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NONLINEAR PRINCIPAL COMPONENTS I. ABSOLUTELY
CONTINUOUS RANDOM VARIABLES WITH POSITIVE

BOUNDED DENSITIES1

By Ernesto Salinelli

University of Torino

Nonlinear principal components for an absolutely continuous random
vector X with positive bounded density are defined as the solution of a vari-
ational problem in a suitable function space. In this way transformations
depending on all the components of X are obtained. Some properties of
nonlinear principal components are proved: in particular, it is shown that
the set of nonlinear principal transformations of X is an orthonormal basis
for the function space associated with the optimal problem. The spectral
decomposition of X and its covariance matrix with respect to this basis are
given. A notion of marginal nonlinear principal components is sketched
and the relations with nonlinear principal components are shown. Finally,
treating the case of random vectors distributed on unbounded domains,
the existence problem is shown to be related to the global existence of the
moment generating function of X. Since it is not restrictive, definitions and
results are stated in terms of a uniformly distributed random vector.

1. Introduction. Let X = �X1�X2� � � � �Xn�′ be a real random vector (r.v.)
with zero expectation E�X� and positive definite covariance matrix � having
distinct eigenvalues λ1 > λ2 > · · · > λn > 0.

A linear operator T: Rn → Rn is said to be a linear principal component
transformation if each component Tj: Rn → R, j = 1�2� � � � � n, is a solution of
the maximum problem

maximize E
(�A′X�2

)
�

subject to �A�2 = 1� A ∈ L�n��
E
(�A′X��T′

sX�) = 0� s = 1�2� � � � � j− 1� j > 1�

(1)

where �·� denotes the usual sup-norm on L�n�, the linear n-dimensional space
of linear functionals on Rn�

The set of n finite-dimensional variational problems (1) always admits as a
solution an orthogonal operator T whose components are a set of orthonormal
eigenvectorsTj, j = 1�2� � � � � n, of � corresponding to the eigenvalues λj. Since
we assume that eigenvalues λj are distinct, the solution is unique modulo n-
dimensional transformations of the form S = diag
±1�±1� � � � �±1�. The n
components Yj of the r.v. Y = TX are called principal components [in the
sequel, linear principal components (LPCs)]. From (1) it follows that λj =
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Var�Yj� and so Var�Y1� > Var�Y2� > · · · > Var�Yn� > 0. If the components Xj

of X are largely correlated, then by definition the first few LPCs will account
for most of the variation in the original variables. Conversely, the last few
LPCs identify directions with smaller variation, that is, approximately linear
relationships among the original variables.

The definition introduced above is essentially due to Hotelling (1933), but
several other equivalent characterizations of LPCs are known [see, e.g., Jolliffe
(1986)]. Probably the most important of them is owing to Pearson (1901): LPCs
are introduced as solutions of the geometric optimization problem that consists
of finding lines and planes which best fit a set of points in an n-dimensional
space. The best-fitting line identifies the first LPC, and the direction of the
last LPC is orthogonal to the best-fitting plane.

Several authors in the past pointed out the importance of considering trans-
formations that are sensitive to the covariability of the componentsXj through
their higher moments in order to detect nonlinear relationships between them.
This fact motivated many attempts to define “generalized” or “nonlinear” prin-
cipal components: we recall some of the most important among them.

Following the Hotelling approach, in Gnanadesikan [(1977), page 53], LPC
analysis was performed on a r.v. whose components are obtained from X by
“completely specified, but otherwise arbitrary, functions of the original vari-
ables.” In particular, for n = 2, quadratic principal components are defined as
the LPCs of the r.v. X̃ = �X1�X2�X

2
1�X1X2�X

2
2�′. In the same way polyno-

mial principal components can be defined to detect approximate polynomial
relationships in multivariate data, but “practical experience suggests that gen-
erally the method is not very successful because it is heavily affected by small
errors in the data” [Flury (1994)]. Furthermore, the normalizing Euclidean
constraint on the coefficients of the nonlinear terms appears to be theoreti-
cally not well founded; moreover, higher-order nonlinear components are not
orthogonally invariant, as pointed out in Mizuta (1984) for the quadratic case.

