〈ψµ,f 〉2 = ‖f ‖2
L2 .
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It follows that the dictionary of multiscale ridgelets at all scales, indexed by

M = ⋃
s≥1

Ms

is not frameable, as we have energy blow-up,∑
µ∈M

〈ψµ,f 〉2 =∞.(2.3)

The multiscale ridgelets dictionary is simply too massive to form a good analyzing
set. It lacks interscale orthogonality; ψ(Q,λ) is not typically orthogonal to ψ(Q′,λ′)
if Q and Q′ are squares at different scales and overlapping locations. In analyzing
a function using this dictionary, the repeated interactions with all different scales
causes energy blow-up (2.3).

The construction of curvelets solves this problem by in effect disallowing
the full richness of the multiscale ridgelets dictionary. Instead of allowing all
different combinations of “lengths” and “widths,” we allow only those where
width≈ length2.

2.3. Subband filtering. Our remedy to the “energy blow-up” (2.3) is to
decompose f into subbands using standard filterbank ideas. Then we assign one
specific monoscale dictionary Ms to analyze one specific (and specially chosen)
subband.

We define coronae of frequencies |ξ | ∈ [22s,22s+2], and subband filters Ds
extracting components of f in the indicated subbands; a filter P0 deals with
frequencies |ξ | ≤ 1. The filters decompose the energy exactly into subbands:

‖f ‖2
2 = ‖P0f ‖2

2 +
∑
s

‖Dsf ‖2
2.

The construction of such operators is standard [63]; the coronization oriented
around powers 22s is nonstandard and essential for us. Explicitly, we build
a sequence of filters :0 and ;2s = 24s;(22s ·), s = 0,1,2, . . . , with the following
properties: :0 is a lowpass filter concentrated near frequencies |ξ | ≤ 1; ;2s is
bandpass, concentrated near |ξ | ∈ [22s,22s+2] and we have

|:̂0(ξ)|2 +
∑
s≥0

|;̂(2−2sξ )|2 = 1 ∀ ξ.

Hence, Ds is simply the convolution operator Dsf =;2s ∗ f .

2.4. Definition of curvelet transform. Assembling the above ingredients, we
are able to sketch the definition of the curvelet transform. We let M ′ consist of M
merged with the collection of integral triples (s, k1, k2, e) where s ≤ 0, e ∈ {0,1},
indexing all dyadic squares in the plane of side 2s > 1.
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The curvelet transform is a map L2(R2) �→ �2(M ′), yielding curvelet coeffi-
cients (αµ :µ ∈M ′). These come in two types.

At coarse scales we have wavelet coefficients:

αµ = 〈Ws,k1,k2,e,P0f 〉, µ= (s, k1, k2) ∈M ′\M,
where each Ws,k1,k2,e is a Meyer wavelet, while at fine scale we have multiscale
ridgelet coefficients of the bandpass filtered object:

αµ = 〈Dsf,ψµ〉, µ ∈Ms, s = 1,2, . . . .

Note well that for s > 0, each coefficient associated to scale 2−s derives from the
subband filtered version of f—Dsf—and not from f .

Several properties are immediate:

1. Tight frame:

‖f ‖2
2 =

∑
µ∈M ′

|αµ|2.

2. Existence of coefficient representers (frame elements): there are γµ ∈ L2(R2)

so that

αµ ≡ 〈f,γµ〉.
3. L2 reconstruction formula:

f = ∑
µ∈M ′

〈f,γµ〉γµ.

4. Formula for frame elements: for s ≤ 0, γµ = P0φs,k1,k2 , while for s > 0,

γµ =Dsψµ, µ ∈Qs .(2.4)

In short, fine-scale curvelets are obtained by bandpass filtering of multiscale
ridgelet coefficients where the passband is rigidly linked to the scale of spatial
localization.

5. Anisotropy scaling law: by linking the filter passband |ξ | ≈ 22s to the scale of
spatial localization 2−s imposes that (i) most curvelets are negligible in norm
(most multiscale ridgelets do not survive the bandpass filtering Ds); (ii) the
nonnegligible curvelets obey length ≈ 2−s while width ≈ 2−2s . In short, the
system obeys approximately the scaling relationship

width≈ length2.

Note: it is at this last step that our 22s coronization scheme comes fully into
play;

6. Oscillatory nature. Both for s > 0 and s ≤ 0, each frame element has a Fourier
transform supported in an annulus away from 0.
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3. Powers of the Laplacian. It is well known that the Radon transform
is intimately involved with certain homogeneous Fourier multiplier operators
often called “fractional powers of the Laplacian.” In this section, we study the
decomposition of such operators by the curvelet frame.

Now the usual Laplacian > =∑2
i=1

δ2

δx2
i

corresponds to the Fourier multiplier

(>f )̂ (ξ) = −|ξ |2f̂ (ξ); it makes sense therefore to define the α-power of the
Laplacian by (

(−>)αf )̂ (ξ)= |ξ |2αf̂ (ξ).
Define now, for a curvelet γµ(x1, x2), two companions γ±µ (x1, x2) according to

γ±µ = 2∓s(−>)±1/4γµ,

where, of course, s refers to the scale index occupying the first slot (s, k1, k2, j, k, i,

�, e) in the curvelet index µ. Because γµ is effectively concentrated in the fre-
quency domain near |ξ | ≈ 22s , we have 22s|ξ | ≈ 1 through the bulk of the fre-
quency domain support of γµ and hence we anticipate ‖γ±µ ‖ ≈ ‖γµ‖.

THEOREM 1. The systems (γ+µ )µ∈M and (γ−µ )µ∈M are frames for L2(R2):
either ( fixed) choice of sign ± gives a system with �2 stable synthesis∥∥∥∥∥∑

µ

aµγ
±
µ

∥∥∥∥∥
2

≤ C
(∑
µ

a2
µ

)1/2

∀ (aµ) ∈ �2,(3.1)

and L2-norm equivalence∥∥∥∥∥∑
µ

〈f,γ±µ 〉
∥∥∥∥∥

2

� ‖f ‖2 ∀f ∈ L2(R).(3.2)

Moreover, the two systems are quasi-biorthogonal:

〈γ+µ , γ−µ′ 〉 = 2s
′−s〈γµ, γµ′〉, µ,µ′ ∈M,(3.3)

where 〈γµ, γµ′〉 is the reproducing kernel of the curvelet tight frame.

PROOF. We first consider (3.3). Passing to the frequency domain, we have∫
γ̂+µ (ξ)γ̂−µ′(ξ) dξ =

∫
2−s |ξ |1/2γ̂µ(ξ)2s′ |ξ |−1/2γ̂µ′(ξ) dξ.

Canceling the offsetting |ξ |-multipliers gives

〈γ+µ , γ−µ′ 〉 = 2s
′−s〈γµ, γµ′ 〉

and we note that 〈γµ, γµ′〉 = 0 unless |s − s′| ≤ 1, completing the proof of (3.3).
The rapid decay of the curvelet frame Gram matrix 〈γµ, γµ′〉 justifies the
terminology “quasi-biorthogonal.”
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We now turn to the norm equivalence (3.2). Let ŵs(ξ) be a real-valued smooth
radial window supported in ?s−2 ∪ · · · ∪ ?s+2 which is equal to one on ξ ∈
?s−1 ∪?s ∪?s+1. This implies that

ŵs(ξ)= 1 on supp(;̂2s),(3.4)

which will be crucial below. Let ws denote the inverse Fourier transform of ŵs .
Now define

fs =ws @ f,
which is a C∞ function, so that

hs = 2−s(−>)1/4fs
is well defined. We have the key identity

〈γµ,hs〉 = 〈c+µ,f 〉.
Moreover, if Ds denotes the bandpass operator introduced in Section 2,

‖Dshs‖2
2 =

∫
|;̂2s(ξ)|2|ĥs(ξ)|2 dξ

=
∫
|;̂2s(ξ)|2(2−s |ξ |1/2|f̂ (ξ)|)2

dξ

= 2−2s
∫
?s

|ξ ||;̂2s(ξ)f̂ (ξ)|2 dξ,
where in the first step we used (3.4), which gives

ŵs(ξ);̂2s(ξ)= ;̂2s(ξ), ξ ∈R2.

Now for constants ci > 0 not depending on s,

c1 min{|ξ | : |ξ | ∈?s} ≤ 22s ≤ c2 max{|ξ | : |ξ | ∈?s},
so that with constants not depending on s,

2−2s
∫
?s

|ξ ||;̂2s(ξ)f̂ (ξ)|2 dξ �
∫
?s

|;̂2s(ξ)f̂ (ξ)|2 dξ.
It follows that

‖Dshs‖2
2 � ‖fs‖2

2,

with constants not depending on s. Hence, with Ms the collection of µ with s in
the first slot, ∑

µ∈Ms

〈γ+µ ,f 〉2 =
∑
µ∈Ms

〈γµ,hs〉2

= ‖Dshs‖2
2

� ‖fs‖2
2,
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with the next-to-last step following by the tight frame property of γµ. Here the
constants of equivalence in the last step can be taken independent of s. The
result (3.2) now follows by summing across s.

There are two ways to prove the remaining assertion, (3.1). On the one hand,
one can proceed concretely, using arguments reminiscent of (3.2). On the other
hand, there is an abstract argument. For variety, we take the abstract approach.

It is known in the theory of frames that the stable synthesis property (3.1) (a.k.a.
Bessel property) follows from the L2-norm equivalence (3.2) (see [11] for details).
A general result in that theory says that if a general collection (ϕn) of L2 functions
obeys the norm equivalence ∑

n

|〈f,ϕn〉|2 � ‖f ‖2
2,

with positive constants not depending on f , then there exists a dual collection ϕ̃n
also with the property ∑

n

|〈f, ϕ̃n〉|2 � ‖f ‖2
2,

with implied constants not depending on f , and a reconstruction formula

f =∑
n

〈f, ϕ̃n〉ϕn,

with equality holding in the sense of unconditional L2 convergence of the
right-hand side to the left-hand side. Moreover, the dual collection ϕ̃n can be
chosen so that for any f ,

∑
n

|〈f, ϕ̃n〉|2 =min

{∑
n

|an|2, f =
∑
n

anϕn

}
.

In a moment we will see that the above equivalences imply∥∥∥∥∥∑
n

anϕn

∥∥∥∥∥
2

≤ C
(∑
n

|an|2
)1/2

;(3.5)

this will complete the abstract argument for obtaining (3.1) from (3.2). Let’s see
why (3.5) holds. For f =∑

n anϕn we have

‖f ‖ �
(∑
n

|〈f, ϕ̃n〉|2
)1/2

≤ min

{(∑
n

|a′n|2
)1/2

:f =∑
n

a′nϕn
}

≤
(∑
n

|an|2
)1/2

.
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The last step follows because, although there may be many ways to synthesize f
from appropriate coefficients (a′n), one particular way is given by the (an) (by
hypothesis). �

We make a useful remark about the regularity of the γ±µ :

LEMMA 1. The γ±µ are smooth and of rapid decay, together with all their
derivatives.

PROOF. By the explicit formula (2.4) we know that in the frequency domain,
the γ̂µ(ξ) are compactly supported in an annular region omitting the origin, and
are C∞. The γ̂±µ (ξ) are obtained by multiplication with a function that is C∞
away from the origin. Hence the support of the γ̂±µ is the same annulus as the
corresponding γ̂µ and on this support, by application of the Leibnitz rule, we can
obtain bounds on derivatives of all orders. These Fourier-domain conditions imply
corresponding space-domain conditions and prove the lemma. �

4. BCD for Radon transform. We now establish the existence of a biorthog-
onal decomposition of the Radon transform operator driven by the curvelet frame.
It is constructed in a fashion reminiscent of the WVD in [18], only using curvelets
in place of wavelets.

We begin by recalling to the reader’s attention the Radon isometry; see
Helgason [40].

