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BAHADUR REPRESENTATION OF Mm ESTIMATES

By Arup Bose

Indian Statistical Institute

We take a unified approach to asymptotic properties of Mm estimates
based on i.i.d. observations defined through the minimization of a real-
valued criterion function of one or more variables. Our results are appli-
cable to a host of location and scale estimators found in the literature.

1. Introduction. Let X�X1�X2� � � � �Xn be independent M-valued ran-
dom variables with distribution F. Let q be a function on �d ×Mm, which is
symmetric in the last m coordinates. Let Q�θ� = Eq�θ�X1� � � � �Xm�. Let θ0 be
the (unique) minimizer of Q�θ�. The Mm estimate of θ0 introduced by Huber
(1964) is the value θn which minimizes

∑
1≤i1<i2 ··· im≤n q�θ�Xi1

� � � � �Xim
�� This

includes in particular (1) Oja median [Oja (1983)], (2) univariate location es-
timators of Maritz, Wu and Staudte (1977), (3) univariate Hodges–Lehmann
estimators of location, (4) a univariate robust scale estimator of Bickel and
Lehmann (1979), (5) a regression coefficient estimator of Theil [see Hollander
and Wolfe(1973)], (6) U-quantiles [Choudhury and Serfling (1988)], (7) L1 me-
dian, (8) geometric quantiles of Chaudhuri (1996) and (9) Hodges–Lehmann
versions of (7) and (8).

Early results on the asymptotic properties of M1 estimators and M2 es-
timators are give by Huber (1964) and Maritz, Wu and Staudte (1977). Oja
(1984) proved the consistency and asymptotic normality of Mm estimators un-
der conditions similar to Huber (1964). His results apply to the estimators
(1)–(4) above. He and Wang (1995) primarily focus on establishing the LIL
for θn.

The estimator is unique if q is convex in θ. Several works have assumed
and exploited this convexity in similar contexts. The Associate Editor points
out that perhaps the earliest use of this convexity was by Heiler and Willers
(1988) in linear regression models. See also Hjort and Pollard (1993) and Pol-
lard (1991). For m = 1, Habermann (1989) established the consistency and
asymptotic normality of θn and Niemiro (1992) established a Bahadur-type
representation θn = θ0 + Sn/n + Rn where Rn is of suitable order almost
surely. His results yield a representation for the estimators (7) and (8).

Bahadur and Keifer’s classical approach [Bahadur (1966), Kiefer (1967)]
has also been used by several authors. A representation for U quantiles was
proved by Chowdhury and Serfling (1988) and it applies to the estimators

Received May 1995; revised May 1997.
AMS 1991 subject classifications. Primary 62F12; secondary 60F05, 60F10, 60F15, 62E20,

62F10, 62G30, 62G35, 62H10, 62H12, 62J05.
Key words and phrases. M estimates, U statistics, asymptotic normality, Bahadur representa-

tion, measures of location, measures of dispersion, L1 median, Oja median, Lt estimates, Hodges–
Lehmann estimate, generalized order statistics.

771



772 A. BOSE

(2)–(5). Chaudhuri (1992) proved a representation for (8) and its Hodges–
Lehmann version in higher dimensions.

We establish a representation theorem for θn for general m under convexity
of q. [The assumption of convexity could be removed but would require a more
involved proof. One such approach is that of Jureckova (1977)]. This includes
all the above estimators and in some cases requires slightly less stringent con-
ditions than assumed in earlier works. Our set-up does not cover the medians
of Liu (1990), Tukey (1975) and Rousseeuw (1986). The asymptotic normality
of Liu’s median was proved by Arcones, Chen and Giné (1994). Rousseeuw’s
median falls under the realm of “cube root asymptotics” [see Kim and Pollard
(1990), Davies(1992)]. We also do not cover any non-i.i.d. situations. For a re-
cent result on Bahadur representation which applies to M estimates in linear
regression with nonstochastic errors, see He and Shao (1996). Obtaining the
exact order is a delicate and hard problem. Generally speaking, the exact rate
depends on the nature of the function q. Recently, techniques from empirical
processes have been used to address this problem. For some specific cases,
there are some exact rates and we will mention some of them later.