More recently, Donnell, Buja and Stuezle (1994) defined, for a standardized
r.v. X, the kth smallest additive principal component (APC) as an additive
function

∑n
i=1 φ

�k�
i �Xi� of the components Xi such that the r.v. ��k� = �φ�k�

i �i
solves

minimize E
(( n∑

i=1

φi�Xi�
)2)

subject to
n∑
i=1

E
(�φi�Xi��2) = 1� φi ∈ Hi�

n∑
i=1

E
(
φi�Xi�� φ�s�

i �Xi�
) = 0� s = 1�2� � � � � k− 1�

(2)

where the Hi’s are closed subspaces of centered, square integrable functions.
In this way the authors were able to study nonlinear additive relations among
predictor variables in additive regression models and to investigate depen-
dencies of low codimension considering all the variables symmetrically. The
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APCs can be considered a genuine generalization of the LPCs. Indeed, when
H1 × · · · ×Hn = L�n�, problem (2) admits as solutions the usual LPCs; more-
over, the APCs are solutions of an opportune eigenproblem. However, whereas
LPCs are defined for both covariance and correlation matrices, APC analysis
works only in the second case: if X is not standardized and φi�Xi� = aiXi,
the normalization constraint

∑n
i=1 E��φi�Xi��2� = 1 does not coincide with

the classical �a�2 = 1 . Furthermore, as pointed out by the authors, “APCs
can only capture structure in pairwise marginals� � � � Structure that depends
on higher-order marginals is elusive for this class of techniques� � � �”

We recall also the works of De Leeuw, Van Rijekevorsel and Van der Wouden
(1981), Koyak (1987) and Gifi (1990), where nonlinear principal components
of a standardized r.v. were defined by minimizing a loss function, but each
transformed variable depended only on the corresponding component of the
initial r.v.

Generalizing Pearson’s work, Hastie and Stuetzle (1989) defined a principal
curve (PC) for the density fX of an absolutely continuous r.v. X with E�X� = 0
and finite second moments as any smooth and compact curve � such that
E�X �π��X� = x� = x for almost every x ∈ �. The map π�: Rn → � assigns
to each x ∈ Rn a point π��x� ∈ � realizing the distance from x to �. Roughly
speaking, a principal curve passes through the middle of a data set, in the
sense that every point on the curve is the average of the observations pro-
jecting onto it. The idea is to introduce a theoretically well-founded method
to fit one-dimensional nonlinear manifolds to multivariate data. The authors
show that if a PC is a straight line, then it is a LPC and moreover that PC
are critical points of the distance function d2�X� �� = E��X−π��X��2�: if �t is
a smooth family of curves such that �0 = �, then

d

dt
d2�X� �t��t=0 = 0�

Although the authors give an algorithm to find the PCs, they are unable to
prove existence results, to estimate how many different PCs can be found for
a given distribution or to investigate their properties.

More recently, Duchamp and Stuetzle (1993, 1995a, b), studying PCs in
the plane, showed that, under appropriate assumptions on � and fX, PCs are
solutions of a second-order ordinary differential equation. In this way it is
possible to compute PCs: in particular, the cases of a uniform density on rect-
angles and annuli were analyzed. Unfortunately the main result of the papers
mentioned above is negative: whereas the largest and the smallest LPCs are
the maximum and minimum of the distance d2�X� ��, respectively, all the PCs
are only saddlepoints. This result in particular implies that cross-validation
is not a viable method for choosing model complexity in the estimation of PCs.

In this paper we introduce a notion of nonlinear principal components
(NLPCs) by extending problem (1) to a function space more general than L�n�
obtaining, from a mathematical point of view, a variational problem on an
infinite-dimensional Hilbert space. In general, this problem seems very diffi-
cult to deal with; for this reason, we have restricted our attention to absolutely



NONLINEAR PRINCIPAL COMPONENTS I 599

continuous r.v.s with positive bounded densities. In this way we have been able
to answer several questions and obtain a basic model that we hope to extend in
our future research to more general settings. Since it is not restrictive, for the
sake of simplicity, definitions and results are stated in terms of a uniformly
distributed r.v.