For a smooth function f (x) = f (x1, x2) of rapid decay, let Rf denote the
Radon transform of f , the integral along a line L(θ,t), expressed using the Dirac
mass δ as

(Rf )(t, θ)=
∫
f (x)δ(x1 cos θ + x2 sin θ − t) dx,(4.1)

where we permit θ ∈ [0,2π) and t ∈ R. For more information about the Radon
transform see, for example, [13, 40]. Observe that the line L(θ,t) is identical to the
line L(θ+π,−t). As a result, Rf has the antipodal symmetry,

(Rf )(−t, θ + π)= (Rf )(t, θ).(4.2)

We let R denote the space of all functions in L2(dt dθ) with this symmetry.
Define now the operator �α for fractional differentiation of functions of a single

variable via

(�αf )(t)= 1

2π

∫ ∞
−∞

|ω|α/2f̂ (ω) eiωt dω,

with � short for �1. The Radon isometry is then defined by

R̃ = (�⊗ I ) ◦R;
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it can be well defined on L2 functions. On all such functions it is an L2 isometry,

[R̃f, R̃g] = 〈f,g〉,
thanks to the Fourier isometry 〈f̂ , ĝ〉 = (2π)2〈f,g〉. Moreover, R̃ maps the
C∞(R2) functions of rapid decay whose Fourier transforms vanish in the vicinity
of the origin into C∞(R× [0,2π)) functions of rapid decay in t .

THEOREM 2. Define systems (Uµ) and (Vµ) via Uµ = R̃γ+µ , µ ∈ M and

Vµ = R̃γ−µ , µ ∈M. These are frames for R ⊂L2(dt dθ): the system (Uµ) exhibits
the almost-orthogonality property∥∥∥∥∥∑

µ

aµUµ

∥∥∥∥∥
2

≤ C
(∑
µ

a2
µ

)1/2

∀a ∈ �2(4.3)

and the L2-norm equivalence property∑
µ

〈g,Uµ〉2 � ‖g‖2
L2(dt dθ)

∀g ∈R⊂L2(dt dθ)(4.4)

and similarly for (Vµ). The two systems are quasi-biorthogonal,

[Vµ,Uµ′ ] = 2s−s′ 〈γµ, γµ′ 〉, µ,µ′ ∈M.(4.5)

Put now κs = 2−s . Then R has a biorthogonal decomposition

Rf =∑
µ

〈f,γµ〉κsVµ(4.6)

and its adjoint R∗ has decomposition

R∗g =∑
µ

[g,Uµ]κsγµ.(4.7)

PROOF. Relations (4.3)–(4.5) are applications of Radon isometry. Con-
sider (4.3). The isometry combined with Theorem 1 gives∥∥∥∥∥∑

µ

aµUµ

∥∥∥∥∥
2

=
∥∥∥∥∥∑
µ

aµγ
+
µ

∥∥∥∥∥
2

≤ C
(∑
µ

a2
µ

)1/2

,

establishing the almost-orthogonality (4.3), with a similar argument for (Vµ).
Consider (4.5). Using the isometry property of R̃, we have

[Vµ,Uµ′ ] = [
R̃γ−µ , R̃γ+µ′

]
= 〈γ−µ , γ+µ′ 〉
= 〈γµ, γµ′ 〉 · 2s−s′,
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which gives (4.5).
Consider finally (4.4). For those g arising as R̃f , with f a finite sum of γ−µ ’s,

we have

∑
µ

[Uµ,g]2 =
∑
µ

[
R̃γ+µ ,

∑
µ′
αµ′R̃γ

−
µ′

]2

=∑
µ

〈
γ+µ ,

∑
µ′
αµ′γ

−
µ′

〉2

�
∥∥∥∥∥∑
µ′
αµ′γ

−
µ′

∥∥∥∥∥
2

L2(dx1 dx2)

= ‖g‖2
L2(dt dθ)

,

the first step by Radon isometry, the second step by (3.1), with constants of
equivalence not depending on g, and the final step by definition of g and Radon
isometry. As R can be shown to be the L2 closure of all finite sums of R̃γ−µ ,
(4.4) follows.

An alternative formula for the frames can be given. Start from the well-known
intertwining relation

R ◦ (−>)α = (�4α ⊗ I ) ◦R,(4.8)

exhibiting a relationship between fractional powers of the Laplacian in the
plane R2 and fractional differentiation along the t-direction in the Radon
domain [40]. Then we have

R̃γ+µ = 2−s(�⊗ I )R(−>)1/4γµ = 2−s(�2 ⊗ I )Rγµ, µ ∈M.

In short,

Uµ = 2−s(�2 ⊗ I )Rγµ, µ ∈M,

and similarly

R̃γ−µ = 2s(�⊗ I )R(−>)−1/4γµ = 2sRγµ, µ ∈M,

so that

Vµ = 2sRγµ, µ ∈M.

The operator decompositions (4.6) and (4.7) follow immediately. �

THEOREM 3. We have the reproducing formula,

f =∑
µ

[Rf,Uµ]κ−1
s γµ,(4.9)

valid for all f which are finite sums of γµ’s.
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PROOF. Using the intertwining relation (4.8) from the proof of Theorem 2,
one sees immediately that

[Uµ,Rf ] = κs[(�⊗ I ) ◦ R̃γµ,Rf ]
= κs[R̃γµ, (�⊗ I ) ◦Rf ]
= κs[R̃γµ, R̃f ]
= κs〈γµ,f 〉.

In short, the curvelet coefficients of f are available from the Uµ-based coefficients
of Rf . The relation (4.9) follows immediately. �

In short, f can be obtained from (noiseless, continuous) Radon domain
information. However, owing to the κ−1

s = 2s factor this is ill-posed.

LEMMA 2. The functions Uµ(t, θ) and Vµ(t, θ) are C∞ on R× [0,2π) and
of rapid decay in t .

For the proof, the argument is essentially the same as Lemma 1’s argument for
the regularity of γ±µ .

5. Geometry underlying the reproducing formula. The last section built
dual frames (Uµ) and (Vµ) for the Radon domain R ⊂ L2(dt dθ). These give
a new system of almost-orthogonal analysis and synthesis of “sinograms.” They
can be viewed as a new set of “features” in analysis of Radon data.

Because of their role in the BCD, they are the Radon-domain features that are
the most efficiently analyzed and detected by the methods we develop here. These
Radon-domain features are reminiscent of curvelets. They are, at fine scales, highly
localized and highly anisotropic.

The BCD associated these features in a one-to-one fashion with curvelets in
the original spatial domain, via the reproducing formula (4.9). Conceptually, the
reproducing formula performs a kind of edge detection in the Radon domain
noting the position and orientation, and the correspondence with curvelets in the
space domain allows reconstruction of specific edges at specific positions and
orientations in the original domain.

The correspondence between curvelets and dual curvelets as given in the re-
producing formula has, at fine scales, an explicit geometric description. Roughly
speaking, the curvelet localized near spatial position x0 and direction θ0 corre-
sponds to a dual curvelet localized in the Radon plane at (t0, θ0) and with direc-
tion τ0, where

t0(x0, θ0)= x0,1 cos(θ0)+ x0,2 sin(θ0)(5.1)
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FIG. 1. Correspondence between spatial domain and Radon domain. A curvelet localized near
x0 = (x0,1, x0,2) in the spatial domain and oriented in direction θ0, corresponds to a dual curvelet
localized near (t0, θ0) in the Radon domain oriented with slope u0. (τ0 is the direction, in radians,
corresponding to slope u0.)

and

τ0(x0, θ0)= tan−1[−x0,1 sin(θ0)+ x0,2 cos(θ0)].(5.2)

We illustrate this correspondence in Figure 1.
We state without proof a formal result about this correspondence.

DEFINITION (Joint localization in real space). Suppose we have a se-
quence (fn) of functions in L2(R2); we say that the joint location–orientation
of fn converges to (x0, θ0) if the space-support of fn converges to x0, in the sense
that for each m> 0,∫

|x − x0|m|fn|2(x) dx→ 0 as n→∞(5.3)

and if the direction support of fn converges to θ0, in the sense that for eachm> 0,
the Fourier-domain integral∫ 2π

0

∫ ∞
0

sin(θ − θ0)
2m∣∣f̂n(ξ(r, θ))∣∣2r dr dθ→ 0 as n→∞.(5.4)

DEFINITION (Joint localization in Radon space). Suppose we have a se-
quence (Fn) of functions in R ⊂ L2(dt dθ); we say that the joint location–
orientation of Fn converges to ((t1, θ1), τ1) if, when we take any smooth windoww
supported in the vicinity of (t0, θ0), and form the windowed extension to a function
on R2,

fn(x1, x2)=
{
w(x1, x2)Fn(x1, x2), (x1, x2) ∈ support(w),

0, else,
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the induced sequence (fn)⊂ L2(R2) has joint location–orientation converging to
x0 = (t1, θ1) and θ0 = τ1 in the sense of the L2(R2) definitions (5.3) and (5.4).

THEOREM 4. Choose a sequence µn = (Qn,λn) of curvelet indices so that

d(Qn, x0)→ 0, n→∞
and

d(2π�/2i, θ0)→ 0, n→∞.
Then:

(a) the joint location–orientation of γµn converges to (x0, θ0);
(b) the joint location–orientation of Uµn converges to ((t0, θ0), τ0), where t0,

τ0 are defined in (5.1) and (5.2).

6. Thresholding with noisy data. Suppose now that we observe Radon-
domain data according to the white-noise model (1.3). Our goal in this section
is to set up some basic terminology and point of view and to explain heuristically
the main stages leading to our main result.

6.1. Analysis of Radon data in white noise. Assume we have data (1.3). Define
empirical coefficients

yµ = [Y,Uµ] ≡
∫
Uµ(t, θ)Y (dt dθ).

These obey the Gaussian model

yµ = [Rf,Uµ] + ε[W,Uµ].(6.1)

Letting αµ denote the curvelet coefficient 〈f,γµ〉, then from the relation
[Rf,Uµ] = κs〈f,γµ〉 we can rewrite (6.1) as

yµ = κsαµ + εnµ,(6.2)

where κs denotes the quasi-singular value, αµ is the noiseless curvelet coefficient
from direct observation of f and nµ ∼ N(0,‖γ+µ ‖2

2) is a (non-i.i.d.) Gaussian
noise. In short, using the Uµ system turns a continuum white noise model into
a discrete sequence model.

Suppose now that we can construct an estimator α̂ = (α̂µ)µ for the sequence α.
Then for the function estimator f̂ = ∑

µ α̂µγµ we have, by the tight frame
property,

E‖f̂ − f ‖2
L2(R2)

≤E‖α̂ − α‖2
�2 .(6.3)

(This follows from completeness and the fact that ‖∑µ aµγµ‖2
2 ≤

∑
µ |aµ|2.)

In short, estimation error in the curvelet domain controls the estimation error in the
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original spatial domain. Our strategy is to exploit this fact, and develop estimators
in sequence space, knowing that comparable results follow in the continuum
model.

This model is similar to models studied in [18, 19, 25] which take the form

yµ = κsαµ + εzµ,(6.4)

where now zµ is a standard Gaussian white noise so that noise values zµ, zµ are
independent for µ %= µ′, and the noise is homoscedastic: Var(zµ) = Var(zµ′) for
all µ,µ′. In fact, arguments in [18, 19], combined with (6.3), show that, with
the proper recalibration using different ε in each of the two models, results on
estimation in the sequence space white-noise model (6.4) yield upper bounds on
estimation in the model (6.2). See also the discussion in [44].

6.2. Thresholding in the white-noise model. We now briefly mention some
existing work on thresholding which will help us to quickly get a rough idea of the
mean-squared error properties of thresholding estimators in the white-noise model.
The work in [15, 18, 19] suggests one construct estimators in model (6.4) using
simple level-dependent thresholding rules.

We begin with a useful heuristic hypothesis. We suppose for the moment that at
each level s:

1. There are effectively only Ms coefficients among the (αµ :µ ∈Ms) which can
possibly be nonzero. We suppose that Ms = O(2s). We will discuss the basis
of this heuristic in the next subsection.

2. The nonzero coefficients belong to a subset Ns of (αµ :µ ∈ Ms) which is
known a priori and whose cardinality Ns obeys Ns = O(24s). The basis of
this heuristic will also become apparent in a later section. We will refer to Ns
as the number of potentially nonzero coefficients.

