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STATE SPACE MODELING OF LONG-MEMORY PROCESSES1

By Ngai Hang Chan and Wilfredo Palma

Carnegie Mellon University and
Pontificia Universidad Católica de Chile

This paper develops a state space modeling for long-range dependent
data. Although a long-range dependent process has an infinite-dimensional
state space representation, it is shown that by using the Kalman filter, the
exact likelihood function can be computed recursively in a finite number
of steps. Furthermore, an approximation to the likelihood function based
on the truncated state space equation is considered. Asymptotic proper-
ties of these approximate maximum likelihood estimates are established
for a class of long-range dependent models, namely, the fractional autore-
gressive moving average models. Simulation studies show rapid converging
properties of the approximate maximum likelihood approach.

1. Introduction. Long-range dependent or long-memory processes have
been receiving considerable attention among researchers from various disci-
plines, ranging from econometrics [Cheung and Diebold (1994)] to meteorology
[Bloomfield (1992)]. The monograph by Beran (1994) and the reviewing arti-
cle by Robinson (1994) provide two updated surveys of recent developments
of long-memory processes in statistics and economics, respectively.

One of the most commonly used long-memory models is the fraction-
ally integrated autoregressive moving average process (ARFIMA). An
ARFIMA�p�d� q� process �yt� is defined by

��B��1 −B�dyt = 	�B�εt�(1.1)

where �d� < 1/2, �εt� is a Gaussian white noise sequence (independent, nor-
mally distributed with zero mean and constant variance, σ2

ε ); B is the back-
shift operator Byt = yt−1; ��B� = 1 − φ1B − · · · − φpB

p is the AR op-
erator; 	�B� = 1 − θ1B − · · · − θqB

q is the MA operator such that ��B�
and 	�B� have all their roots outside the unit circle with no common fac-
tors and �1 −B�d = ∑∞

k=0 πk�−B�k is the fractional difference operator, with
πk = ��k− d�/��k+ 1���−d� and � denoting the Gamma function. If d = 0,
the usual ARMA model is obtained.

A distinctive feature of a long-memory process is that its spectral density
f�ω� is unbounded at the frequency zero. The spectral density function of an
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ARFIMA model is given by

f�ω� = σ2

2π
�	�eiω��2
���eiω��2 �1 − eiω�−2d� ω ∈ �−π�π�(1.2)

Thus, for 0 < d < 1/2, f�ω� has a singularity at ω = 0. A particular case of
an ARFIMA model is the fractional noise process described by �1 −B�dyt = εt
or, equivalently,

yt = �1 −B�−dεt =
∞∑
j=0

ηjεt−j�(1.3)

where ηj = ��j+ d�/��j+ 1���d�.
For an ARFIMA model, several methods for estimating the fractional differ-

ence parameter d are available in the literature. The so-called R/S algorithm,
introduced by Hurst (1951) in hydrology, is studied by Mandelbrot and Wallis
(1969) and Mandelbrot and Taqqu (1979). A regression method based on the
spectral density of the fractional ARIMA processes is developed by Geweke
and Porter-Hudak (1983). It is known that this method results in an asymp-
totically biased estimate of d which is less efficient than the estimates based
on maximum likelihood procedures; see, for example, Hurvich and Beltrao
(1993). Semiparametric modifications to this method can be found in Robinson
(1995). For Gaussian maximum likelihood estimates (MLE), several asymp-
totic results are available. In particular, asymptotic distributional properties
such as consistency, asymptotic normality and asymptotic efficiencies of the
Gaussian parameter estimates of the MLE of an ARFIMA model are estab-
lished by Fox and Taqqu (1986), Dahlhaus (1989) and Giraitis and Surgailis
(1990).

Despite all these desirable properties, implementing exact maximum like-
lihood procedures presents serious computational problems in practice. There
are two kinds of problems. First, since the correlations of a long-memory model
decay slowly, all autocorrelations including those with large lags have to be
included in the computation. This requires extensive memory capacity on the
computer. Second, contrary to the standard ARIMA model, in the ARFIMA
case, no recursive schemes have been constructed to facilitate the comput-
ing of the log-likelihood function. Discussions on some of these computational
problems can be found in Li and McLeod (1986) and Sowell (1992).

In this paper, a state space approach is proposed to compute the exact and
approximate ML estimates for an ARFIMA model. By means of the Kalman
filter, it is shown that the exact MLE can be evaluated in a finite number of
steps. By truncating the dimension of the state in a state space representa-
tion of an ARFIMA model, an approximate ML procedure is proposed. It is
shown that parameter estimates obtained from this approach are consistent,
asymptotically normal and asymptotically efficient.

One of the main objectives in this paper is, therefore, to provide a compu-
tationally efficient approach to calculate the MLE for an ARFIMA model. The
proposed approach not only possesses some of the desirable asymptotic proper-
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ties of the exact MLE, but is also easily computable. Simulation studies show
that the approximate MLE approach gives satisfactory results for a variety
of situations. Furthermore, a state space approach provides an appropriate
framework to study missing values problems, Kalman smoothing and predic-
tions and recursive evaluations of the likelihood functions for a long-memory
model.

This paper is organized as follows. Section 2 introduces the state space
approach and its application to an ARFIMA model. The Kalman filter theory
and calculations of exact MLE are also discussed. In particular, it is shown in
this section that although the state space representation of an ARFIMA model
is infinite-dimensional, the exact likelihood function can be computed in a
finite number of steps. Section 3 proposes an approximate maximum likelihood
estimate based on a truncated state space representation. It is shown that
this approximate MLE is consistent, asymptotically normal, and efficient. In
Section 4, a simulation study is conducted on the approximate MLE procedure
which demonstrates its rapid convergence properties. Concluding remarks are
given in Section 5.

2. State space models. This section introduces the state space system,
the Kalman filter and the exact likelihood function for an ARFIMA model. It
is shown in Corollary 2.1 that there exists only an infinite-dimensional rep-
resentation for a long-memory process. Despite this fact, the exact likelihood
functions can still be evaluated in a finite number of steps, as stated in Theo-
rem 2.2. In one sense, this result is not surprising since the likelihood function
for a short-memory stationary series can be evaluated by means of the modi-
fied Cholesky factorization of the covariance matrix in a finite number of steps;
see, for example, Newton (1988). Earlier discussions on the Kalman filter for-
mulation of the likelihood function in the time series context can be found in
Jones (1980).