The notion of NLPC makes it possible to overcome some of the problems
that limit the above-mentioned approaches. First of all, since each NLPC is
a function of all the components of X, it captures structure that depends on
marginals of every order. Second, NLPCs can be defined even for nonstan-
dardized r.v.s as done in the sequel. Finally, NLPCs can be considered to be
a theoretically well-founded generalization of LPCs for several reasons: they
solve a maximum variance problem, are invariant under orthogonal transfor-
mations, their variances are the eigenvalues of an opportune integral operator
and the corresponding eigenfunctions form an orthonormal basis for the func-
tion space where the maximum variance problem is solved.

In what follows, we “translate” (see Section 2) problem (1) to a suitable
space of square integrable functions and introduce the main definition of
NLPCs. Moreover, using some classical results in partial-differential equations
(PDEs) literature, we study the existence problem. In Section 3 some proper-
ties of NLPCs similar to the ones of the linear case are proved. Subsequently,
Section 4 deals with the particular cases of a uniform r.v. on rectangles and an-
nuli: NLPCs are given and it is shown that the nonlinear eigenstructure of X
contains information on size and length of the domain considered. For the rect-
angle, a definition of nonlinear principal components based on the marginals
(MNLPCs) is sketched. It is proved that in general the first n NLPC variances
are greater than the corresponding MNLPCs, whereas equality holds only un-
der particular assumptions on the shape of the rectangle. Finally, in Section 5,
we treat the case of a r.v. distributed on an unbounded domain. In this way the
statistical meaning of the conditions which guarantee the existence of NLPCs
is clarified in terms of the moment generating function.

2. Definition and existence of NLPCs. Let X be an absolutely continu-
ous real r.v. with positive bounded density fX on a domain (an open, connected
set) � ⊂ Rn, that is, there exist positive constants c1 and c2 such that

0 < c1 ≤ fX�x� ≤ c2 ∀x ∈ ��(3)

We also suppose, as usual, that X has finite second moments and E�X� = 0;
furthermore, for the sake of simplicity, we assume m� = 1.

We begin with observing that problem (1) can be restated as

maximize E
(�A′X�2

)
�

subject to �∇A�2 = 1� A ∈ L�n��
E
(�A′X��T′

sX�) = 0� s = 1�2� � � � � j− 1� j > 1�

(4)

where ∇ = �∂/∂xi�i=1�2����� n stands for the gradient operator. It is clear that if
we want to extend problem (4) to nonlinear functions ψ� � → R, we have to
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require them to belong to � 2
fX

= � 2
fX

��� = 
u� ∫
� �u�2fX dx < +∞� equipped,

as usual, with the inner product �u� v�0 = ∫
� uvfX dx and the induced norm

� · �0 = √�u� v�0. Furthermore, to generalize the second condition in (4), it
seems reasonable to look for nonlinear transformations ψ with some smooth-
ness properties: in our context it is natural to assume each ψ to be differen-
tiable in the distributional sense [see Adams (1975)] with derivatives in � 2

fX
.

With this choice we can express the normalization constraint as E��∇ψ�2� = 1.
Under this condition, if ψ maximizes Var�ψ�X��, then every ψ+k, k ∈ R, does
it; thus we limit our attention (as in the linear case) to centered functions ψ,
that is, E�ψ�X�� = 0. In conclusion, we ask that each ψ belongs to the Sobolev
space of zero mean functions Ḣ1

fX
= Ḣ1

fX
��� = 
ψ ∈ � 2

fX
���� E�ψ�X�� =

0�∇ψ ∈ � 2
fX

����. This is a Hilbert space [see Treves (1975)] with respect to
the inner product �u� v�1 = �∇u�∇v�0 and induced norm � · �1. In this way we
are able to express the normalization constraint in terms of the norm of the
space where the maximum problem is given. Finally, note that the set L��n�
of the restrictions to � of elements of L�n� is included in Ḣ1

fX
.