To summarize, at each level s we have a subset Ns of Ns coefficients that can
potentially be nonzero out of which a maximum of Ms coefficients are effectively
nonzero. We do not know the location of the nonzero coefficients ahead of time.

Level-dependent thresholding rules take the form

α̂µ = δ(yµκ−1
s , ts), µ ∈M,

where ts is a level-dependent threshold. A choice which has been well studied in
the wavelet setting is to take the threshold at a given level of the expansion to
be a certain multiple of the standard error of the underlying statistic, the multiple
being determined by the logarithm of the number Ns of potentially nonzero terms
at that level of the expansion. This leads to the proposal

ts =
√

2 log(Ns)κ
−1
s ε.

The oracle inequality [25] gives for µ ∈Ns ,

E(α̂µ − αµ)2 ≤ (
2 log(Ns)+ 1

)(
min(α2

µ, κ
−2
s ε2)+ (κ−2

s ε2)/Ns
)
.(6.5)
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Of course, for µ ∈ Ms \ Ns , αµ is known to be zero and, hence, putting Ls =
(2 log(Ns) + 1), the oracle inequality (6.5) gives a total error (across all levels)
bounded by

E‖α̂ − α‖2
�2 ≤

∑
s

Ls

(
κ−2
s ε2 + ∑

µ∈Ms

min(α2
µ, κ

−2
s ε2)

)
.

Ignoring for the moment the logarithmic factorLs and the term ε2κ−2
s immediately

inside brackets, we focus attention on the expression∑
s

∑
µ∈Ms

min(α2
µ, κ

−2
s ε2).(6.6)

This acts as proxy for the mean-squared error of estimation of a threshold
estimator; in studies [25, 19] it has been shown that its behavior mimics, to within
logarithmic factors, the true mean-squared error of estimation.

6.3. Functions that are C2 away from C2 edges. We now formally specify
a class of objects with discontinuities along edges; our notation and exposition
are taken from [21, 26, 23]; related models were introduced some time ago in
the mathematical statistics literature by [47, 48]. It is clear that nothing in the
arguments below would depend on the specific assumptions we make here, but the
precision allows us to make our arguments uniform over classes of such objects.

A star-shaped set B ⊂ [0,1]2 has an origin b0 ∈ [0,1]2 from which every point
of B is “visible,” that is, such that the line segment {(1− t)b0+ tb : t ∈ [0,1]} ⊂ B
whenever b ∈ B . This geometrical regularity is useful; it forces very simple
interactions of the boundary with dyadic squares at sufficiently fine scales. We
use this to guarantee that “sufficiently fine” has a uniform meaning for every B of
interest.

We define STAR2(A), a class of star-shaped sets with 2-smooth boundaries, by
imposing regularity on the boundaries using a kind of polar coordinate system. Let
ρ(θ) : [0,2π)→ [0,1] be a radius function and b0 = (x1,0, x2,0) be an origin with
respect to which the set of interest is star-shaped. Define >1(x) = x1 − x1,0 and
>2(x)= x2 − x2,0; then define functions θ(x1, x2) and r(x1, x2) by

θ = tan−1(−>2/>1), r = (
(>1)

2 + (>2)
2)1/2

.

For a star-shaped set, we have (x1, x2) ∈ B iff 0 ≤ r ≤ ρ(θ). In particular, the
boundary ∂B is given by the curve

β(θ)= (
ρ(θ) cos(θ)+ x1,0, ρ(θ) sin(θ)+ x2,0

)
.(6.7)

Figure 2 gives a graphical indication of some of the objects just described.
The class STAR2(A) of interest to us can now be defined by

STAR2(A)=
{
B :B ⊂ [ 1

10 ,
9
10

]2
, 1

10 ≤ ρ(θ)≤ 1
2 , θ ∈ [0,2π), ρ ∈ HÖLDER2(A)

}
.
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FIG. 2. Typical star-shaped set and associated notation.

Here the condition ρ ∈ HÖLDER2(A) means that ρ is continuously differen-
tiable and

|ρ′(θ)− ρ′(θ ′)| ≤A|θ − θ ′|, θ, θ ′ ∈ [0,2π).
The actual objects of interest to us are functions which are twice continuously

differentiable except for discontinuities along edges ∂B of star-shaped sets. We
define C2

0(A) to be the collection of twice continuously differentiable functions
supported strictly inside [0,1]2.

DEFINITION. Let E2(A) denote the collection of functions f on R2 which are
supported in the square [0,1]2 and obey

f = f1 + f2 · 1B,(6.8)

where B ∈ STAR2(A), and each fi ∈ C2
0 (A). We speak of E2(A) as consisting of

FUNCTIONS WHICH ARE C2 AWAY FROM A C2 EDGE.

6.4. The 4/5 exponent: heuristic argument. We now consider the risk proxy
(6.6) more carefully.

We want to refine now our assumptions about the behavior of the curvelet
coefficients.

1. We recall the assumption Ms = O(2s). The underlying motivation is the fact
that a C2 curve of finite length intersects only O(2s) dyadic boxes of side 2−s .
The assumption is therefore effectively saying that, in forming the curvelet
coefficients, at most O(2s) of the dyadic squares Q ∈ Qs interact with the
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discontinuity, each one of those squares has only a few nonzero coefficients
and the coefficients from all other squares are trivial at fine scales.

2. We now estimate the size of the coefficients αµ. In essence, the underlying
curvelet frame elements are supported in a region of size 2−s by 2−2s . They are
L2-normalized, so that ‖γµ‖ ≤ 1. They therefore obey

‖γµ‖1 ≤ C2−3/2s ∀µ.
The function f is bounded, so that the nonzero coefficients obey

|αµ| ≤ ‖γµ‖1‖f ‖∞ ≤C′2−3/2s.

If we now consider a component of the sum (6.6) at one level s, we have∑
µ∈Ms

min(α2
µ, κ

−2
s ε2)≤Ms min(C2−3s ,22sε2)

≤ C′2s min(C2−3s,22sε2).

Now the right-hand side is largest when s takes the continuum value s∗ satisfying

C2−2s∗ = 23s∗ε2.

Simplifying matters so that C = 1, we have

2−s∗ = ε2/5.

Now the worst level s+ will occur at either &s∗' or (s∗); at this level∑
µ∈Ms+

min(α2
µ, κ

−2
s ε2)≤ C′′ε4/5.

We see that as the level s moves away from s+, the corresponding sum decays
rapidly, so that the sum across levels, (6.6), is bounded by C′′′ε4/5.

6.5. Necessary refinements. The above arguments give the central organiza-
tional ideas which drive our proof of the main result, but there are several ways
that they distort the situation.

1. The assumptions about the numberMs =O(2s) of coefficients that are nonzero
which are known to belong to a set Ns , known a priori, of cardinality Ns =
O(24s). This is not accurate, since strictly speaking there are a countable
number of nonzero coefficients associated with each level of the transform—
only most of these are very small compared to any realistic noise level.
A valid proof must articulate this fact mathematically and establish the needed
approximate notion to replace the assumptions on Ms and Ns .

2. The noise is heteroscedastic, which actually should be exploited, by using
a nonuniform threshold within each level.

3. The object is supported in a known region of the plane, which also should be
exploited in the thresholding scheme.
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7. Main result. We now formally define a curvelet-based reconstruction
method and state a result giving the 4/5 rate of convergence. To obtain a relatively
simple proof, we first modify the notion of curvelet expansion. We then deploy
this modified expansion in an estimation scheme based on applying threshold to
a subset of the noisy dual curvelet coefficients. We then give the basic analysis
supporting our theorem. Certain key estimates are relegated to the Appendix.

7.1. Inhomogeneous curvelet expansions. The curvelet frame as discussed so
far contains elements with support of all sizes, from the very coarse to the very
fine. This has been appropriate for developing theoretical decompositions of the
Laplacian and the Radon transform, because those operators possess a certain
scale-invariance. However, for imaging applications, there is generally a coarsest
scale in an image, of size comparable to the largest object in the image. We now
introduce a coarsest scale and form an inhomogeneous curvelet decomposition.

The inhomogeneous curvelets will be indexed by µ ranging through a set N
which we partition into two sets: N =N 0 ∪N 1, corresponding to coarse and fine
scales. For a fixed s0 ≥ 0, the fine scale coefficients are indexed by precisely the
same scheme as the previous curvelet expansion at all scales finer than s0,

N 1 = ⋃
s≥s0

Ms;

the coarse scale coefficients µ ∈ N 0 are modeled on the indexing of squares
Q(2s0, k1, k2) at scale 2s0 and can be thought of as pairs k = (k1, k2).

At coarse scales µ ∈N 0, the curvelet coefficients are defined by

αµ = 〈φ2s0,k1,k2,P2s0f 〉, µ ∈N 0,

where each φ2s0,k1,k2 is a Lemarié scaling function [49, 52]. Note that each scaling
function is nonoscillatory and that it is localized near a cube Q(2s0, k1, k2).

At fine scales µ ∈N 1, we continue as earlier, with curvelet coefficients simply
the multiscale ridgelet coefficients of the filtered object,

αµ = 〈Dsf,ψµ〉, µ ∈Ms, s = s0, s0 + 1, . . . .

In short, the inhomogeneous system differs from the earlier homogeneous
system only at coarse scales; it differs by collapsing a countable number of scales
s ≤ s0 into a single scale s0.

The collection of curvelets γµ resulting from our definition has been studied
in [8]; it still enjoys the tight frame property.

The arguments of Sections 3 and 4 do not carry through unchanged in the in-
homogeneous frame. The coarse scale elements in the inhomogeneous expansion
are not oscillatory. As a result, they do not remain in L2 under fractional integra-
tions. Hence, we cannot apply the full biorthogonal decomposition machinery of
Sections 3 and 4 in the inhomogeneous frame. For example, the companion γ−µ of
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a coarse-scale element γµ does not exist as an L2 function. However, the compan-
ion γ+µ does exist.

Fortunately, we are still able to construct an estimator. Indeed, for µ ∈ N 0

we still have the dual elements Uµ and Vµ and we have the inhomogeneous
reproducing formula

f =∑
µ

[Rf,Uµ]κ−1
µ γµ,

where the sum is over µ ∈N .
In fact, the exact transcription of Theorem 2 carries through word-for-word

in the inhomogeneous frame setting. So working in the inhomogeneous system
we still can obtain the curvelet coefficients from an appropriate analysis of the
noiseless Radon data.

The only difficulty is that while in the homogeneous setting all the Uµ and Vµ
were C∞ and of rapid decay in t , in the inhomogeneous setting the µ ∈ N 1

remain C∞ and of rapid decay, while the µ ∈ N 0 remain C∞ but are now of
relatively slow decay in t . In other words, there is no analog of Lemma 2 for the
coarse-scale elements µ ∈N 0.

7.2. Construction of N (ε). Our approach to reconstruction from the noisy
data will be to specify a collection N (ε) of potentially significant curvelet
coefficients, depending on the noise level, and estimate the coefficients in that
collection by thresholding, based on statistical significance; all other coefficients
will be taken as a priori insignificant, based on an analysis given below, and set to
zero.

An important feature of our expansion will be the idea that the coarsest scale s0
depends on the noise level. That is, we will actually be varying our inhomogeneous
expansion, with the coarsest scale becoming finer and finer as the noise level
becomes smaller.

ASSUMPTION (Coarse-scale dependence). The coarse scale of the inhomoge-
neous curvelet frame s0 = s0(ε) obeys

2−s0−1 ≤ ε2/15 ≤ 2−s0 .(7.1)

We note that in an asymptotic sense, this coarse scale is still very coarse
compared to the scale at which the action mainly takes place. By adopting this
notion of scale, we can work with a simply described collection N (ε) with simply
proved properties.

The underlying reason for our restriction (7.1) is the uncertainty principle,
which says that an object cannot be compactly supported in both space and
frequency. In this paper, we have elected here to work with bandlimited curvelets,
that is, with compact support in frequency. Therefore, at each scale there are
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infinitely many curvelets overlapping with the support of the object we wish
to recover and only a finite number of coefficients can a pirori be potentially
significant. In other words, the lack of perfect localization creates the need for
bookkeeping to keep track of presumably negligigible behavior in extreme spatial
positions; one needs repeatedly to establish decay estimates which verify that
behavior at such extremes is indeed negligible. It turns out that, at scales finer
than s0(ε), the degree of simultaneous localization allows us to greatly simplify
certain such bookkeeping arguments.