We make the following assumptions. Let N be an appropriate neighborhood
of θ0 while r > 1 and 0 ≤ s < 1 are numbers.

(I) q (θ, Z) is convex in θ for every Z.
(II) Q�θ) is finite for all θ�

(III) θ0 exists and is unique.
(IV) E�g�θ�X1� � � � �Xm��r <∞∀ θ ∈N�
(V) ∇2Q�θ0� exists and is positive definite.

(VI) �∇Q�θ� − ∇2Q�θ0��θ− θ0�� = O��θ− θ0��3+s�/2� as θ → θ0.
(VII) E�g�θ�X1� � � � �Xm� − g�θ0�X1� � � � �Xm��2 = O��θ − θ0��1+s�� as

θ → θ0.
(VIII) E�g�θ�X1� � � � �Xm��r = O�1� as θ → θ0.

If (II) is satisfied for a subset of �d, all results remain valid if θ0 is an
interior point of this subset. Let g be a subgradient of q which is measurable
in Z for each α. The gradient vector and the matrix of second derivatives of
Q at θ will be denoted by ∇Q�θ� and ∇2Q�θ�, respectively.

Define Sn = ∑
1≤i1< ···<im≤n g�θ0�Xi1� � � � �Xim�, H = ∇2Q�θ0��

Theorem 1. Suppose the above assumptions hold for some 0 ≤ s < 1 and
r > �8 + d�1 + s��/�1 − s�. Then almost surely as n→ ∞,

n1/2�θn − θ0� = −H−1n1/2
(
n

m

)−1

Sn

+O�n−�1+s�/4�log n�1/2�log log n��1+s�/4�
(1)

The above representation continues to hold if s = 1 and g is bounded.

The proof is omitted; it is available in detail in Bose (1997).
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Remark 1. If (I) to (III) hold and (IV) holds with r = 2 then the remainder
in Theorem 1 is oP�1�, which is enough to establish the asymptotic normality
of the estimator.

We now give three examples. Some of these representations are known but
each has more or less required a separate proof so far. Often the proofs have
been quite involved but yield more information about the remainder term.

Example 1. Suppose X, X1, X2� � � � �Xn are i.i.d. d�≥ 2�-dimensional ran-
dom variables. The L1 median (assumed to be unique) is the θ0 obtained by
taking q�θ� x� = �x− θ� − �x� = �∑d

i=1�xi − θi�2�1/2 − �∑d
i=1 x

2
i �1/2� This median

is unique if F does not give full measure to any hyperplane.

Proposition 1. If E�X − θ0�−�3+s�/2 < ∞ for some 0 ≤ s ≤ 1, then the
representation (1) holds for the L1 median with Sn = ∑d

i=1�Xi − θ0�/�Xi − θ0�
and H defined as

h�θ� x� = 1
�θ− x�

(
I− �θ− x��θ− x�′

�θ− x�2
)
� x �= θ�

H = E
(
h�θ0�X�)�

If E�m−1�X1+· · ·+Xm�−θ0�−�3+s�/2 <∞, then (1) holds for the multivariate
Hodges–Lehmann estimator with Sn = ∑

1≤i1<i2< ···<im≤n g�θ0� m
−1�Xi1

+· · ·+
Xim

���
For the L1 median, Niemiro (1992) assumed that F has a bounded density

and obtained the same rate as ours (any 0 < s < 1 for d = 2 and s = 1
for d ≥ 3). Chaudhuri (1992, 1996) assumed this boundedness on every com-
pact subset of �d to derive his representations for the L1 median and its
Hodges–Lehmann version with remainders O�n−1/2 log n� if d ≥ 3 and o�n−β�
for any β < 1