2.1. State space representations of ARFIMA models. For a standard ARIMA
model, it is always possible to find a finite-dimensional state space represen-
tation. For an ARFIMA process, it is proved in Theorem 2.1 and Corollary 2.1
that there are no finite-dimensional state space representations.

Consider a finite-dimensional state space system

Xt+1 = FXt + εt�(2.1)

yt = GXt + ηt�(2.2)

where yt ∈ R and Xt ∈ R
m, and m is the dimension of the state space represen-

tation. For any given causal time series �yt�, the following results characterize
the dimension of its state space representation.

Lemma 2.1. Consider the finite-dimensional state space system given by
(2.1) and (2.2). If this system is observable and �yt� is stationary, then the
sequence of states, �Xt�, is also stationary.
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Proof. The state Xt satisfies the equation

OmXt = ỹt − η̃t −Mmε̃t�

where ỹt=�yt� yt+1� � � � � yt+m−1�′, η̃t=�ηt� � � � � ηt+m−1�′, ε̃t = �ε′t� � � � � ε′t+m−1�′,
Om = �G′� �GF�′� � � � � �GFm−1�′�′ is the observability matrix, and

Mm =




0 0 · · · 0

G 0 · · · 0
���

� � �
� � �

GFm−2 · · · G 0


�

Since the system is observable, the matrix Om is of full rank; see page 44 of
Hannan and Deistler (1988). Hence, the matrix O′

mOm is also of full rank and
the state Xt can be written as Xt = �O′

mOm�−1Om�ỹt − η̃t −Mmε̃t�. As the
process ỹt − η̃t −Mmε̃t is stationary for a fixed m, the sequence of states Xt

is also stationary. ✷

Theorem 2.1. Any causal time series with a finite-dimensional state space
representation is a short memory process, that is, γk ∼ ak, �a� < 1, where γk is
its autocovariance function.

Proof. Let �yt� and �Xt� be the time series and the states satisfying the
state space equations (2.1) and (2.2), respectively. Since it is always possible to
find an equivalent observable representation for any given system [see page 45
of Hannan and Deistler (1988)], one may assume this system to be observable.
By Lemma 2.1, as the process �yt� is causal, the state process �Xt� is also
causal, which in turn implies �λm�F�� < 1, where λm�F� is the eigenvalue of
F with maximal modulus [see Brockwell and Davis (1991), pages 417–418].

Consider the autocovariance function of �yt�,

γy�k� =
∞∑
j=1

GFj−1#ε�F′�j−1�F′�kG′ +FkS�η� ε��

where #ε = Var�εt and S�η� ε� = Cov�ηt� εt. Thus,

�γy�k�� ≤� F �k
[ ∞∑
j=1

� G �2� F �2�j−1�� #ε � + � S�η� ε� �
]
�

where �A� = �λm�A�� denotes the spectral norm of the matrix A. Since �F� <
1, �γy�k�� → 0, at exponential rate, as k → ∞. ✷

Corollary 2.1. There is no finite-dimensional state space representation
of an ARFIMA process with long-memory parameter d �= 0.

The proof follows directly from the preceding theorem.
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Recall that a causal ARFIMA�p�d� q� process �yt� has a linear process
representation given by

yt =
	�B�
��B��1 −B�−dεt =

∞∑
j=0

ϕjεt−j�(2.3)

where ϕj are the coefficients of ϕ�z� = ∑∞
j=0 ϕjz

j = �	�z�/��z���1 − z�−d.
An infinite-dimensional state space representation may be constructed as fol-
lows. From equation (2.3), a state space system may be written [cf. page 22 of
Hannan and Deistler (1988)] as

Xt+1 = FXt +Hεt�(2.4)

yt = GXt + εt�(2.5)

where

Xt =




y�t�t− 1�
y�t+ 1�t− 1�
y�t+ 2�t− 1�

���


� y�t�j� = E�yt�yj� yj−1� � � ��(2.6)

F=




0 1 0 · · ·
0 0 1 0 · · ·
���

���
� � �


� H=�ϕ1� ϕ2� � � �′ and G=�1�0�0� � � ��(2.7)

2.2. Exact likelihood function. Recall that if the noise is Gaussian, the
exact log-likelihood function is given (omitting a constant) by

l��� = − 1
2 log detTn��� − 1

2Y
′
nT

−1
n ���Yn�(2.8)

where �Tn���r� s=1�����n = ∫ π
−π f��ω�eiω�r−s� dω is the covariance matrix of Yn =

�y1� � � � � yn�′, � = �φ1� � � � � φp� θ1� � � � � θq� d� σε�′ and f��ω� is the spectral den-
sity of the process given in (1.2). This function can be evaluated by directly
applying the Kalman recursive equations in Proposition 12.2.2 of Brockwell
and Davis (1991) to the infinite-dimensional system. Although Corollary 2.1
states that the state space representation of an ARFIMA model is infinite-
dimensional, the exact likelihood function can be evaluated in a finite number
of steps. Specifically, we have the following theorem.

Theorem 2.2. Let �y1� � � � � yn� be a finite sample of an ARFIMA�p�d� q�
process. If 01 is the variance of the initial state X1 for the infinite-dimensional
representation, then the computation of the exact likelihood function (2.8) de-
pends only on the first n components of the Kalman equations.
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Proof. Let 0t = �ω�t�
ij � be the state estimation error covariance matrix at

time t. The Kalman equations for the infinite-dimensional system are given by

X̂1 = E�X1�(2.9)

01 = E�X1X
′
1 −E�X̂1X̂

′
1�(2.10)

1t = ω
�t�
11 + 1�(2.11)

ω
�t+1�
ij = ω

�t�
i+1� j+1 + ϕiϕj −

�ω�t�
i+1�1 + ϕi��ω�t�

j+1�1 + ϕj�
ω

�t�
11 + 1

(2.12)

and

X̂t+1 = (
X̂

�t+1�
1 � X̂

�t+1�
2 � � � �

)′ = (
X̂

�t+1�
i

)′
i=1�2�����(2.13)

where

X̂
�t+1�
i = X̂

�t�
i+1 +

�yt − X̂
�t�
1 ��ω�t�

i+1�1 + ϕi�
ω

�t�
11 + 1

�(2.14)

ŷt+1 = GX̂t+1 = X̂
�t+1�
1 �(2.15)

and the log-likelihood function is given by

ln = −1
2

{
n log 2π +

n∑
t=1

log 1t + n log σ2
ε + 1

σ2
ε

n∑
t=1

�yt − ŷt�2

1t

}
�(2.16)

In order to evaluate this likelihood, the initial state is estimated by X̂1 =
0 and the initial prediction error covariance matrix is estimated by 01 =
E�X1X

′
1 = �ω1

ij����i� j=1�2����, with ω1
ij��� = ∑∞

k=0 ϕi+k���ϕj+k���. Expressions
for the coefficients ϕi��� can be found on page 92 of Brockwell and Davis
(1991). The optimization process starts with an initial value �0 and proceeds
to maximize the likelihood function.