We would like to emphasize that the restriction (7.1) is merely a choice and is
by no means necessary. There are many other ways of defining a collection N (ε)

of potentially significant curvelet coefficients.
We partition N (ε)=N 0(ε) ∪N 1(ε) into coarse and fine scales, and we start

our description by considering coarse scale coefficients. Each coarse-scaleµ ∈N 0

is a pair (k1, k2).

DEFINITION [N 0(ε)]. We allow µ ∈ N 0(ε) if the associated dyadic square
Q=Q(s0, k1, k2) interacts with the unit square,

d(Q; [0,1]2)≤ 2−s0+1,

where d(·, ·) is the Hausdorff distance.

At the fine scales µ ∈ N 1 indices take the form (Q,λ), where the dyadic
square Q is identified by (s, k1, k2) with s refering to the scale index and k1, k2
to the location of Q, while the parameter λ = (j, k, i, �, e) indexes the ridgelet
transform.

DEFINITION [N 1(ε)]. We let µ ∈N 1(ε) if it obeys

(i) Localization in scale. For the scale index s,
1
2ε

2/15 ≤ 2−s ≤ ε2/5.(7.2)

(ii) Localization in space. For the spatial position Q,

d(Q, [0,1]2)≤ 2−s+1.

(iii) Ridgelet localization. For the ridgelet index λ= (j, k; i, �, ε):
(a) Localization in ridge scale. The ridge scale parameter j satisfies

j = {s − 2, s − 1, s, s + 1, s + 2, s + 3, s + 4}.
(b) Localization in angle. The angular scale parameter i satisfies

|i − j |< s.
(c) Localization in ridge location. The ridge location parameter k satisfies

|k| ≤ 2j+1.
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7.3. Properties of N (ε). Underlying our definition of N (ε) is the following
analysis.

THEOREM 5. (i) The size of neglected coefficients,

sup
f∈E2(A)

∑
µ/∈N (ε)

|αµ|2 ≤Cε4/5;(7.3)

(ii) the risk proxy,

sup
f∈E2(A)

∑
N (ε)

min(|αµ|2,22sε2)≤ Cε4/5;(7.4)

(iii) the number of processed coefficients. The cardinality Nε = #N (ε) obeys

Nε ≤ Cε−2.(7.5)

In short,

1. The size of the neglected coefficients obeys a 4/5 scaling law.
2. The risk proxy obeys a 4/5 scaling law.
3. The number of estimated coefficients grows polynomially in the inverse noise

level.

Each of these properties plays a key role below. Theorem 5 is proved in the
Appendix.

7.4. Definition of estimator. We now return to the estimation problem (6.1)
and (6.2) or equivalently that of estimating the inhomogeneous curvelet coeffi-
cients (αµ :µ ∈N ) from the sequence data

yµ = αµ + εκ−1
µ nµ,

where nµ is a (non-i.i.d.) Gaussian noise (E(nµnµ′) = [Uµ,Uµ′ ]; σµ = ‖γ+µ ‖2).
We recall that κµ = 2−s – ([Kf,Uµ] = κµ〈f,γµ〉) and that the σµ’s are uniformly
bounded. The same conclusion applies to coarse scale coefficients, µ ∈ N 0;
namely, κµ = 2−s0 and the σµ’s are uniformly bounded.

We estimate the coefficients αµ by a thresholding rule and construct an estima-
tor of the form

f̂ = ∑
N (ε)

α̂µγµ.

The thresholding is performed as follows. With the soft threshold nonlinearity
δ(y, t)= sgn(y)(|y| − t)+, we let Nε be the cardinality of the finite set N (ε) and
set thresholding parameter λ(ε) = ε√2 log(N(ε)). We think of this as a “small”
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multiple of the noise level ε; a statistically significant coefficient will be one which
exceeds this. We estimate individual coefficients by the rule

α̂µ =
{
δ(yµ,λκ

−1
µ σµ), µ ∈N (ε),

0, µ /∈N (ε).
(7.6)

In short,

1. The curvelet coefficients αµ in the “thresholding zone” N (ε) are estimated by
applying a scalar nonlinearity to the noisy coefficients yµ; and

2. All the other coefficients are estimated by zero.

7.5. Analysis of the estimator. Owing to the tight frame property, we have

E‖f̂ − f̂ ‖2
2 ≤E‖α̂µ − αµ‖2

�2
,

which allows us to shift attention to the coefficient domain. Considering first the
processed coefficients,µ ∈N (ε), and applying the oracle inequality (6.5), we have

E
∑
N (ε)

(α̂µ − αµ)2 ≤ (
1+ 2 log(Nε)

)(
ε2

∑
N (ε)

(
κ−2
µ σ 2

µ/Nε +min(α2
µ, ε

2κ−2
µ σ 2

µ)
))
.

Setting τ 2
µ = κ−2

µ σ 2
µ, and considering now all µ ∈N , the risk of the thresholding

rule (7.6) is hence bounded by

E‖α̂− α‖2
�2
≤ (

1+ 2 log(Nε)
)(
ε2τ̄ 2 + ∑

N (ε)

min(α2
µ, ε

2τ 2
µ)

)
+ ∑

N (ε)c

α2
µ,(7.7)

where τ̄ 2 is simply shorthand for {Nε}−1 ∑
N (ε) τ

2
µ. We now estimate systemati-

cally each component of this risk bound.
The term on the extreme right-hand side of (7.7) is controlled through

Theorem 5’s analysis of the size of neglected coefficients; by (7.3) it is O(ε4/5).
From that theorem’s analysis of the proxy risk (7.4) we have∑

N (ε)

min(α2
µ, ε

2τ 2
µ)≤Cε4/5.(7.8)

On the other hand, we have

ε2τ̄ 2 = ε2
∑
N (ε)

κ−2
µ σ 2

µ/Nε

≤ Cε2
∑
N (ε)

22s/Nε

≤ Cε2 sup
N (ε)

22s(7.9)

≤ Cε2ε−4/5 ≤ Cε6/5.(7.10)
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Here the key step was to invoke scale localization (7.2) at the third display (7.9).
Finally, counting the number of estimated coefficients crudely via (7.5) we have

log(Nε)=O(
log(ε−1)

)
.(7.11)

Applying now the estimates (7.3), (7.8), (7.10) and (7.11) to (7.7) gives the
following upper bound on the risk of the estimator (7.6):

E‖α̂− α‖2
�2
≤ C(log(ε−1)(ε6/5 + ε4/5)+ ε4/5)
≤ C log(ε−1)ε4/5.

(7.12)

This proves the main result of this paper, the following theorem.

THEOREM 6. Let f̂ be the shrinkage estimator f̂ =∑
µ α̂µγµ where α̂µ is

given by (7.6). Then

sup
E2(A)

E‖f̂ − f ‖2
2 ≤ C log(ε−1)ε4/5.(7.13)

7.6. Variations. Many variations on the estimation procedure are, of course,
possible. For instance, in practice, we may not want to threshold the coarse layer of
curvelet coefficients yµ,µ ∈ N 0(ε); for example, one might consider estimating
those αµ’s with

α̂µ =
{
yµ, µ ∈N 0(ε), µ ∈Kε,
0, µ ∈N 0(ε), µ /∈Kε,

for some strategic collection of pairs Kε . Estimators of this kind obey similar
bounds.

Because bounds similar to (7.7) exist for hard-thresholding rules, Theorem 6
continues to hold if one replaces the soft-thresholding nonlinearity δ(y,λ) by hard
thresholding η(y,λ)= y1{|y|≥λ}, with the same choice of thresholding parameter.

In addition, the authors are confident that further refinements would give
versions of Theorem 6 with sharper bounds. In particular, it seems plausible that
Hybrid-SURE estimation procedures [44] would allow removing the logarithmic
factor from the upper bound (7.13). Such refinements are, however, beyond the
scope of the present article.

8. Lower bounds. The behavior we have established for shrinkage of curvelet
coefficients is near-optimal as regards rate of convergence; no estimator can
achieve an essentially better rate uniformly over E2(A).

THEOREM 7. Let E2(A) be the collection (6.8) of objects which are C2 away
from a C2 curve. The minimax mean-squared error

M
(
ε,E2(A)

)= inf
f̂

sup
E2(A)

E‖f̂ − f ‖2
2
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FIG. 3. The hypercube construction. Here f0 is the indicator of the circular region; around this
region are m “bulges”; each bulge is disjoint from the other bulges and so the corresponding
indicators ψi,m are orthogonal in L2[0,1]2. Each combination of the circular region together with
a specific collection of bulges makes a specific image which belongs to E2(A); the 2m such images
can be viewed as a complete m-dimensional hypercube.

is bounded below by

M
(
ε,E2(A)

)≥ cε4/5(log ε−1)−2/5, ε→ 0.

As is standard in lower bounds, the proof relies on the construction of hyper-
cubes embedded in E2(A), and then considering the subproblem of estimation
when the object comes from one of the vertices of the hypercube. The problem of
estimation becomes simply the problem of determining which of the many vertices
of the hypercube may have generated the observed data; choosing the hypercube
in the appropriate way makes it very difficult to do so. From this lower bound
over the hypercube, it follows that no estimator can do very well in the original
problem of estimating an unknown f known only to lie in the larger class E2(A).
The hypercube construction itself is similar to constructions in [21, 23, 26]. See
Figure 3.

An important feature of our argument is the fact that, in an inverse problem
setting, the problem of inference about f necessarily involves inference about
a Normal mean in the presence of correlated noise.

8.1. Hypercubes. Let ϕ(t) be a real-valued function of real variable t having

compact support ⊂ [0,2π ] with ‖ d2

dt2
ϕ‖∞ = 1. With C the constant defining the

class E2(A), define the collection

ϕi,m(t)=Cm−2ϕ(mt − 2πi), i = 0,1, . . . ,m− 1.
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Fix an origin at (1/2,1/2) and define polar coordinates (r, θ) relative to this choice
of origin. Set r0 = 1/4 and set f0 = 1{r≤r0}. Consider the collection of functions

ψi,m = 1{r≤ϕi,m+r0} − f0.

These functions are disjointly supported on lens-shaped regions. They are
orthogonal and their common L2-norm can be calculated approximately; namely,

‖ψi,m‖2 � Cϕm−3/2, m→∞
with

Cϕ = ‖ϕ‖L1[0,2π ].
They generate a hypercube by the prescription

Hm =
{
h= f0 +

∑
i

ξiψi,m, ξi ∈ {0,1}
}
;

each vertex of the hypercube is the indicator of a blob with C2-smooth boundary,
a corrugated disk to which have been appended a certain number of lens-shaped
features.

Not only do the vertices h ∈Hm correspond to sets with C2-smooth boundaries,
each one actually obeys the quantitative restriction, h ∈ E2(A). More succinctly,
we have the embedding

Hm ⊂ E2(A).

Consider the same Radon inversion problem over the restricted function
class Hm. We have noisy data

Y (dt dθ)= (Rf )(t, θ) dt dθ + εW(dt dθ),
where now f ∈Hm and so difficulty of estimation is measured by

M(ε,Hm)= inf
f̂

sup
Hm

E‖f̂ − f ‖2
2.

From the setwise inclusion Hm ⊂ E2(A) we have the inequality at the level of
minimax risks

M
(
ε,E2(A)

)≥M(ε,Hm).(8.1)

The above argument works for any choice of m, and hence provides a range of
lower bounds. Below we will develop lower bounds on the minimax mean-squared
error M(ε,Hm), for certain m; these bounds take the form

M(ε,Hm)≥ Bm.(8.2)

Below, we will specialize to m=m(ε) satisfying

ε ∼ cm−5/2
√

log(m)(8.3)
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for an appropriate constant c. Specializing (8.2) to the choice m(ε) of (8.3) and
invoking (8.1) gives Theorem 7.