Now we have all the data to introduce our main definition.

Definition 1. Let X be an absolutely continuous r.v. with positive bounded
density on a domain � ⊂ Rn. The random variable Y∗

j = ϕj�X� is said to be
the jth NLPC of X if ϕj is a solution of the problem

maximize E
(
ψ�X�2

)
subject to E

(�∇ψ�X��2
) = 1� ψ ∈ Ḣ1

fX
�

E
(
ψ�X�� ϕs�X�) = 0� s = 1�2� � � � � j− 1� j > 1�

(5)

It is easy to prove that if (3) holds, the spaces Ḣ1
fX

and � 2
fX

coincide, re-
spectively, with Ḣ1 and � 2, obtained with the particular choice fX = 1. Thus,
definitions and results stated for uniform densities hold in general for strictly
positive and bounded densities: for this reason, in the sequel, for the sake of
simplicity, we will refer only to a uniform density.

It is well known [see, e.g., Mikhailov (1978)] that ϕj ∈ Ḣ1 is a solution of
the problem (5) if and only if there exists a constant λ∗

j such that

�ϕj� h�0 − λ∗
j�ϕj� h�1 = 0 ∀h ∈ Ḣ1(6)

with the natural condition of zero normal exterior derivative ∂ϕj/∂η on the
boundary ∂�. This means that ϕj is a weak solution [see, e.g., Treves (1975)]
corresponding to λ∗

j of the Neumann problem

− λ∗%ψ = ψ� x ∈ ��
∂ψ

∂η
= 0� x ∈ ∂��

(7)
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where % = ∑n
i=1 ∂

2/∂x2
i denotes the Laplace operator. Equivalently, ϕj is a so-

lution of problem (5) if and only if it is a normalized eigenfunction of the dif-
ferential operator −% corresponding to the jth characteristic value λ∗

j, where
λ∗

1 ≥ λ∗
2 ≥ · · · ≥ λ∗

j.
From (6) we can conclude that, as in the linear case, the constant λ∗

j repre-
sents the variance of the jth NLPC. Furthermore, from (7) it is obvious that
NLPCs for a uniformly distributed r.v. cannot be linear since L��n� belongs
to the kernel of %: this, in particular, implies λ∗

j > λj for j = 1�2� � � � � n.
Having introduced the notion of NLPCs, we now study the existence prob-

lem. To do this, it is crucial to distinguish whether � is bounded or not. In
the first case, problem (7) is extensively treated in the PDEs literature and
several results are available [see, e.g., Mikhailov (1978) and Treves (1975)].
The following theorem summarizes the most important of them.

Theorem 2. Let � be a bounded domain in Rn with continuous boundary
∂�. Then −% admits countably many real, positive characteristic values λ∗

1 >
λ∗

2 ≥ λ∗
3 ≥ · · ·, corresponding to the Neumann condition; this set has the zero

value as unique finite limit point. Every characteristic value corresponds to a
finite number of eigenfunctions mutually orthogonal in Ḣ1.

Theorem 2 tells us that under sufficiently general assumptions, each r.v.
X, uniformly distributed on a bounded domain � ⊆ Rn, admits countably
many NLPCs with positive variance; the maximum variance λ∗

1 is associated
to the unique (modulo a change of sign) nonlinear component Y∗

1, whereas, for
j > 1, it is possible to obtain a finite set 
Yj�Yj+1� � � � �Yj+k� of uncorrelated
NLPCs which have the same variance. Similarly to the linear case, the se-
quence 
ϕs�s∈N of NLPC transformations represents a (orthonormal) basis for
the space where the maximum variance problem is considered. Furthermore,
Ḣ1 being dense in � 2, the sequence 
λ∗−1

s ϕs�s∈N is an orthonormal basis for
this space. Roughly speaking, the set of NLPCs represents the “largest” family
of uncorrelated random variables that are � 2 transformations of a (uniformly
distributed) r.v. X.