Let X̃1 be the vector consisting of the first n components of X̂1, that is,

X̃1 = E
(
X

�1�
1 � � � � �X

�1�
n

)′ = (
E�X�1�

i )′
i=1�����n�(2.17)

where

X1 = (
X

�1�
1 �X

�1�
2 � � � �

)′ = (
X

�1�
i

)′
i=1�2�����(2.18)

0̃1 = (
E�X�1�

i X
�1�
j  −E�X̃�1�

i X̃
�1�
j )

i� j=1�����n�(2.19)

1̃t = ω̃
�t�
11 + 1�(2.20)
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ω̃
�t+1�
ij =




ω̃
�t�
i+1� j+1 + ϕiϕj −

�ω̃�t�
i+1�1 + ϕi��ω̃�t�

j+1�1 + ϕj�
ω̃

�t�
11 + 1

�

i� j ≤ n− 1�

ϕiϕjω̃
�t�
11

ω̃
�t�
11 + 1

� i = n or j = n�

(2.21)

X̃t+1 = (
X̃

�t+1�
i

)
i=1�2�����n�(2.22)

with

X̃
�t+1�
i =




X̃
�t�
i+1 +

�yt − X̃
�t�
1 ��ω̃�t�

i+1�1 + ϕi�
ω̃

�t�
11 + 1

� i ≤ n− 1�

�yt − X̃
�t�
1 �ϕn

ω̃
�t�
11 + 1

� i = n�
(2.23)

ỹt+1 = GX̃t+1 = X̃
�t+1�
1 �(2.24)

and the log-likelihood function is given by

l̃n = −1
2

{
n log 2π +

n∑
t=1

log 1̃t + n log σ2
ε + 1

σ2
ε

n∑
t=1

�yt − ỹt�2

1̃t

}
�(2.25)

From these equations, observe that since the first n rows (columns) of 01
and 0̃1 are equal, then 1t = 1̃t for t = 1� � � � n. Thus, the matrices 0t and
0̃t are the same except for the last n − t + 1 rows (columns). Similarly, the
states X̂t and X̃t are the same except for the last n− t+ 1 components, and
ŷt = ỹt, t = 1� � � � � n. Since the log-likelihood functions ln and l̃n depend only
on �1t�� �ŷt� and �1̃t�� �ỹt� which are identical, ln = l̃n. ✷

It is worth noting that as a consequence of Theorem 2.2, given a sample of n
observations from an ARFIMA process, the evaluation of the exact likelihood
function is based only on the first n components of the state vector. Therefore,
the remaining infinitely many components of the state vector can be omitted
from the computations.

3. Approximate maximum likelihood estimation. Although Theorem
2.2 guarantees that the exact likelihood function can be computed in a finite
number of steps, such a computation may be cumbersome. According to the
Kalman filter equations, the evaluation of the likelihood function consists of
n iterations (sample size) and each iteration consists of a number of matrix
evaluations. For the exact method, these matrices are of dimensions n×n, so
there are n2 evaluations. The resulting algorithm is then of order n3.
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Alternatively, consider the moving average expansion of the differenced pro-
cess zt = �1 −B�yt:

zt =
∞∑
j=0

ψjεt−j�(3.1)

where ψj = ϕj − ϕj−1. If we truncate this expansion after m components, an
approximate model can be written as

zt =
m∑
j=0

ψjεt−j�(3.2)

A main advantage of this approach is that the coefficients ψj converge to
zero faster than the coefficients ϕj so that a smaller truncation parameter m
results with the differenced data. On the other hand, the differenced approach
suffers from the drawback that it would reduce each stretch of contiguous data
by one observation. This would pose a problem for time series with missing
values. In such cases, one may have to resort to using the exact Kalman filter
to the nondifferenced data. Alternatively, the truncated state space can also
be applied directly to the nondifferenced data.

A state space representation of this truncated model is given by [see, for
example, page 470 of Brockwell and Davis (1991)],

Xt+1 =
[

0 Im−1

0 · · · 0

]
Xt +



ψ1

���

ψm


εt�(3.3)

zt =
[

1 0 0 · · · 0
]
Xt + εt�(3.4)

The Gaussian log-likelihood of the truncated model (3.2) may be written (omit-
ting a constant) as

l̃n��� = − 1
2 log det T̃n�m��� − 1

2Z
′
nT̃n�m���−1Zn�(3.5)

where �T̃n�m���r� s=1�����n = ∫ π
−π f̃m���ω�eiω�r−s�dω, is the covariance matrix

of Zn = �z1� � � � � zn�′ with f̃m���ω� = σ2�5m�eiω��2, and 5m�eiω� = 1 +
ψ1e

iω + · · · + ψme
miω.

In this case, the matrices involved in the truncated Kalman equations are
of order m×m. Therefore, only m2 evaluations are required for each iteration
and the algorithm has an order n×m2. For a fixed truncation parameter m, the
calculation of the likelihood function is only of order n for the approximate ML
method. Thus, for very large samples, it may be desirable to consider truncat-
ing the Kalman recursive equations after m components. With this truncation,
the number of operations required for a single evaluation of the log-likelihood
function is reduced to an order of n. Asymptotic behaviors of these approxi-
mate state space estimators are established in this section. The consistency
of the approximate MLE is addressed in Theorem 3.1. Asymptotic normality
is given in Theorem 3.2 and its efficiency is discussed in Theorem 3.3.
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3.1. Asymptotic properties of the approximate MLE. Before stating the
main theorems, we first introduce some definitions, regularity conditions, and
notation. Let �̃n�m be the value that maximizes the log-likelihood of the trun-
cated model where � = �φ1� � � � � φp� θ1� � � � � θq� d� σε�′ is an r = p + q +
2-dimensional parameter vector and let �0 be the true parameter. Assume
that the regularity conditions listed in Dahlhaus (1989) hold.