In deriving risk bounds on hypercubes, it is useful to note that, on the hypothesis
f ∈Hm, we can restrict our attention to estimators of the form

f̂ = f0 +
∑
i

ξ̂iψi,m.(8.4)

Indeed, let Pm denote the L2 projection on the smallest affine subspace containing
all such functions. Then since for f ∈Hm, Pmf = f we have

‖Pmf̂ − f ‖2
2 = ‖Pmf̂ − Pmf ‖2

2 ≤ ‖f̂ − f ‖2
2.

Hence the risk of a general estimator f̂ is greater or equal to that of a corresponding
estimator Pmf̂ , which of course can be written in the form (8.4).

Moreover, owing to the orthogonality of the ψi,m, we have that for estimators
obeying (8.4)

‖f̂ − f ‖L2 = ‖ξ̂ − ξ‖�2 .(8.5)

So the problem reduces to one of estimating ξ .
A further reduction is possible. Let now gi = Rψi,m denote the Radon-space

image of one of our hypercube generators ψi,m. Although the ψi,m are orthogonal
for L2(dx1 dx2), the gi are not orthogonal for L2(dt dθ) in general. However,
owing to the invertibility of the Radon transform, the gi ’s are linearly independent.
Let now Vm denote the affine space

Rf0 +
∑
i

θigi,

for arbitrary choices (θi). We note that, for any function ν(t, θ) which is L2(dt dθ)

orthogonal to Vm, the law of
∫
νY (dt dθ) is N(0,

∫
ν2 dt dθ) independently of ξ .

In short, the projection of the Radon data on the span Vm is sufficient for ξ .
Because of the linear independence of the gj ’s, the linear functionals [gj ,

f − Rf0] give a nondegenerate set of affine coordinates for f ∈ Vm. Consider
now projecting the Radon data onto the gj ’s:

Yj =
∫
gjY (dt dθ)−

∫
gjRf0 dt dθ.

The vector Y = (Yj ) gives a nondegenerate set of affine coordinates for the
projection of the Radon data on the space Vm. Hence, the vector Y = (Yj ) is
a sufficient statistic for the ξ ’s and we may restrict our attention to estimators
that are (possibly randomized) functions of Y alone. Now

Yj =
∑
i

[gj , gi]ξi + ε[W,gj ].
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In matrix notation, Y ∼ N(Gξ, ε2G) where G is the Gram matrix of the gi ’s;
that is, Gij = [gi, gj ]. Because the gi ’s are linearly independent, the matrix G
is invertible. Then define X = G−1Y . As Y is a sufficient statistic for the ξ ’s,
so is X and, hence, we may restrict our attention to estimators that are (possibly
randomized) functions of X alone.

Because of the risk isometry (8.5) the problem becomes to estimate, under
squared �2-norm loss, the mean ξ ∈ {0,1}m of a multivariate Gaussian vector from
X ∼N(ξ, ε2G−1).

The lemma in Section 8.2 gives a lower bound on the minimax risk for
estimating ξ , of the form

inf
ξ̂

sup
ξ∈{0,1}m

E‖ξ̂ − ξ‖2
2 ≥Bm,

with B an absolute constant. The condition for applying that lemma is that the
“noise level” in each coordinate is at least one, that is, each conditional Gaussian
law L(Xi |(Xj : j %= i)) has variance at least 1.

To check this condition, let V be the covariance matrix ofX, V = ε2G−1 and τ 2
i

be the conditional variance of Xi given the other coordinates

τ 2
i =Var(Xi |Xj , j %= i).

With this notation, we have

1/τ 2
i = (V−1)ii = ε−2Gii = ε−2‖gi‖2 = ε−2κ2

m, say,

where κm = ‖gi‖L2(dt dθ) is studied in Section 8.3.
Now if we take the smallest m so that

ε−2κ2
m ≤ 1,(8.6)

then we (just barely) achieve the desired noisiness in the conditional laws of X:
Var(Xi |Xj , j %= i)≥ 1. From Section 8.3, we have the asymptotic relation

κm ≤ cm−5/2
√

log(m), m→∞,
with c an absolute constant. From this we derive that an m(ε) obeying (8.3) gives
the required noisiness.

8.2. Bayes risk on hypercubes, dependent data.

LEMMA 3. Let π be the prior on θ ∈ {0,1} which puts equal probability on
both outcomes and let B be the Bayes risk of estimating θ from X ∼ N(θ,1).
Observe Y ∼N(θ,V ), θ ∈ {0,1}n, and suppose that τ 2

i = 1. Then

inf
θ̂

sup
θ∈{0,1}n

E‖θ̂ − θ‖2
2 ≥ Bn.
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PROOF. The proof of the lower bound follows an argument developed in [44].
The indicated minimax risk exceeds the Bayes risk of any particular choice of
prior π on θ ,

inf
θ̂

sup
θ∈{0,1}n

E‖θ̂ − θ‖2
2 ≥ inf

θ̂

EπE‖θ̂ − θ‖2
2.

Consider then the prior defined by setting the components θi to be independent, and
P (θi = 0) = P (θi = 1) = 1/2; we obtain a lower bound by calculating its Bayes
risk. (This is not necessarily the least-favorable prior, but this choice produces
lower bounds of the correct order.)

Let us introduce the random variables ξi defined by

ξi = θi + τ 2
i

{
V−1(Y − θ)}i .

From Y − θ ∼ N(0,V ), one easily deduces V −1(Y − θ) ∼ N(0,V−1) and,
therefore,

ξi − θi ∼ τ 2
i N

(
0, (V−1)ii

)= τ 2
i N(0,1/τ

2
i )=N(0, τ 2

i ).

In [44], the authors argue that the distribution of θi conditional on {Y, θj for j %= i}
is the same as that conditional on ξi . This is useful to bound the Bayes risk B(π)
from below:

B(π)=∑
i

E(θ̂i − θi)2

=∑
i

E
(
Var(θi |Y ))

≥∑
i

E
(
Var(θi |Y, θj for j %= i))

=∑
i

E
(
Var(θi |ξi)).

The result now follows from the definition of B . �

8.3. Norm estimates.

LEMMA 4. For κm = ‖gi‖,

κm �m−5/2(log(m)
)1/2

, m→∞.

PROOF. We begin the proof by observing that, for any ψi,m, there are
ellipses E and E ′, both with major and minor axes of sidelength∼m−1 and∼m−2,
respectively, such that

1E ≤ψi,m ≤ 1E ′ .
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Then the Radon transforms satisfy

R{1E } ≤ gi ≤R{1E ′ }.

Moreover, because of the geometric similarity of the support of ψi,m to the fixed
lens-shaped region {(

y,ϕ(y)
)

: 0≤ y ≤ 2π
}
,

we can arrange that the ratio of axis lengths for the inscribing and circumscribing
ellipses stays bounded independently of both i and m. We now calculate the size
of the bracketing Radon transforms.

We first remark that the Radon transform has the following natural covariance
property. Let U be an orthogonal matrix representing planar rotation by θ0 radians
and let b ∈R2. Then

R{f (Ux − b)}(t, θ)= R{f (x)}(t −UT b, θ − θ0).(8.7)

Using this, we reduce consideration to a standard ellipse E = {x2/a2+y2/b2 ≤ 1}.
We get

R{1E}(t, θ)= ab/σ (1− t2/σ 2)1/2, σ 2 = a2 cos2 θ + b2 sin2 θ.

This follows from the fact that the Radon transform of the unit disk g(x, y) =
1{x2+y2≤1} is given by

Rg(t, θ)= 2(1− t2)1/2

and a simple change of variable.

Now, take a = m−2, b = m−1 and let us calculate the L2-norm of R{1E }. We
have

‖R{1E }‖2
2 =

∫ 2π

0

∫ σm

−σm
(m−3/σm)

2(1− t2/σ 2
m)dt dθ

=m−6
∫ 2π

0
σ−1
m dθ

∫ 1

−1
(1− u2) du

∼m−5
∫ 2π

0
(m−2 cos2 θ + sin2 θ)−1/2 dθ

∼m−5 logm.

(8.8)

The desired conclusion follows from (8.8) and the invariance (8.7). �
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9. Discussion.

9.1. Deconvolution. So far, we have focused entirely on Radon inversion.
However, our approach is more general, able to give results for a range of inverse
problems. We briefly mention results for an inverse problem of deconvolution
which follow as corollaries of the results above.

Define the two-dimensional Bessel potential of order α, the kernel bα(x) with
Fourier transform

b̂α(ξ)= (1+ |ξ |2)−α/2, ξ ∈R2.

The Bessel operatorBα is the operator of convolution with bα: Bα = bα @f . Below
we will study an inverse problem based on this operator, but first we consider
the operator-biorthogonal curvelet decomposition of Bα . Recalling the general
definition given in Section 1.7, and applying it now in the case K = Bα , we can
see that all the required machinery works smoothly, producing a decomposition
with κs = 2−2αs for all s ≥ s0.

The key insight is that the Bessel potential operator has well-known connections
to the Riesz fractional integration operator

Iα(f )(x)= cα
∫

f (y)

‖x − y‖2−α dy,

where cα = Q(1−α/2)/(π2αQ(α/2)); compare [59]. In particular, the two kernels
behave comparably near the origin,

bα(x)∼ cα|x|α−2, |x| → 0.

More to the point, Bα behaves, at fine scales, like fractional integration of order α,
in the sense that, when applied to an oscillatory function ga,b(x)= g((x − b)/a)
with small a, we have

Bα(ga,b)≈ Iα(ga,b)
in various senses. Put another way, the frequency response of the fractional
integration operator Iα is exactly |ξ |−α while the frequency response of the Bessel
potential operator is (1 + |ξ |2)−α/2, evidently asymptotic to |ξ |−α as |ξ | → ∞.
The Bessel operator of order α principally differs from fractional integration of
order α at low frequencies, where it is far better behaved. This key distinction is
responsible for the fact that bα is of rapid decay as |x| → ∞, while the Riesz
kernel is of slow decay.

Now the fractional integration operator is precisely a (negative) fractional power
of the Laplacian: on nice functions f ,

Iα(f )= (−>)α/2f.
We recall the results of Section 3, which showed that curvelets provide a biorthog-
onal decomposition of >−α . Proceeding analogously, we can construct a pair of
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frames (γ Rµ) and (γ Sµ) which furnish a biorthogonal decomposition of the Bessel
operator Bα . Moreover, this works equally as well for the inhomogeneous curvelet
decomposition as for the homogeneous one. In what follows, we assume the inho-
mogeneous curvelet expansion.

Consider the two-dimensional inverse problem in white noise,

Y (dt)= (Bαf )(t) dt + εW(dt), t ∈R2,(9.1)

where, as in (1.3), f is a compactly supported function which is C2 away from
a C2 edge. In effect, the Bessel transform smoothes out the edges and otherwise
blurs the object.

Using the operator-biorthogonal decomposition of the Bessel kernel, we can
propose in the setting (9.1) to obtain noisy curvelet coefficients

yµ = κ−1
s 〈Y,γ Rµ〉,

and then to reconstruct f by the thresholding rule

f̂ = ∑
µ∈Nα(ε)

δ(yµ, tεκ
−1
s )γµ.(9.2)

For an arbitrary value of α > 0, one would use, here, a slightly different version
of our definition of “important coefficients” Nα(ε) introduced in Section 7.2 (see
below for details) and the same threshold tε , defined in the Radon case.

The reuse of the Radon concepts makes sense in the Bessel setting, at least if
α = 1/2. The Gram operator of the Radon transform is simply a fractional power
of the Laplacian; in fact,

R∗R = I1.

On the other hand, the Gram operator of the Bessel potential of order 1/2 is
precisely

B1/2B1/2 = B1.

Our earlier discussion supports a close quantitative similarity of the two opera-
tors I1 and B1 at fine scales. This similarity can also be seen as follows. We have
already seen, in Section 4, that there is a precise formal correspondence between
fractional integration of order 1/2 and Radon transform,〈

(−>)−1/4γµ, γ
+
µ′
〉= κs〈γ−µ , γ+µ′ 〉 = κs[Vµ,Uµ′ ] = [Rγµ,Uµ′ ].