2 if d = 2. His proof parallels the classical proof for the one-
dimensional median. For Proposition 1, the slowest rate of the remainder is
O�n−1/4�log n�1/2�log log n�1/4� when E�X−θ�−3/2 <∞. The fastest rate of the
remainder is O�n−1/2�log n�1/2�log log n�1/2� when E �X − θ�−2 < ∞. Chaud-
huri’s condition implies E�X− θ�−2 <∞ if d ≥ 3 and E�X− θ0�−�1+s� <∞ for
any 0 ≤ s < 1 if d = 2. Our moment condition forces F to necessarily assign
zero mass at the median. It is an odd fact that if F assigns zero mass to an
entire neighborhood of the median, then the moment condition is automati-
cally satisfied. Now assume that the median is zero and X is dominated in the
neighborhood of zero by a variable Y which has a radially symmetric density
fY��x��� Transforming to polar coordinates, note that the moment condition is
satisfied if the integral of g�r� = r−�3+s�/2+d−1fY�r� is finite. If d = 2 and f
is bounded in a neighborhood of zero, then the integral is finite for all s < 1.
If fY�r� = O�r−β�, (β > 0), then the integral is finite if s < 2d − 3 − 2β. In
particular, if f is bounded (β = 0), then any s < 1 is feasible for d = 2 and
s = 1 for d = 3.
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Assume that d = 2, the density exists in a neighborhood of the median, is
continuous at the median and E g�θ�X1� has a second-order expansion at the
median. Arcones (1995) has shown that then the exact order of the remainder
is O�n−1/2�log n�1/2�log log n�� and he has completely characterized the limit
set of the normalized remainder term. His proofs are based on results from
empirical processes. In a private conversation, he mentioned that representa-
tion for the L1 median has also been considered in an unpublished article by
Arcones and Mason (1992). This article is under revision.

For �u� < 1, the uth geometric quantile [Chaudhuri (1996)] is defined by
taking q�θ� x� = �x − θ� − �x� − u′θ. With obvious changes in Sn and in the
assumptions, Proposition 1 remains valid for geometric quantiles and their
Hodges–Lehmann versions.

Example 2. Let X1� � � � �Xn be i.i.d. random variables with distribution
F, h be a function from Rm to R which is symmetric in its arguments. Let
HF denote the distribution function of h�X1� � � � �Xm) and let H−1

F �p� be the
pth quantile of HF (also called the generalized quantile of F). Let

Hn�y� =
(
n

m

)−1 ∑
1≤i1< ···<im≤n

I�h�Xi1
� � � � �Xim

� ≤ y�

be the empirical distribution and H−1
n �p� its pth quantile. Choudhury and

Serfling (1988) proved a representation for H−1
n �p�. To see that such a re-

sult follows from Theorem 1, let p = 1
2 without loss. Let Q�θ� = E��h�X1�

� � � �Xm� − θ� − �h�X1� � � � �Xm��� = Eq�θ�X1� � � � �Xm�. Then θ0 = H−1
F � 1

2�.
Note that θ0 is unique if HF has a positive density at H−1

F � 1
2�. Writing x =

�x1� � � � � xm�, the (bounded) gradient vector is g�θ� x� = −sign�h�x� − θ�.
Suppose that

�VIII�′ in a neighborhood of θ0�HF has a bounded density hF�

It is easily checked that ∇Q�θ� = Eg�θ�X� = 2HF�θ�− 1� Further, Q�θ� is
twice continuously differentiable at θ = θ0 with H = ∇2Q�θ0� = 2hF�θ0� if

�VII�′ HF�θ� −HF�θ0� − �θ− θ0�hF�θ0� = O
(�θ− θ0�3/2

)
as θ → θ0�

Under (VII)′ and (VIII)′, (1) holds with s = 0 for the generalized quan-
tiles. Particular examples are, the univariate Hodges–Lehmann estimator
(h�X1� � � �Xm� = m−1�X1 + · · · + Xm�), the dispersion estimator of Bickel
and Lehmann (1979) (h�Xi�Xj� = �Xi −Xj�� and, the regression coefficient
estimator introduced by Theil [see Hollander and Wolfe (1973), pages 205
and 206) (h��Xi�Yi�� �Xj�Yj�� = �Yi − Yj�/�Xi − Xj�), where �Xi�Yi�
are bivariate i.i.d. random variables. Let β be any fixed number between
0 and 1. Let L�θ� x1� x2� = �βx1 + �1 − β�x2 − θ� + �βx2 + �1 − β�x1 − θ��
The minimizer of E �L�θ�X1�X2� − L�0�X1�X2�� is a measure of location
of Xi [Maritz, Wu and Staudte (1977)] and its estimate is the median of
βXi + �1 − β�Xj, i �= j (β = 1/2 yields the Hodges–Lehmann estimator of
order 2). Conditions similar to those above guarantee a representation for this
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estimator. See Arcones (1996) for further information on the representation
for U quantiles. In particular, he derives some exact rates under certain “local
variance conditions” by using empirical processes.