Define the partial derivatives

∇f��� =
(

∂

∂θj
f���

)
j=1�����r

and

∇2f��� =
(

∂2

∂θj∂θk
f���

)
j� k=1�����r

�

and the matrices for i� j = 1� � � � � r:

T∂i = T

(
∂

∂θi
f�

)
� T∂i∂j = T

(
∂2

∂θi∂θj
f�

)
�

A
�1�
i = T−1T∂iT

−1� A�1� = T−1T∇T
−1�

Ã�1� = T̃−1T̃∇T̃
−1� Ãi

�1� = T̃−1T̃∂iT̃
−1�

A
�2�
ij = T−1T∂iT

−1T∂jT
−1� A�2� = T−1T∇T

−1T∇T
−1�

Ã�2� = T̃−1T̃∇T̃
−1T̃∇T̃

−1� Ãij

�2� = T̃−1T̃∂iT̃
−1T̃∂jT̃

−1�

A
�3�
ij = T−1T∂i∂jT

−1� A�3� = T−1T∇2T−1�

Ã�3� = T̃−1T̃∇2T̃−1� Ãij

�3� = T̃−1T̃∂i∂jT̃
−1�

where T = Tn�f��, T∇ = Tn�∇f��, T∇2 = Tn�∇2f��, T̃ = Tn�f̃��m�, T̃∇ =
Tn�∇f̃��m�, T̃∇2 = Tn�∇2f̃��m�.

The next three results show that the approximate maximum likelihood es-
timates obtained by the truncation approach are consistent, asymptotically
normal, and efficient. Their proofs are given in the next subsection.

Theorem 3.1 (Consistency). Assume that m = nβ with β > 0, then as
n → ∞,

�̃n�m → �0 in probability�

Theorem 3.2 (Central limit theorem). Suppose that m = nβ with β ≥ 1/2,
then as n → ∞,

√
n��̃n�m − �0� →� N�0� �−1��0���
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where “→� ” denotes convergence in distribution and ���� = ��ij���� with

�ij��� =
1

4π

∫ π

−π

{
∂ log k�ω���

∂θi

}{
∂ log k�ω���

∂θj

}
dω�

and

k�ω��� =
∣∣∣∣
∞∑
j=0

ψj���eijω
∣∣∣∣
2

�

Theorem 3.3 (Efficiency). Assume that m = nβ with β ≥ 1/2, then �̃n�m is
an efficient estimator of �0.

Before proving these theorems, we first establish some auxiliary lemmas.
In what follows, the symbol K denotes a generic constant which may vary
from line to line.

Lemma 3.1. Let ψj be the coefficients given in (3.1), then for j large and
ε > 0,

�i� �ψj���� ≤ Kjd−2�

�ii�
∣∣∣∣ ∂

∂θi
ψj���

∣∣∣∣ ≤ Kjd−2+ε� i = 1� � � � � r�

�iii�
∣∣∣∣ ∂2

∂θi∂θl
ψj���

∣∣∣∣ ≤ Kjd−2+2ε� i� l = 1� � � � � r�

Proof. (i) ψ�z� = �	�z�/��z���1 − z�−d+1 = ∑∞
j=0 ψjz

j. Define ϕ�z� =
�	�z�/��z�� = ∑∞

k=0 ϕkz
k and η�z� = �1−z�−d+1 = ∑∞

k=0 ηkz
k. The coefficients

ϕk can be written [cf. Brockwell and Davis (1991), page 92] as

ϕk =
m∑
i=1

ri−1∑
l=0

αilk
lξki � k ≥ max�p�q+ 1� − p�

where m is the number of distinct roots of ��z�, �ξi� < 1 is the inverse of the
ith root of ��z� with multiplicity ri and αil are constants. Let L ≥ max�p�q+
1� − p, then

�ψj� =
∣∣∣∣
L∑

k=0

ϕkηj−k +
∞∑

k=L+1

ϕkηj−k

∣∣∣∣
=

∣∣∣∣
L∑

k=0

ϕkηj−k +
∞∑

k=L+1

[ m∑
i=1

ri−1∑
l=0

αilk
lξki

]
ηj−k

∣∣∣∣
≤

L∑
k=0

�ϕk� �ηj−k� +
m∑
i=1

ri−1∑
l=0

�αil�
[ ∞∑
k=L+1

kl�ξi�k�ηj−k�
]
�
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Observe that for k ≥ L, there exist constants cl ≥ 0 and 0 < ai < 1 such that
kl�ξi�k ≤ cla

k
i . This can be seen as follows. Let ai = �ξi� + εi where εi > 0.

Then o < ai < 1 (since �ξi� < 1, it is always possible to find such an εi). For
l ≥ 0, kl��ξi�/ai�k → 0 as k → ∞. Thus, for k ≥ L, there is a constant cl such
that kl��ξi�/ai�k ≤ cl, which implies kl�ξi�k ≤ cla

k
i . Therefore,

�ψj� ≤
L∑

k=0

�ϕk� �ηj−k� +
m∑
i=1

ri−1∑
l=0

�αil�
[ ∞∑
k=L+1

cla
k
i �ηj−k�

]

≤
L∑

k=0

�ϕk� �ηj−k� +
m∑
i=1

ri−1∑
l=0

�αil�cl
[ ∞∑
k=0

aki �ηj−k�
]

=
L∑

k=0

�ϕk� �ηj−k� + �ηj�
m∑
i=1

ri−1∑
l=0

�αil�cl
[ ∞∑
k=0

aki P�k� j�d�
]
�

where

P�k� j�d� = ηj−k
ηj

= j!�j− k+ d− 2�!
�j− k�!�j+ d− 2�! �

since

ηj−k = �j− k+ d− 2�!
�j− k�!�d− 2�! and ηj = �j+ d− 2�!