At the same time, it is clear that, because of the similarity of (−>)−1/4 and the
Bessel potential of order 1/2 at high frequencies, we have the approximate relation〈

(−>)−1/4γµ, γ
+
µ′
〉≈ [

B1/2(γµ), γ
R
µ′
]

in various senses, where the approximation improves at successively finer scales.
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Recall that in our construction of N (ε) we consider only scales finer than
a certain cutoff s0(ε), and we let s0(ε)→∞ as ε→ 0. Notice that there is very
nearly an isometry between tail sections of the γ R

µ′ system and of the γ+
µ′ system.

It is apparent that, when α = 1/2, all relevant properties in the analysis of the
estimator (9.2) will be equivalent, to within bounded factors, to corresponding
properties derived in the Radon setting.

It is clear that all the quantitative asymptotics that were developed to study the
Radon case apply immediately to the estimator (9.2) in the case α = 1/2. In short,
we have:

1. A 4/5 law for the curvelet estimator. Suppose that f ∈ E2(A), and we have
to recover f from noisy Bessel data (9.1). For each δ > 0, the estimator (9.2)
obeys

E‖f̂ − f ‖2
2 ≤Cε4/5+δ, ε→ 0,

where C is the same for all f ∈ E2(A).
2. A 4/5 law for the lower bound. Precisely the same arguments used to

establish Theorem 7 will establish that, for all measurable functions of the
observations (9.1) and all δ > 0, we have

sup
E2(A)

E‖f̂ − f ‖2
2 ≥ cδε4/5−δ, ε→ 0.

3. A 2/3 law for wavelet-based approaches. The best thresholding estimator based
on wavelet–vaguelette decomposition obeys

sup
E2(A)

E‖f̂ − f ‖2
2 ≥ cε2/3, ε→ 0.

4. A 1/2 law for linear deconvolution approaches. The best linear estimator for
deconvolution obeys

sup
E2(A)

E‖f̂ − f ‖2
2 ≥ cε1/2, ε→ 0.

We summarize formally in the corollary.

COROLLARY 1. Consider the inverse problem of recovering an object f ∈
E2(A) from noisy blurred data (9.1), where α = 1/2. The method (9.2) achieves
essentially the optimal rate ε4/5 throughout E2(A), outperforming wavelets (which
achieve only the ε2/3 rate) and linear methods (which achieve only the ε1/2 rate).

Corresponding results can be expected to hold for other deconvolution problems
with different α. Of course such results would hold with different exponents
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than 4/5, 2/3 and 1/2. However, we suspect that an α-dependent coefficient
set Nα(ε) would be required for construction of an effective estimator. For
instance, if one defines the set of “important coefficients” Nα(ε) as in Section 7.2
with the sole modification that the scale index s is now restricted to the range

1
2ε

2/15 ≤ 2−s ≤ ε1/(3/2+2α), say.

Compare (7.2); then preliminary calculations show that our curvelet estimator
would achieve an estimation rate with exponent 2/(3/2+ 2α).

Exploring this more general situation seems an interesting project for further
research.

9.2. Generalization. The possibility of generalizing to deconvolution prob-
lems is no accident. In fact there is a general strategy for treating inverse prob-
lems, of which this article gives an example. The strategy can be formulated as
a slogan:

We seek to construct decompositions for the object and data domains
which almost diagonalize the Gram operator K∗K of K and which
almost optimally sparsify the typical object to be recovered. We then
exploit the new representations to address inverse problems with noisy
data.

In this setting, the Gram operator is a fractional power of the Laplacian and the
almost diagonality of the Gram operator is expressed by the frame bound results in
Sections 3 and 4. The optimal sparsity is expressed by the effectiveness of curvelets
at representing the object of interest with very few coefficients.

There are other examples of this high-level strategy at work: first, with
wavelets [18] and then with mirror wavelets [46]. We believe that many other
examples are possible.

9.3. A challenge. As indicated in the introduction, there is an extensive
literature on edge-preserving smoothing and edge-preserving deconvolution.
In fact the literature falling in these two categories is far too extensive for us to
give a satisfactory set of representative citations.

Much of the literature on this topic is purely methodological. Typical articles in
that literature construct computational methods which seem, on general grounds,
appropriate, and which exhibit numerous examples of subjectively “successful”
reconstructions in specific cases.

Here we have pursued a different strategy, of developing a theoretical model
and an optimality result for that model. To our knowledge, this is an innovation in
the area of edge preserving denoising–deconvolution.

We have heard, in conferences, oral presentations in which claims have
been aired to the effect that certain specific image processing algorithms offer
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“an optimal way of processing images.” For example, such claims have been given
in oral presentations in connection with total-variation based image processing
methods. Such claims would require the development of statistical–mathematical
models similar to ours and some careful analyses establishing some kinds of
statistical–mathematical optimality. We are not aware, however, of efforts in
this direction. Moreover, we believe that in the model we are considering, such
optimality claims for preexisting methods would be false. For example, we believe
that in the setting of Radon inversion discussed here, the method of regularized
inversion based on total-variation penalization, properly translated into this setting,
would not achieve the optimal rate 4/5.

Our results pose an implicit challenge to all the existing methodological work,
which we now make explicit.

CHALLENGE. Prove or disprove that existing methods of edge-preserving
recovery achieve or do not achieve the optimal rates we have identified in this
article.

This would require a major initiative, subjecting a large body of methodological
efforts at edge-preserving reconstruction to a mathematical performance standard.

This initiative is important because, although the major developers of edge-
preserving technology may project a great deal of confidence in their tools,
we believe that the full story may be considerably different than they imagine.
We know of no evidence to suggest that existing proposals for edge-preserving
methods achieve optimal rates, and we believe there is good reason to believe that
they do not. In particular, we don’t believe that total variation penalization can
achieve the optimal rate 4/5 in this setting; instead we consider it likely that it
achieves at best the 2/3 rate of wavelet-based methods in this setting.

Our beliefs are based on mathematical structures underlying the main results
of this paper. The method proposed here deploys a system of anisotropic
elements to achieve a certain performance upper bound. The matching lower
bound also employs anisotropic elements. We believe that the appearance of
similar anisotropic features in both lower bounds and upper bounds points to a
fundamental correctness or well adaptedness of the approach.

In common sense terms, we have shown that one can reconstruct an edge
accurately using a very anisotropic smoothing mechanism, analogous to having
an elongated kernel oriented precisely along the edge and having dimensions
scaling like � by �2. We have shown that a very challenging case for reconstruction
is to build a family of images, all depicting the indicator of a set, and all differing
from each other by the appending or excising of certain elongated regions of size �
by �2.

This suggests to us the strong possibility that a method achieving the optimal
rate must be based on a particular kind of adaptive anisotropic smoothing. Indeed,
elementary calculations show that if we simply consider the special system
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constructed for the lower bound, and consider spatially variable kernel methods
properly aligned with the edge but not scaled according to the width = length2

principle, for example obeying width= length, the performance achieved will not
scale as 4/5.

In the existing literature on edge-preserving reconstruction we have never
encountered anisotropic smoothing consistent with the scaling law width =
length2. Instead, when anisotropy is invoked, it is largely the very weak kind
of anisotropy where one axis of a filter kernel is slightly amplified in length
compared to the other. From the viewpoint of the asymptotics we discuss here, such
anisotropy is rather weak, and cannot substantially improve rates of convergence.

Given the great deal of interest in nonlinear edge-preserving image processing
methods, the issue raised above would seem to be a vital next question.

APPENDIX: PROOF OF THEOREM 5

We collect here various estimates which establish the conclusions of Theorem 5.

A.1. Size of neglected coefficients. We begin by establishing (7.3). In the
subsections below, we establish three inequalities, (A.1), (A.5) and (A.7), each of
which bounds the sum of squares of the neglected coefficients in a certain subset
of N (ε)c . Each of these bounds is uniform over E2(A) and is of size Cε4/5. The
three subsets combine to cover N (ε) completely. Hence we conclude

sup
f∈E2(A)

∑
µ/∈N (ε)

|αµ|2 ≤ Cε4/5,

which is (7.3).

A.1.1. Localization in scale. We now show that, with a fine scale cutoff sε
satisfying 2−sε ≤ ε−2/5, the sum of squares at all finer scales obeys∑

s>sε

∑
µ∈Ms

|αµ|2 ≤ Cε4/5.(A.1)

The sum in question can be reexpressed according to∑
s>sε

∑
µ∈Ms

|αµ|2 =
∑
s>sε

‖Dsf ‖2
2,(A.2)

whereDs is the passband filtering operator. The lemma immediately below implies
that this last sum is bounded by C2−2sε , and since 2−sε ≤ ε2/5, this yields (A.1).
It remains to state and prove the lemma.

LEMMA 5.

sup
f∈E2(A)

‖Dsf ‖2
2 ≤ C2−2s .(A.3)
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PROOF. Consider a standard two-dimensional wavelet basis φj,k1,k2,e using
smooth wavelets of compact support and three vanishing moments. We will
estimate the number and size of coefficients 〈f,φj,k1,k2,e〉 at level j . For each
wavelet at scale j which intersects the support of the edge curve, the coefficient
obeys an amplitude bound a0,j = C2−j . There are at most n0,j = C2j such
coefficients. For every wavelet which does not intersect the edge curve, the
coefficient obeys an amplitude bound a1,j = C2−3j and there are at most n1,j =
C22j such coefficients which intersect the support of f at all. We conclude that
the sum of squares of the wavelet coefficients at level j is at most∑

k1,k2,e

〈f,φj,k1,k2,e〉2 ≤ n0,jA
2
0,j + n1,j a

2
1,j ≤ C2−j , j ≥ j0.

We note that this is uniform over all members f ∈ E2(A), because of the uniform
control that such membership brings on the size of f and its derivatives, and also
the length of the edge curve.

Now a standard principle of Littlewood–Paley analysis [37, 52] is that the sum
of squares of wavelet coefficients at level j is equivalent, within fixed constants,
to the squared L2 norm of a single-octave bandpass filter with passband centered
at frequency 2j .

Now Ds is a double-octave passband filter with passband centered at fre-
quency 22s . We conclude that the squared L2 norm of Dsf is at most a constant
times 2−2s . We note that, because the estimate on the norm of the wavelet coeffi-
cients was uniform over all f ∈ E2(A), so is the estimate on the passband norm.
Then (A.3) follows. �

A.1.2. Localization in space. We now show that at scales coarser than the
fine-scale cutoff, we may neglect the squares Q separated from the support cube
of f , Q0 = [0,1]2, with total neglected coefficient energy bounded by Cε4/5.

Recall that the curvelet coefficient αµ at µ= (Q,λ) is given by

αµ = αQ,λ = 〈wQ(Dsf ), ρQ,λ〉,
where Ds is the operator of convolution by 24s;(22s ·). If the bandpass kernel ;
were compactly supported then wQ(Dsf ) would be identically zero for any Q
such that d(Q,Q0) ≥ C2−s . In that case, all curvelet coefficients associated to
such squares would vanish and there would be really nothing to prove.

However, in our definition of the curvelet transform, we chose the bandpass
filter kernel; to be compactly supported in frequency (and therefore not in space).
As a consequence, Dsf is in general not compactly supported but only rapidly
decaying away from the unit square. We must therefore estimate the energy content
of such a decaying object in squares which are not neighboring to Q0. The central
point is that the squares are of side 2−s while the decay is happening on the
scale 2−2s . Therefore at fine scales, by the time the function is at least one square
away from Q0, it is extraordinarily small.
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The following lemma is well known in classical analysis; we use it below and
prove it here for the convenience of statisticians and perhaps others.

LEMMA 6. Let g : Rn→R be an arbitrary function such that for somem> 1,
we have

|g(x)| ≤ Cm(1+ |x|)−m,
for some constant Cm and let ga,b be the dilated translation of g defined by
g((x − b)/a). Then, there is a constant C′m such that∣∣∣∣∫

Q0

f (x)ga,b(x) dx

∣∣∣∣2 ≤ C′ma−1(1+ ad(b,Q0)
)−2m+1‖f ‖2

2.(A.4)

PROOF. Letting Ia,b ≡ ∫
Q0
f (x)ga,b(x) dx, we have

|Ia,b| ≤
∫
Q0

|f (y)|Cm(1+ a|y − b|)−m dy

≤
(∫

Q0

|f (y)|2 dy
)1/2(∫

Q0

C2
m(1+ a|y − b|)−2m dy

)1/2

.