The proof of Theorem 2 depends on two results:

1. Ḣ1 is a Hilbert space;
2. the imbedding i�� Ḣ1 → � 2, i��u� = u, is compact (Rellich’s theorem).

Using these facts, it is possible to prove the existence of a unique bounded
linear (integral) operator G� � 2 → Ḣ1, the so-called Green operator, such that
�ψ�h�0 = �Gψ�h�1 for all h ∈ Ḣ1. Its restriction to Ḣ1 is positive, self-adjoint,
compact and thus (6) can be written as Gψ = λ∗ψ and the conclusions of the
previous theorem follow by standard results on spectral theory for compact
operators on Hilbert spaces. The Green operator is the equivalent of the co-
variance operator � in the sense that if L��n� is considered as subspace of
Ḣ1, the problem �Tj = λjTj can be written as

��Tj�A�1 = λj�Tj�A�1 ∀A ∈ L��n��
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In any case, � is not the restriction of G to L��n�. Indeed, if u ∈ L��n�, then
v = Gu if and only if −%v = u and thus v cannot be linear.

The solutions of problem (5) are elements of Ḣ1, but under some regularity
assumptions on ∂� several results on their regularity can be proved. We limit
ourselves to recall that the eigenfunctions ϕj are always elements of Cω���
(that is, they are analytic in �); furthermore the ϕj’s are smooth on �, the
closure of �, when ∂� is smooth; finally if ∂� is analytic, then ϕj ∈ Cω���
[see, e.g., Egorov and Shubin (1992) or Nečas (1967)]. In this last case, since
by construction 0 ∈ �, we can identify each ϕj with its Taylor series at the
origin and this suggests that our approach can be considered as an infinite-
dimensional generalization of the approach proposed in Gnanadesikan [(1977),
page 53]. Note that if � is bounded, the analyticity of NLPC transformations
implies the existence of all the moments of the r.v. X. Later we will show that
this result holds also for unbounded domains.

To conclude this section we may say that NLPCs can be considered a “nat-
ural” generalization of LPCs for several reasons: L��n� is a subset of Ḣ1 and
if this set in (5) is substituted with L��n�, we obtain problem (1); furthermore
this conclusion also remains true if X is standardized. In the following section
we will show that NLPCs have many properties typical of LPCs.

3. Some properties of NLPCs. It is well known that LPC analysis is
invariant under orthogonal transformations [see, e.g., Mizuta (1984)] in the
sense that if T and T̃ are two LPC operators corresponding to the r.v.’s X and
X̃ = )X, respectively, where )� Rn → Rn is any orthogonal transformation,
then the equality TX =ST̃X̃ holds. NLPC analysis is orthogonally invariant,
too. Indeed, if ) is any such transformation and f is a sufficiently regular
function, we have �% ◦f�) = %�f ◦)� and the conclusion follows from (7).

It is also well known [see, e.g., Jolliffe (1986)] that a r.v. X and its covariance
matrix � always can be decomposed with respect to the orthonormal basis of
Rn consisting of the eigenvectors of �:

X =
n∑
j=1

YjTj� � =
n∑
j=1

λjTjT
′
j�(8)

A trivial computation shows that (8) holds even if we consider L��n� as a
subspace of Ḣ1 and put X = �π1�X�� π2�X�� � � � � πn�X��′, where πj ∈ L��n� is
the projection function πj�x� = xj, j = 1�2� � � � � n.

Following the same idea we are able to obtain the decomposition of X with
respect to the orthonormal basis of Ḣ1 consisting of the eigenfunctions of −%.
Since

Xj =
+∞∑
s=1

Y∗
s�ϕs� πj�1 =

+∞∑
s=1

Y∗
s

∫
�

∂ϕs
∂xj

�x�dx�
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we get

X =
+∞∑
s=1

Y∗
s

∫
�

∇ϕs�x�dx�

The series defining Xj converges also in the � 2 sense and the ϕs are orthog-
onal in � 2. Hence we easily obtain the spectral decomposition of �:

� =
+∞∑
s=1

λ∗
s

(∫
�

∇ϕs�x�dx
)(∫

�
∇ϕs�x�dx

)′
�(9)

where, as usual, λ∗
s are the variances of NLPCs.