j!�d− 2�! �

Thus,

�ψj� ≤
L∑

k=0

�ϕk� �ηj−k� + �ηj�
m∑
i=1

ri−1∑
l=0

�αil�clF�1�−j�2 − d− j� ai��

where F is the hypergeometric function [cf. Hosking (1981)]. Moreover,
�ηj−k� ≤ �ηj−L�, for 0 ≤ k ≤ L. This implies

�ψj� ≤ �ηj−L�
L∑

k=0

�ϕk� + �ηj�
m∑
i=1

ri−1∑
l=0

�αil�clF�1�−j�2 − d− j� ai��

As j → ∞, F�1�−j�2−d− j� ai� → �1− ai�−1 [cf. Hosking (1981)], and for j
large, �ηj� ∼ Kjd−2 and �ηj−L� ∼ Kjd−2 (for fixed L). Therefore, for large j,

�ψj� ≤ Kjd−2
[ L∑
k=0

�ϕk� +
m∑
i=1

ri−1∑
l=0

�αil�
1 − ai

]
�

Since �∑L
k=0 �ϕk�+

∑m
i=1

∑ri−1
l=0 ��αil�/1 − ai� is a rational function of the param-

eter � ∈ 	, it is continuous. Given that the parameter space 	 is compact,
there is a constant K such that

L∑
k=0

�ϕk� +
m∑
i=1

ri−1∑
l=0

�αil�
1 − ai

≤ K�
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Thus,

�ψj� ≤ Kjd−2�

Parts (ii) and (iii) are proved analogously to part (i). ✷

Lemma 3.2. (i) Let �ak� be a sequence of numbers such that

lim
m→∞amm

1−β = �β�c�

then

lim
m→∞

1
mβ

m∑
k=0

ak = c�

(ii) If γk is the autocovariance function of a differenced ARFIMA process,
then

lim
m→∞

∑m
k=0 γk�d�
m2d−2

= K�

(iii) If η�k� are the coefficients of the MA�∞� expansion of the differenced
fractional noise, η�z� = ∑∞

k=1 ηkz
k = �1 − z�−d+1, then

lim
m→∞

∑∞
k=m η2

k

m2d−3
= K�

(iv) For large n, ∑∞
k=n k

2d−4

n2d−3
≤ K�

Proof. (i) For simplicity, assume β > 0; the proof for β < 0 is analogous.
By the assumption, for all ε > 0, there exists a k0 such that for all k > k0,
�akk1−β − βc� < ε. Thus,∣∣∣∣

∑m
k=0 ak
mβ

− c

∣∣∣∣ ≤
∑k0−1

k=0 �ak�
mβ

+
∑m

k=k0
�ak − cβkβ−1�
mβ

+
∣∣∣∣cβ

∑m
k=k0

kβ−1

mβ
− c

∣∣∣∣�
Taking limits in m on both sides, with fixed k0,

lim
m→∞

∣∣∣∣
∑m

k=0 ak
mβ

− c

∣∣∣∣ ≤ ε lim
m→∞

∑m
k=k0

kβ−1

mβ
+ lim

m→∞ cβ

∣∣∣∣
∑m

k=k0
kβ−1

mβ
− 1
β

∣∣∣∣�
Since

lim
m→∞

∑m
k=k0

kβ−1

mβ
= lim

m→∞
1
m

m∑
k=k0

�k/m�β−1 ≤
∫ 1

0
xβ−1 dx = 1

β
�

for all ε > 0,

lim
m→∞

∣∣∣∣
∑m

k=0 ak
mβ

− c

∣∣∣∣ ≤ ε

β
�
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Since γk ∼ k2d−3, statement (ii) follows from (i). Parts (iii) and (iv) are proved
as follows. Let β = 2d− 3 < 0. Then

lim
n→∞

∑∞
k=n k

β−1

nβ
= lim

n→∞

∞∑
k=n

�k/n�β−1 1
n

= lim
n→∞

∞∑
j=0

�j/n+ 1�β−1 1
n
�

By Pólya and Szegö [(1992), page 53], the last sum equals
∫∞

0 �x+ 1�β−1 dx =
1/�β�� ✷

Lemma 3.3. Let m = nβ with β > 0. Then, for ε > 0 and for large n, the
following inequalities hold:

�i� �T− T̃� ≤ Knβ�2d−2��

�ii� �T∇ − T̃∇� ≤ Knβ�2d−2+ε��

�iii� �T∇2 − T̃∇2� ≤ Knβ�2d−2+2ε��

where K is a constant which is independent of � and n, and �A� =
supx��x′A′Ax�/x′x� is the spectral norm of A.

Proof. (i) The covariance matrices T and T̃ are of dimensions n× n sat-
isfying

�T− T̃l� j =
∫ π

−π

[
f��ω� − f̃m���ω�

]
eiω�l−j� dω = T�h��

with h�ω� = f��ω� − f̃m���ω� = ∑∞
j=0�γj − γ̃j�eiωj, where γj and γ̃j are

the autocovariance functions of models (3.1) and (3.2), respectively. There-
fore, �h�ω�� ≤ ∑m

j=0 �γj − γ̃j� +
∑∞

j=m+1 �γj� ≤ Km2d−2 = Knβ�2d−2�, by Lemma
3.2 (ii). Furthermore, T�h� = T�h+−h−� = T�h+�−T�h−� and then �T�h�� ≤
�T�h+�� + �T�h−��. Since T�h+� ≥ 0 and T�h−� ≥ 0, �T�h�� ≤ �T�h+�1/2�2 +
�T�h−�1/2�2. On the other hand, �T�h+�1/2�2 = supx��x′T�h+�x�/x′x� and

x′T�h+�x =
∫ π

−π
h+�ω�

∣∣∣∣
n∑

j=1

xje
iωj

∣∣∣∣
2

dω

≤
∫ π

−π
�h�ω��

∣∣∣∣
n∑

j=1

xje
iωj

∣∣∣∣
2

dω

≤ Km2d−2
∫ π

−π

∣∣∣∣
n∑

j=1

xje
iωj

∣∣∣∣
2

dω

≤ Km2d−2x′x�

Hence, �T�h+�1/2�2 ≤ Km2d−2. Analogously, �T�h−�1/2�2 ≤ Km2d−2. Thus,
�T− T̃� ≤ Km2d−2 = Knβ�2d−2�. Parts (ii) and (iii) are proved analogously. ✷
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Lemma 3.4. Let m = nβ with β > 0. Then as n → ∞, uniformly in �, we
have the following:

(i) For β > 0, �T− T̃� → 0,
(ii) for β > 0, �T−1 − T̃−1� → 0,

(iii) for β > 0, �T∂i − T̃∂i� → 0, for i = 1� � � � � r,

(iv) for β ≥ 1/2,
√
n�A�1�

i − Ãi

�1�� → 0, for i = 1� � � � � r,

(v) for β ≥ 1/2, �A�2�
ij − Ãij

�2�� → 0, for i� j = 1� � � � � r,

(vi) for β ≥ 1/2, �A�3�
ij − Ãij

�3�� → 0, for i� j = 1� � � � � r.