Now since |y − b| ≥maxi |yi − bi| we have

(1+ a|y − b|)−2m ≤min
i
(1+ a|yi − bi|)−2m.

Hence for i = 1, . . . , n,∫
Q0

(1+ a|y − b|)−2m dy ≤
∫ 1

0
(1+ a|yi − bi|)−2m dyi

≤ Ca−1(1+ ad(bi, [0,1]))−2m+1
.

On the other hand,

max
i
d(bi, [0,1])≥ d(b,Q0)/

√
n,

which implies∫
Q0

(1+ a|y − b|)−2m ≤ Ca−1(1+ ad(b,Q0)
)−2m+1

.

Then (A.4) follows. �

The rapid decay of ; implies that for each m ≥ 0, there is a constant Cm such
that

|;(x)| ≤ Cm(1+ |x|)−m,
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and obviously |;2s(x)| ≤ Cm24s(1+ 22s |x|)−m. From

(Dsf )(x)=
∫
Q0

f (y);2s(x − y) dy,
we see that Lemma 6 gives the existence of a constant C so that

|Dsf |(x)≤ C23s(1+ 22s d(x,Q0)
)−m+1/2‖f ‖2.

It follows that on x ∈Q,

|Dsf |(x)≤C23s(1+ 22s d(Q,Q0)
)−m+1/2‖f ‖2,

and so, from ‖wQ‖L2 ≤ C2−s ,

‖wQDsf ‖2
2 ≤C24s(1+ 22s d(Q,Q0)

)−2m+1‖f ‖2
2.

This bound, which holds with a constant C depending only on m, expresses the
exceptionally fast decay of the size of Dsf as Q moves away from Q0.

Let now Q′
s denote the collection of squares at scale s obeying d(Q,Q0) ≥

2 · 2−s . Then because the ridgelets ρλ are orthonormal, we can calculate the norm
of the corresponding curvelets associated to a squareQ from the norm of the object
wQDsf , ∑

λ

|αQ,λ|2 = ‖wQDsf ‖2
2.

Hence the norm of the neglected coefficients at scale s obeys∑
Q′
s

∑
λ

|αQ,λ|2 =
∑
Q′
s

‖wQDsf ‖2
2

≤ C24s
∑
Q′
s

(
1+ 22s d(Q,Q0)

)−2m+1‖f ‖2
L2 .

NowQ=Q(s, k1, k2) can be reparametrized in terms of k1 and k2, and we have
Q ∈Q′

s only if (k1, k2) /∈K , where

K = {(k1, k2) :−1≤ ki ≤ 2s}.
Define the slightly smaller index set

K0 = {(k1, k2) : 0≤ ki < 2s}.
We note that for Q ∈Q′

s ,

d(Q,Q0)≥ c2−sd((k1, k2),K0
)
,

and that for all sufficiently large m,∑
k /∈K

d
(
(k1, k2),K0

)−2m
<∞.
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It follows that for such m, there is Cm with

24s
∑
Q′
s

(
1+ 22s d(Q,Q0)

)−2m+1 ≤ Cm2−s(2m−5).

We conclude ∑
Q′
s

∑
λ

|αQ,λ|2 ≤ Cm2−s(2m−5)‖f ‖2
2.

Summing now across s ≥ s0(ε), we get, with 2m− 5≥ 6,∑
s≥s0

∑
Q′
s

∑
λ

|αQ,λ|2 ≤ Cmε4/5‖f ‖2
2,(A.5)

where we used (7.1) to obtain∑
s≥s0(ε)

2−6s ≤ C2−6s0(ε) ≤ Cε4/5.

A.1.3. Ridgelet localization. We have just considered the collection Q′
s of

squares Q far from Q0. We have shown that at scales s ≥ s0 the combined energy
in all coefficients from squares in Q′

s obeys the 4/5 law. It remains to consider
squares close to Q0 and show that, while some coefficients may be large, the
energy of excluded coefficients also obeys the 4/5 law.

In the next two sections we develop a series of lemmas providing inequali-
ties (A.8), (A.9) and (A.20) which imply the following.

COROLLARY 2. Let 7s be collection of ridgelet indices λ = (j, k; i, l, e)
obeying:

(i) |j − (s + 1)| ≤ 3,
(ii) |i − j |< s and

(iii) |k| ≤ 2j+1.

For each m ≥ 0, there exists a constant Cm such that keeping those λ’s in 7s
results in an error bounded by∑

λ/∈7s
|αQ,λ|2 ≤ Cm2−2sm‖Dsf ‖2

2.(A.6)

We now show that using this estimate and considering all squares near Q0, we
obtain the 4/5 law. The relevant collection Qs \Q′

s of squares Q s.t. d(Q,Q0) <

2−s+1 has, say, Ns squares; note that Ns ≤ 22s + 2s+3. Hence from (A.6),∑
Q∈Qs\Q′

s

∑
λ/∈7s

|αQ,λ|2 ≤
∑

Q∈Qs\Q′
s

Cm2−2sm‖Dsf ‖2

= Cm2−2sm‖Dsf ‖2
∑

Q∈Qs\Q′
s

1

≤ Cm2−2s(m−2)‖Dsf ‖2.
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For instance, take m= 4 in (A.6). With this choice of m we have∑
Q∈Qs\Q′

s

∑
λ/∈7s

|αQ,λ|2 ≤ C2−4s‖Dsf ‖2 ≤ C2−6s .

Therefore, since we set 2−6s0 ∼ ε4/5, we have∑
s≥s0

∑
Q∈Qs\Q′

s

∑
λ/∈7s

|αQ,λ|2 ≤C2−6s0 =Cε4/5.(A.7)

A.1.4. Localization in angular scale and ridge location. We let aλ = 〈g,ρλ〉
be the ridgelet coefficient sequence of an object g ∈L2(R2) which is supported in
the unit square.

LEMMA 7. Under the support constraint supp(g)⊂ [0,1]2, we have, for each
m> 0, ∑

λ

22(i−j)m|aλ|2 ≤ Cm‖g‖2
2(A.8)

and ∑
k : |k|≥2j+1

∑
i,�,e

|aλ|2 ≤Cm2−2jm‖g‖2
2.(A.9)

The first inequality concerns localization in angular scale i; it shows that, when
the object is compactly supported, there is negligible energy at any high angular
scale for any j, k. The second inequality shows that there is negligible energy at
ridge locations corresponding to ridges far from the unit disk.

In fact, inequality (A.8) is proved in [8]. So we prove only (A.9) here. Our proof
will be based on three lemmas. We first state the lemmas, derive their implications
and only later prove the lemmas.

With ψj,k the Meyer wavelet as in Section 2, define

ψ+j,k(t)=
1

2π

∫
eiλt ψ̂j,k(λ)|λ|dλ.(A.10)

Owing to the Fourier multiplier |λ| this is a fractionally differentiated version
of ψj,k . Using this, we can state the key angular energy identity as follows.

LEMMA 8.

∑
i,�,e

|aλ|2 =
∫ (∫

Rg(t, θ)ψ+j,k(t) dt
)2

dθ.(A.11)
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In words, the ridgelet coefficients associated with a given j, k measure the
energy of the variation in θ of the function θ �→ 〈Rg(·, θ),ψ+j,k〉.

The right-hand side of identity (A.11) suggests that to get (A.9), we should show
that 〈Rg(·, θ),ψ+j,k〉 is already small as soon as |k| ≥ 2 · 2j and that it decreases
rapidly with increasing k.

Of course, the function ψ+j,k is localized near the dyadic interval [k2−j ,
(k+1)2−j ]while the Radon transformRg vanishes for |t| ≥ 1 and, therefore, their
interaction is indeed rather weak provided |k| ≥ 2 · 2j and j is large. Moreover,
because of Radon isometry,

∫
Rg(t, θ)ψ+j,k(t) turns out to be controllable by ‖g‖2.

The combination of these observations leads to (A.9).
The next two lemmas formalize these observations, at which point the proof

becomes straightforward.
Let (φI : I = (j, k, e)) be a nice orthonormal wavelet basis for L2(R), starting

from coarsest level j = j0, with scaling functions φj0,k,0 and wavelets φj,k,1 for
j ≥ j0. By “nice” we mean that the fine scale wavelets φj,k,1 have sufficiently
many vanishing derivatives and sufficiently many vanishing moments.

For anL2 function h, let βI = 〈h,φI 〉 denote the wavelet coefficients, and define
the Besov seminorm of order 1/2 by

‖h‖
Ḃ

1/2
2,2
=

(∑
I

∣∣βI · 2j/2∣∣2
)1/2

.

It measures roughly the energy stored in the 1/2-order fractional derivative.

LEMMA 9. ∫ 2π

0
‖Rg(·, θ)‖2

Ḃ
1/2
2
dθ ≤ C‖g‖2

2.(A.12)

The Besov Ḃ1/2
2,2 seminorm allows one to control the wavelet coefficients of the

Radon transform, via the following.

LEMMA 10. Let ψ+j,k be the fractionally differentiated Meyer wavelet (A.10).
Suppose that h is a function supported in [−1,1] and obeying ‖h‖2 <∞ as well
as ‖h‖

Ḃ
1/2
2
<∞. For each m> 0 we have a constant Cm so that

|〈ψ+j,k, h〉| ≤ Cm‖h‖Ḃ1/2
2,2
(|k| − 2j )−m+ .(A.13)

The last three lemmas quickly yield (A.9). Indeed, we have∑
i,�,e

|aλ|2 =
∫ 2π

0
|〈ψ+j,k,Rg(·, θ)〉|2dθ

≤ C2
m

∫ 2π

0
‖Rg(·, θ)‖2

B
1/2
2,2
dθ(|k| − 2j )−2m+

= C‖g‖2
2(|k| − 2j )−2m+ .
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For m> 1, we have, of course,∑
|k|≥2·2j

(|k| − 2j )−2m+ ≤Cm2−(2m−1)j

and so ∑
|k|≥2·2j

∑
i,�,e

|aλ|2 ≤ C′m‖g‖2
22−(2m−1)j ,

completing the proof of (A.9). It remains, of course, to prove the lemmas.

PROOF OF LEMMA 8. Let τλ(t, θ) denote the antipodally symmetrized
nonorthogonal tensor wavelets (ψ+j,k(t)wei,�(θ)+ψ+j,k(−t)wei,l (θ+π))/2; see [22]
for details. The orthoridgelet coefficients aλ are given by analysis of the Radon
transform via

aλ = [Rg, τλ].
Let now Aj,k(θ)= 〈ψ+j,k,Rg(·, θ)〉. Then if λ= (j, k; i, �, e),

aλ =
∫ 2π

0

(
Aj,k(θ)w

e
i,�(θ)+Aj,1−k(θ)wei,�(θ + π)

)/
2dθ

=
∫ 2π

0

(
Aj,k(θ)w

e
i,�(θ)+Aj,k(θ + π)wei,�(θ + π)

)/
2dθ

=
∫ 2π

0
Aj,k(θ)w

e
i,�(θ) dθ,

(A.14)

where the identities ψ+j,k(−t) = ψ+j,1−k(t) and Rg(−t, π + θ) = Rg(t, θ) were

used. Let I(j) denote the set of (i, j, e) tuples obeying i ≥ j , 0 ≤ � < 2i and
e ∈ {0,1} if i = j and e = 1 if i > j . Each collection of periodized wavelets
{wei,� : (i, �, e) ∈ I(j)} makes an orthonormal basis for L2(dθ). The corresponding
Parseval relation for each such basis says that for each L2(dθ) function A(θ),∑

I(j )

|〈A,wei,�〉|2 =
∫ 2π

0
|A(θ)|2 dθ.