Example 3. Let *�y1� � � � � yd+1� be the (positive) volume of the simplex
generated by any �d + 1� points y1� � � � � yd+1 in �d. This volume equals the
absolute value of the determinant of the �d + 1� × �d + 1� matrix whose
ith column is yi with a one augmented at the end, 1 ≤ i ≤ d. Let Q�θ� =
E �*�θ�X1� � � � �Xd� − *�0�X1� � � � �Xd�� = Eq�θ�X1� � � � �Xd� say. Oja’s me-
dian is the (unique) minimizer θ0 of Q�θ�. It is unique if the density exists
and is positive on a convex set which is not entirely contained in a hyperplane
and is zero otherwise. For d = 1, Oja’s median is the usual median. Let X
denote the d × d random matrix whose ith column is Xi = �X1i� � � � �Xdi�′
1 ≤ i ≤ d. Let X�i� be the d × d matrix obtained from X by deleting
its ith row and replacing it by a row of 1’s at the end. Finally, let M�θ�
be the �d + 1� × �d + 1� matrix obtained by augmenting the column vector
θ = �θ1� � � � � θd�′ and a �d + 1� row vector of 1’s, respectively, to the first col-
umn and last row of X. Note that q�θ�X1� � � � �Xd� equals ��M�θ��� − ��M�0���
where �� · �� denotes the absolute determinant. This equals �θ′Y − Z� − �Z�
where Y = �Y1� � � � �Yd�′ and Yi = �−1�i+1�X�i��, Z = �−1�d�X�. Hence Q is
well defined if E �X1� <∞. Further, the ith element of the gradient vector of
q is given by gi = Yi sign�θ′Y−Z�, i = 1� � � � � d and is similar to the gradient
in Example 2. Condition (VIII) is satisfied if

�VIII�′′ E��Y��2�I�θ′Y ≤ Z ≤ θ′0Y� + I�θ′0Y ≤ Z ≤ θY�� = O��θ− θ0�1+s��
If F has a density, then so does the conditional distribution of Z, given Y.
By conditioning on Y it is easy to see that (VIII)′ holds with s = 0 if this
condtional density is bounded uniformly in θ′Y for θ in a neighborhood of
θ0 and E��Y��3 < ∞. For the case d = 1, this is exactly condition (VIII)′ in
Example 2. To obtain condition (VII), first assume that F is continuous. Note
that Q�θ� − Q�θ0� = 2E�θ′YI�Z ≤ θ′Y� − θ′0YI�Z ≤ θ′0Y�� + 2E�ZI�Z ≤
θ′Y� − ZI�Z ≤ θ′0Y��. It easily follows that the ith element of the gradient
vector of Q�θ� is given by Qi�θ� = 2E�YiI�Z ≤ θ′Y��. If F has a density, it
follows that the derivative of Qi�θ� with respect to θj is given by Qij�θ� =
2E�YiYjfZ�Y�θ′Y�� where fZ�Y�·� denotes the conditional density of Z given
Y. Thus H = �Qij�θ0��. Clearly then (VII) will be satisfied if we assume that
for each i,

�VII�′′ E��Yi�FZ�Y�θ′Y� −FZ�Y�θ′0Y� − fZ�Y�θ′0Y��θ0 − θ�′�Y���
= O��θ− θ0��3+s�/2��

The pth order Oja median �1 < p < 2� is the minimizer of Q�θ� = E�*p�θ�
X1� � � � �Xd� − *p�0�X1� � � � �Xd��� By similar arguments, now gi�θ� =
pYi�θ′Y − Z�p−1 sign�θ′Y − Z�, i = 1� � � � � d and H = ��hij�� = p�p − 1�×
��E�YiYj�θ′0Y−Z�p−2���. One can formulate conditions for Theorem 1 to hold
for this median by consulting Example 1 of Niemiro (1992) on Lt estimates
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in the univariate case and the above discussion for p = 1� Clearly the Oja
median has an unbounded and nonsmooth influence function when d ≥ 2.
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