Proof. (i) From Lemma 3.3(i), �T − T̃� ≤ Knβ�2d−2�. Thus, for d < 1/2,
the result holds.

(ii) The matrix T satisfies x′Tx ≥ Kx′x uniformly in �, where K is a con-
stant. By part (i), for ε > 0, there exists n0, independent of �, such that for
n ≥ n0, �T − T̃� ≤ ε, where �A�2 = supx∈Rn��x′AA′x�/x′x� is the square of
the spectral norm of the matrix A. Thus, �x′Tx− x′T̃x� ≤ εx′x� and

x′T̃x ≥ x′Tx− εx′x ≥ �k− ε�x′x�

It follows that �T̃−1� ≤ K uniformly in �. Using the property �AB� ≤ �A��B�
[see Dahlhaus (1989)], �T−1 − T̃−1� ≤ �T−1��T̃−1��T − T̃� ≤ K�T − T̃�. By
part (i), the last term tends to zero uniformly in � and hence (ii).

(iii) The proof of (iii) is analogous to (i) by means of the property �T∂i −
T̃∂i� ≤ Knβ�2d−2+ε� from Lemma 3.3(ii).

(iv) Observe that
√
n�A�1�

i − Ãi

�1�� = √
n�T−1T∂iT

−1 − T̃−1T̃∂iT̃
−1�

≤ √
n�T−1T∂iT

−1 −T−1T∂iT̃
−1�

+√
n�T−1T∂iT̃

−1 − T̃−1T∂iT̃
−1�

+√
n�T̃−1�T∂i − T̃∂i�T̃−1�

≤ √
n�T−1T∂i��T−1 − T̃−1�

+√
n�T̃−1T∂i��T−1 − T̃−1� +√

n�T̃−1�2�T∂i − T̃∂i�
≤ K

√
n�T−1 − T̃−1� +K

√
n�T∂i − T̃∂i�

≤ Kn�2d−2�β+1/2�

Thus, for d < 1/2 and β ≥ 1/2, uniform convergence is obtained and hence
(iv). Parts (v) and (vi) are proved analogously to part (iv). ✷

Lemma 3.5. For β ≥ 1/2, as n → ∞, uniformly in �,

�i� 1√
n
� tr�T−1T∂i − T̃−1T̃∂i� → 0 for i = 1� � � � � r�
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�ii� 1
n
� tr�T−1T∂iT

−1T∂j − T̃−1T̃∂iT̃
−1T̃∂j� → 0 for i� j = 1� � � � � r�

�iii� 1√
n
� tr�T−1T∂i∂j − T̃−1T̃∂i∂j� → 0 for i� j = 1� � � � � r�

Proof. (i) Observe that

1√
n
� tr�T−1T∂i − T̃−1T̃∂i� ≤

1√
n
� tr�T−1T∂i −T−1T̃∂i�

+ 1√
n
� tr��T−1 − T̃−1�T̃∂i�

≤ 1√
n
�T−1��T∂i − T̃∂i� +

1√
n
�T−1 − T̃−1��T̃∂i�

≤ K
√
n�T∂i − T̃∂i� +K

√
n�T−1 − T̃−1�

≤ Kn�2d−2�β+1/2�

Thus, by parts (ii) and (iii) of Lemma 3.4, for d < 1/2 and β ≥ 1/2, (i) holds.
Parts (ii) and (iii) are proved analogously to part (i). ✷

Lemma 3.6. Let m = nβ with β > 0. Then uniformly in �,

lim
n→∞

1
n

log det�T̃T−1� = 0�

Proof.

1
n

log det�T̃T−1� ≤ log
{

1
n

tr�T̃T−1�
}
= log

{
1
n

tr�T−1�T̃−T� + 1
}
�

Since T−1 ≤ KIn uniformly in �,∣∣∣∣
{

1
n

tr�T−1�T̃−T�
}∣∣∣∣ ≤ K

∣∣∣∣
{

1
n

tr�T̃−T�
}∣∣∣∣ = K

∞∑
k=m+1

ψ2
k����

By Lemma 3.1(i), for large k, ψk���2 ≤ Kk2d−4. Thus, for large m,
∞∑

k=m+1

ψ2
k��� ≤ K

∞∑
k=m+1

k2d−4�

By Lemma 3.2(iv),
∑∞

k=m+1 k
2d−4 ≤ Km2d−3. Thus,

∑∞
k=m+1 ψ

2
k��� ≤ Km2d−3 =

Knβ�2d−3�� Since 2d−3 < 0 and β > 0, nβ�2d−3� → 0 as n → ∞. This completes
the proof. ✷

The ML estimates of the differenced fractional ARIMA model are obtained
by maximizing

Ln��� = − 1
n

log det T̃n��� −
1
n
Z′

nT̃
−1
n ���Zn�
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and the truncated ML estimates of the differenced fractional ARIMA model
are given by the maximization of

L̃n��� = − 1
n

log det T̃n�m��� −
1
n
Z′

nT̃
−1
n�m���Zn�

Lemma 3.7. Let m = nβ, with β > 0. Then as n → ∞,

sup
�

�L̃n��� −Ln���� → 0 a.s.