Applying this to each A(θ)=Aj,k(θ),∑
I(j )

|aλ|2 =
∫ 2π

0
A2
j,k(θ) dθ.

Then (A.11) follows upon taking note that in (A.11), the intended range of the sum
over i, �, e is exactly I(j). �

PROOF OF LEMMA 9. In fact, more is true: the two sides are equivalent to
within fixed constant multiples.
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Consider the 1/2-order L2-Sobolev norm defined in the frequency domain by

‖h‖
Ẇ

1/2
2
=

∫
|ĥ(λ)|2|λ|dλ.

We have the very well-known identity,∫ 2π

0
‖Rg(·, θ)‖2

Ẇ
1/2
2
dθ = 1

2π2
‖g‖2

2,

which is proved as follows:

1

2

∫ 2π

0
‖Rg(·, θ)‖2

Ẇ
1/2
2
dθ = 1

2

∫ 2π

0

∫ ∞
−∞

|R̂g(λ, θ)|2|λ|dλ

=
∫ 2π

0

∫ ∞
0

∣∣ĝ(ξ(r, θ))∣∣2r dr dθ
=

∫
|ĝ(ξ)|2 dξ = 1

4π2‖g‖2
2,

where ξ(λ, θ) = (λ cos(θ), λ sin(θ)). The second equality derives from the
projection-slice theorem [40], which says that the one-dimensional Fourier
transform in t of Rg(t, θ) gives the one-dimensional radial slice ĝ(ξ(λ, θ)) of the
Fourier transform as a function of λ.

Because one-dimensional wavelets provide a biorthogonal decomposition of the
one-dimensional fractional differentiation operator, standard applications of ideas
similar to those in Section 3 will show that the homogeneous Besov norm Ḃ

1/2
2,2 is

an equivalent norm to Ẇ 1/2
2 . This norm equivalence is of course very well known

and could very well be derived by other approaches; see [52]. The result (A.12)
follows. �

PROOF OF LEMMA 10. We begin by relabeling the index j, k, which stays
constant throughout the proof, as j ′, k′, allowing j, k to be used in the proof as
free variables. Obviously,

〈ψ+
j ′,k′, h〉 =

∑
I

βI 〈ψ+j ′,k′ , φI 〉,

so we reduce matters to the study of the sequence (〈ψ+
j ′,k′, φI 〉)I . We will establish

later below the existence, for each m> 0, of a constant Cm so that

|〈ψ+
j ′,k′, φI 〉| ≤ Cm2j

′/2 · 2−|j ′−j |3/2
(
1+ 2j

′
d(tj ′,k′, I )

)−m
.(A.15)

Assuming this and letting

I= {I : |βI (h)| %= 0},
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we have

|〈ψ+j ′,k′, h〉| =
∑
I

(βI2j/2)
(〈ψ+j ′,k′ , φI 〉2−j/2)

≤
(∑

I

β2
I 2j

)1/2(∑
I

|〈ψ+
j ′,k′, φI 〉|22−j

)1/2

(A.16)

= ‖h‖
Ḃ

1/2
2,2

(∑
I

|〈ψ+
j ′,k′, φI 〉|22−j

)1/2

.

Let now Ī denote the support interval of φI . When it is necessary to specify the
corresponding values of j, k, we write Īj,k. For j ≥ j0 set K(j) = {k : Īj,k ∩
[−1,1] %= ∅}. Then because supp(h) ⊂ [−1,1], all members of I with scale
index j must have position index k ∈K(j). Hence∑

I

2−j |〈ψ+
j ′,k′, φI 〉|2

≤C2
m

∑
j

∑
k∈K(j )

2−j
(
2j

′ · 2−3|j−j ′|(1+ 2j
′
d(tj ′,k′, Īj,k)

)−2m
)

≤C2
m

∑
j

2−2|j−j ′| ∑
k∈K(j )

(
1+ 2j

′
d(tj ′,k′, Īj,k)

)−2m
.

Now if j ≥ j ′ then from 2j
′
d(tj ′,k′, Ī )≥ (|k′| − 2j

′
)+, valid for |k|> 2 · 2j ′ ,

∑
k∈K(j )

(
1+ 2j

′
d(tj ′,k′, Īj,k)

)−2m ≤ 2jC
∫ 1

−1
(1+ 2j

′ |tj ′,k′ − u|)−2m du

≤ 2jC′
(|k′| − 2j

′)−2m
+

and similarly for j0 ≤ j ≤ j ′, with 2j
′
replacing 2j on the extreme right-hand side.

Hence, ∑
I

2−j |〈ψ+
j ′,k′, φI 〉|2 ≤ C

∑
j

2−2|j−j ′|2max(j,j ′)(|k′| − 2j
′)−2m
+

≤ C∑
j

2−|j ′−j |
(|k′| − 2j

′)−2m
+(A.17)

= C′′(|k′| − 2j
′)−2m
+ .

Combining (A.17) and (A.16) and relabeling j ′, k′ �→ j, k completes the proof
of (A.13), modulo the argument for (A.15).



CURVELETS AND LINEAR INVERSE PROBLEMS 837

Returning to (A.15), we begin with the remark that, with D = d
dt

andDn having
the obvious meaning for n= 0,±1,±2, etc., we have

‖Dnψ+
j ′,k′‖L∞(Ī ) ≤ Cm

(
1+ 2j

′
d(tj ′,k′, Ī )

)−m
2j

′n, n= 0,±1,±2, . . . .

To obtain (A.15), assume first that j0 ≤ j ≤ j ′. Then, setting n= 2,

|〈ψ+
j ′,k′, φI 〉| ≤ ‖D−2ψ+

j ′,k′‖L∞(Ī )‖D2φI‖L1

= Cm2−j ′
(
1+ 2j

′
d(tj ′,k′, Ī )

)−m23/2j(A.18)

= Cm(1+ 2j
′
d(tj ′,k′, Ī )

)−m2j
′/2 · 2−|j−j ′|3/2.

Assume now that j ≥ j ′. Then

|〈ψ+
j ′,k′, φI 〉| ≤ ‖D2ψ+

j ′,k′‖L∞(Ī )‖D−2φI‖L1

= Cm23j ′(1+ 2j
′
d(tj ′,k′, Ī )

)−m
2−5/2j(A.19)

= Cm(1+ 2j
′
d(tj ′,k′, Ī )

)−m
2j

′/2 · 2−|j−j ′|5/2.
Combining the last two displays (A.18) and (A.19) yields (A.15) and completes
the proof of the lemma. �

A.1.5. Localization in ridge scale. We now show that distant scales can be
ignored.

LEMMA 11. For eachm> 0, there is Cm > 0 so that on each fixed squareQ,∑
λ : |j−(s+1)|>4

|αQ,λ|2 ≤ Cm2−2sm‖Dsf ‖2
2.(A.20)

PROOF. We renormalize the dyadic square Q to unit scale. The (Q,λ)

curvelet coefficient of an object f is given by

αQ,λ = 〈Dsf,ψQ,λ〉
= 2s〈Dsf,TQ(wρλ)〉
= 2−s〈wT −1

Q (Dsf ), ρλ〉.
Define the renormalized objects hQ = T −1

Q (Dsf ) and gQ = wT −1
Q (Dsf ) =

whQ. Then

αQ,λ = 2−s〈gQ,ρλ〉.(A.21)

Define for general integer j the dyadic Fourier corona ?j = {ξ : |ξ | ∈
[2j ,2j+1]} and the main corona ?∗s = {ξ : |ξ | ∈ [2s−1,2s+3]}. Then, of course,
?∗s combined with the dyadic coronae with j < s − 1 and j > s + 2 will cover the
frequency plane.
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The point of the terminology main corona is the following. We recall that Ds is
the convolution by ;2s = 24s;(22s ·) and ;̂2s is supported on the dyadic corona
{ξ : |ξ | ∈ [22s−1,22s+3]}. A simple change of variables gives

T −1
Q (Dsf )= T −1

Q (;2s ∗ f )=;s ∗ T −1
Q f

(note the change of subscript) and therefore the Fourier transform of hQ =
T −1
Q (Dsf ) is supported on the main corona ?∗s .

Even for gQ the dominant action happens near the main corona. In fact, the
Fourier transform of gQ does decay rapidly away from the main corona ?∗s .
Indeed, for any m≥ 0, we have

|ĝQ|2(ξ)≤ C2s
(
1+ d(ξ,?∗s )

)−(2m+1)‖hQ‖2
2.(A.22)

To see this, note that the relation gQ = whQ implies, on the Fourier side, the
convolution

ĝQ(ξ)=
∫
ŵ(ξ − ξ ′)ĥQ(ξ ′) dξ ′.

Here ŵ is a rapidly decaying function, that is, for each m > 0, |ŵ(ξ)| ≤ Cm(1+
|ξ |)−(m+1). A proof of (A.22) is simply obtained by a change of variables followed
by an argument similar to Lemma 6.

Now for ξ ∈?j , and |j − s|> 3, d(ξ,?∗s )≥ 2max(s,j )−1. Hence,∫
?j

|ĝQ|2(ξ ′) dξ ′ ≤ C2s2−max(s,j )(2m+1)‖hQ‖2
2

∫
?j

dξ ′

≤ C2s2−max(s,j )(2m+1)22 max(s,j )‖hQ‖2
2

≤ C2−2 max(s,j )(m−1)‖hQ‖2
2.

Finally, the elements ρλ of the ridgelet orthobasis are compactly supported in
frequency; namely ρ̂λ(ξ)= 0 whenever |ξ | /∈?j−1 ∪?j . Hence we have∑

λ : |j−(s+1)|>4

|〈gQ,ρλ〉|2 ≤
∑

j : |j−(s+1)|>3

∫
?j

|ĝQ|2(ξ ′) dξ ′

≤ ∑
j : |j−(s+1)|>3

C2−2 max(s,j )(m−1)‖hQ‖2
2

≤ C‖hQ‖2
2

( ∑
j≤s−3

2−2s(m−1)+ ∑
j≥s+5

2−2j (m−1)

)

≤ C′‖hQ‖2
2(2

−2s(m−2)+ 2−2s(m−1)).

To get (A.20) we now take m appropriately large. �
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A.2. Sparsity of the curvelet coefficients. In this section we prove (7.4). In
a separate paper [8], we derived the following upper bound on the number of
coefficients whose absolute value exceeds an arbitrary cut-off η > 0:

#{µ ∈Ms, |αµ| ≥ η} ≤ C


0, 2s ≥ η−2/3,

ε−2/3, η−2/9 ≤ 2s ≤ η−2/3,

23s, 22s ≤ η−2/9.

A simple rescaling argument shows that

#{µ ∈Ms, |αµ| ≥ 2sε} ≤ C


0, 2s ≥ ε−2/5,

2−2s/3ε−2/3, ε−2/11 ≤ 2s ≤ ε−2/5,

23s, 22s ≤ ε−2/11.

From the last inequality, one easily deduces that∑
µ∈Ms

min(|αµ|2,22sε2)≤ 24s/3ε4/3.

Hence, ∑
µ∈N (ε)

min(|αµ|2,22sε2)≤ ∑
s : 2s≤ε−2/5

∑
µ∈Ms

min(|αµ|2,22sε2)

≤ C ∑
s : 2s≤ε−2/5

24s/3ε4/3

≤ Cε4/5,

which is what needed to be shown.

A.3. Cardinality of N (ε). We now establish (7.5). For a scale s ≥ s0, the
number of coefficients that one keeps per dyadic square Q equals the cardinality
of 7s which is bounded by C23s . The subset N (ε) counts a maximum of O(22s)

of squaresQ at such scale and, therefore,

#{µ ∈N (ε) s.t. Q ∈Qs} ≤C25s .

Then, of course,

#N (ε)= ∑
s : 2s≤ε−2/5

#{µ ∈N (ε) s.t. Q ∈Qs} ≤ Cε−2,

which proves (7.5).
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A.4. Remarks. The above estimates complete the proof of Theorem 5.
Because the parameter m may be chosen arbitrarily large in (A.8), it is not

difficult to show that the cardinality can be bounded by Cδε−8/5+δ , for any δ > 0.
Finally, the argument may be adapted to other choices of s0. The description

of N (ε) would involve a different and somewhat more complicated selection of
parameters for small values of the scale s, s0 ≤ s ≤ sε.
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