Proof. Observe that

�L̃n��� −Ln���� ≤
1

2n
log det�T̃T−1� + 1

2n
Z′

nZn�T̃−1 −T−1��

By Lemma 3.6, �1/2n� log det�T̃T−1� → 0 and by page 133 of Hannan (1973),
�1/2n�Z′

nZn → γ0/2 a.s. as n → ∞ where γ0 is the variance of the process
�Zt�. From Lemma 3.4(ii), �T̃−1 − T−1� → 0 uniformly in � as n → ∞. This
completes the proof of our result. ✷

3.2. Proofs of Theorems.

Proof of Theorem 3.1 (Consistency). By Lemma 3.7, sup� �L̃n��� −
Ln���� → 0 a.s., as n tends to infinity. Clearly,

−L̃n��� ≤ �L̃n��� −Ln���� −Ln����
Then,

sup
�

�−L̃n���� ≤ sup
�

�L̃n��� −Ln���� + sup
�

�−Ln�����

Equivalently,

− inf
�
L̃n��� ≤ sup

�
�L̃n��� −Ln���� − inf

�
Ln����

or

inf
�
Ln��� − inf

�
L̃n��� ≤ sup

�
�L̃n��� −Ln�����

Similarly,

inf
�
L̃n��� − inf

�
Ln��� ≤ sup

�
�L̃n��� −Ln�����

Thus, ∣∣∣inf
�
L̃n��� − inf

�
Ln���

∣∣∣ ≤ sup
�

�L̃n��� −Ln�����

Therefore, ∣∣∣inf
�
L̃n��� − inf

�
Ln���

∣∣∣ → 0 a.s.�(3.6)
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as n goes to infinity. Let U��0� be a neighborhood of �0 with radius δ0. By
virtue of the triangle inequality,∣∣∣inf

�
L̃n��� − inf

U��0�
Ln���

∣∣∣ ≤ ∣∣∣inf
�
L̃n��� − inf

�
Ln���

∣∣∣+ ∣∣∣inf
�
Ln��� − inf

U��0�
Ln���

∣∣∣�
By (3.6), the first term on the right-hand side converges to zero a.s., and

hence in probability. On the other hand, � inf � Ln��� − infU��0�Ln���� → 0, in
probability, since the MLE, �̂n → �0 in probability, by Theorem 3.1 of Dahlhaus
(1989). Thus, ∣∣∣inf

�
L̃n��� − inf

U��0�
Ln���

∣∣∣ → 0 in probability�

which implies �̃n�m → �0 in probability, as required. ✷

Proof of Theorem 3.2 (Central limit theorem). It suffices to prove the
following results:

�i� sup
�∈	

√
n�∇Ln��� − ∇L̃n���� → 0 a.s.,

�ii� sup
�∈	

�∇2Ln��� − ∇2L̃n���� → 0 a.s.

(i) The gradient of Ln��� can be written as

∇Ln��� =
1

2n
tr�T−1T∇ −

1
2n

Z′
nA

�1�Zn�

and

∇L̃n��� =
1

2n
tr�T̃−1T̃∇ −

1
2n

Z′
nÃ

�1�Zn�

Hence,

√
n�∇Ln��� − ∇L̃n���� ≤

1
2
√
n
� tr�T−1T∇ − T̃−1T̃∇� +

Z′
nZn

2n

√
n�A�1� − Ã�1���

Observe that

1
2
√
n
� tr�T−1T∇ − T̃−1T̃∇� =

1
2
√
n

( r∑
i=1

� tr�T−1T∂i − T̃−1T̃∂i�2
)1/2

�

By Lemma 3.5(i), �1/2√n�� tr�T−1T∂i − tr�T̃−1T̃∂i� goes to zero uniformly in
�, as n goes to infinity. Hence, the same result holds for �1/2√n�� tr�T−1T∇ −
tr T̃−1T̃∇�. On the other hand, Z′

nZn/2n is asymptotically equal to γ0/2 and

√
n�A�1� − Ã�1�� = √

n

( r∑
i=1

�A�1�
i − Ã

�1�
i �2

)1/2

�

By Lemma 3.4(iv), for i = 1� � � � � r,
√
n�Ai

�1�−Ãi

�1�� → 0 as n → ∞ uniformly
in �. Thus (i) is established.
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(ii) The second derivatives of Ln��� can be written as

∇2Ln��� = − 1
2n

tr�T−1T∇T
−1T∇ +

1
2n

tr�T−1T∇2

+ 1
2n

Z′
nA

�2�Zn − 1
2n

Z′
nA

�3�Zn�

and

∇2L̃n��� = − 1
2n

tr�T̃−1T̃∇T̃
−1T̃∇ +

1
2n

tr�T̃−1T̃∇2

+ 1
2n

Z′
nÃ

�2�Zn − 1
2n

Z′
nÃ

�3�Zn�

Hence,

�∇2L��� − ∇2L̃���� ≤ 1
2n

� tr�T−1T∇T
−1T∇ − T̃−1T̃∇T̃

−1T̃∇��

+ 1
2n

� tr�T−1T∇2 − T̃−1T̃∇2��

+ 1
2n

Z′
nZn�A�2� − Ã�2�� + 1

2n
Z′

nZn�A�3� − Ã�3��
= I+ II+ III� say�

Now

I = 1
2

( r∑
i=1

[
1
n
� tr�T−1T∂iT

−1T∂i − T̃−1T̃∂iT̃
−1T̃∂i��

]2)1/2

�

By Lemma 3.5(ii), this term converges to zero for β ≥ 1/2 uniformly in �. Also,

II = 1
2n

∣∣∣∣
r∑

i=1

tr�T−1T∂i∂i − T̃−1T̃∂i∂i�
∣∣∣∣

≤ 1
2

r∑
i=1

1
n
� tr�T−1T∂i∂i − T̃−1T̃∂i∂i���

and by virtue of Lemma 3.5(iii), the right-hand side converges to zero for
β ≥ 1/2 uniformly in �. Finally, since Zn

′Zn/2n ∼ γ0/2, �A�2� − Ã�2�� =
�∑r

i� j=1 �A�2�
ij − Ã

�2�
ij �2�1/2 → 0 as n → ∞ from Lemma 3.4 (v), and �A�3� −

Ã�3�� = �∑r
i� j=1 �A�3�

ij − Ã
�3�
ij �2�1/2 → 0 according to Lemma 3.4(vi), III → 0

and hence (ii) is established. ✷

Proof of Theorem 3.3 (Efficiency). Let In��0� and Ĩn��0� be the Fisher
information matrices of the exact and truncated model evaluated at �0, re-
spectively. Then,

1
n
In��0� −

1
n
Ĩn��0� = n tr�T−1T∇T

−1T∇ − T̃−1T̃∇T̃
−1T̃∇��
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An application of Lemma 3.5(ii) yields

lim
n→∞

(
1
n
In��0� −

1
n
Ĩn��0�

)
= 0�

Therefore, by Theorem 5.1 of Dahlhaus (1989),

lim
n→∞

1
n
Ĩn��0� = ���0�� ✷

4. Monte Carlo experiments. In order to assess the performance of the
approximate state space methodology, a number of Monte Carlo simulations
are carried out. The data are simulated from a fractional noise process

yt = �1 −B�−dεt�(4.1)

and from an ARFIMA�1� d�1� process

�1 −φB�yt = �1 − θB��1 −B�−dεt�(4.2)

In both cases, the white noise sequences �εt� are independent standard normal
random variables.

The values of the long-memory parameter d vary from 0.05 to 0.40, and
the sample sizes vary from 100 to 10,000 observations. The simulation results
are reported in Tables 1 to 5. In Tables 1 to 3, the first column represents the
true value of the long-memory parameter d. The second column corresponds
to the average of the estimated parameter d̂, whereas the third column is the
estimated standard deviation of d̂. The fourth column shows the average of
the MLE σ̂ of the standard deviation of the white noise σ , and the fifth column
gives the estimated standard deviation of σ̂ . Similarly, Tables 4 and 5 give the
results for an ARFIMA�1� d�1� model. All averages and standard deviations
are based on 100 repetitions.

Table 1 displays the results for the exact ML estimation with a sample size
of 100 observations. As shown in the second column, the means of the esti-
mated parameters d̂ are close to their expected value, d. The sample standard
deviations (see third column) are also close to their expected value of 0.077.
Similarly, the sample means and standard deviations for σ̂ are as expected, 1
and 0.071, respectively.

Table 1

Exact maximum likelihood estimation of d and
σ� n = 100

d d̂ S.D. (d̂) �̂ S.D. (�̂)

0.10 0.098 0.071 0.986 0.067
0.20 0.199 0.072 1.01 0.066
0.30 0.289 0.067 0.984 0.071
0.40 0.391 0.072 0.996 0.069
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Table 2

Truncated maximum likelihood estimation of d
and σ� m = 6� and n = 100

d d̂ S.D. (d̂) �̂ S.D. (�̂)

0.10 0.104 0.075 1.01 0.070
0.20 0.203 0.078 0.995 0.069
0.30 0.297 0.069 0.997 0.065
0.40 0.410 0.074 1.02 0.072

Simulation results for the approximate MLE are given in Table 2. The
sample size is 100 and the truncation parameter is m = 6. The observed
means for d̂ are close to their expected values, and the standard deviations
are, as expected, close to 0.077. Analogously, the sample mean and standard
deviations of σ̂ are also in close agreements with their expected values, 1 and
0.071 respectively. The estimated values in Table 2 compare favorably with
the results reported in Li and McLeod (1986) and Sowell (1992) where the
exact MLE approach is considered. The computational time, however, is much
faster for the truncated MLE approach used in Table 2.

Table 3 consists of simulations of 10�000 observations from the same class of
models. As indicated clearly in this case, the truncated MLE works extremely
well with the truncation parameter m as small as 14.

Tables 4 and 5 display the results for the ARFIMA�1� d�1� experiments
with a sample size of 1,000 observations. Simulation results for the exact and
approximate MLE are shown in Table 4 and Table 5, respectively. For the
approximate MLE, the truncation parameter is m = 30. Again, with such a
small m relative to a sample of size 1,000, the values reported in Tables 4
and 5 are in close agreement, demonstrating the efficient performance of the
truncated MLE.

These Monte Carlo studies suggest that the exact and the approximate
ML state space methodology developed in this paper performs well even for
samples with only 100 observations. In the fractional noise case, as the sample
size increases from 100 to 10,000, the truncation parameter only has to be
increased from 6 to 14. This indicates that when applying the approximate

Table 3

Truncated maximum likelihood estimation of d
and σ� m = 14� and n = 10�000

d d̂ S.D. (d̂) �̂ S.D. (�̂)

0.05 0.048 0.009 1.00 0.007
0.10 0.100 0.008 1.00 0.005
0.20 0.202 0.009 1.00 0.005
0.30 0.306 0.009 1.00 0.006
0.40 0.398 0.009 1.00 0.006
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Table 4

Exact maximum likelihood estimation of ARFIMA�1� d�1� model with φ = −0�50� θ =
−0�30 and n = 1�000

d d̂ �̂ �̂ �̂ S.D. (d̂) S.D. (�̂) S.D. (�̂) S.D. (�̂)

0.10 0.103 −0.501 −0.294 0.999 0.034 0.112 0.140 0.023
0.20 0.196 −0.497 −0.299 1.01 0.038 0.135 0.163 0.021
0.30 0.299 −0.508 −0.306 1.00 0.037 0.130 0.139 0.022
0.40 0.401 −0.505 −0.307 1.01 0.036 0.128 0.155 0.023

Table 5

Truncated maximum likelihood estimation of ARFIMA�1� d�1� model with φ = −0�50� θ =
−0�30� m = 30 and n = 1�000

d d̂ �̂ �̂ �̂ S.D. (d̂) S.D. (�̂) S.D. (�̂) S.D. (�̂)

0.10 0.105 −0.507 −0.309 0.998 0.035 0.115 0.138 0.022
0.20 0.209 −0.511 −0.292 1.02 0.037 0.138 0.144 0.023
0.30 0.301 −0.491 −0.289 1.00 0.037 0.129 0.151 0.024
0.40 0.397 −0.508 −0.305 1.01 0.040 0.131 0.162 0.022

ML technique, a small truncation parameter m relative to the sample size n
still provides very satisfactory results.

5. Conclusions. State space systems are applied to the analysis of long-
memory processes. Unlike the standard ARMA case, a state space represen-
tation for an ARFIMA model has to be infinite-dimensional. Despite this fact,
computation of the likelihood function can be carried out in a finite number
of steps. An approximation to the likelihood functions via truncation provides
an efficient means to calculate the MLE. This procedure possesses similar
desirable asymptotic properties as the exact MLE. Furthermore, simulation
studies suggest that the proposed approach can be extremely efficient. This
new approach offers a promising alternative to estimating the parameters of
a long-memory process.
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