In the linear case the operator T preserves the total variability of X, that is,
tr � = tr �Y, where Y = TX and tr denotes the trace operator. This is a direct
consequence of the fact that the scaling factor given by the absolute value of
the Jacobian determinant � detJT� = � detT� is unitary at every point x ∈ ��
In particular, this implies m� = mT�. In the nonlinear context the previous
conclusions are no longer true.

Theorem 3. Let ϕ�n�� � → Rn be the transformation whose components

ϕ
�n�
j , j = 1�2� � � � � n, are the first n NLPC transformations of a uniform r.v. X

on the bounded domain � with C2 boundary. Then
∫
� � detJϕ�n��dx ≤ 1�

Proof. By the assumption on ∂�, the functions ϕ�n�
j ∈ B�Ḣ1� are contin-

uously differentiable. Since

∣∣detJϕ�n�∣∣ ≤
n∏
j=1

∥∥∇ϕ�n�
j

∥∥
by the Jensen and the arithmetic–geometric means inequalities, we obtain(∫

�

∣∣detJϕ�n�∣∣dx)2/n

≤
∫
�

∣∣detJϕ�n�∣∣2/n dx
≤

∫
�

n∑
j=1

∥∥∇ϕ�n�
j

∥∥2

n
dx = 1�

which implies the thesis. ✷

It is necessary, mainly for applications, to introduce some criteria to decide
how many NLPCs must be considered. We know that each nonlinear variance
is strictly greater than the variance of LPCs. By the previous remark we also
know that nonlinear variances take into account the covariability of all the
moments of the r.v. X. We are unable to give a complete answer to the problem.
We limit ourselves to investigate the relations between linear and nonlinear
variances.
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Observe that spectral decomposition (9) permits us to obtain a relation
between the total variability of X and the variances of NLPCs:

tr � =
+∞∑
s=1

λ∗
s

n∑
i=1

(∫
�

∂ϕs
∂xi

�x�dx
)2

�(10)

Now we consider another relation between the linear and nonlinear vari-
ances.

Theorem 4. Let X be a r.v. uniformly distributed on the bounded do-
main �� Then for every k ∈ N\
0� there exists a constant Ck such that

tr � ≥ Ck

k∑k
s=1 λ

∗−1
s

�

Proof. Consider the spaces � 2 and Ḣ1 with their orthonormal bases

ϕsλ∗−1

s � and 
ϕs�, respectively. Since the projection functions πj, j = 1�2�
� � � � n, are elements of both spaces, we consider their Fourier series expan-
sions

πj =




+∞∑
s=1

〈
πj�ϕsλ

∗−1/2
s

〉
0ϕsλ

∗−1/2
s � in � 2�

+∞∑
s=1

�πj�ϕs�1ϕs� in Ḣ1�

The second series converges also in the � 2-norm and we obtain the equality

�πj�ϕs�0ϕsλ
∗−1
s = �πj�ϕs�1�

Now consider the projection π̃j of πj on the k-dimensional, k ≥ 1, subspace of
Ḣ1 generated by the first k eigenfunctions of −%. From Hölder’s inequality it
follows that

∥∥π̃j∥∥2
1 =

k∑
s=1

∣∣〈πj�ϕs〉1∣∣2 =
k∑
s=1

λ∗−1
s

∣∣〈πj�ϕsλ∗−1/2
s

〉
0

∣∣2

≤
k∑
s=1

λ∗−1
s �πj�2

0

∥∥ϕsλ∗−1/2
s

∥∥2
0

= �πj�2
0

k∑
s=1

λ∗−1
s

and we finally have

tr � =
n∑
j=1

�πj�2
0 ≥ k∑k

s=1 λ
∗−1
s

∑n
j=1 �π̃j�2

1

k
� ✷
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Several characterizations of LPCs are given in terms of optimality prop-
erties [see, e.g., Darroch (1965), Okamoto and Kanazawa (1968) and Rao
(1973)]. Some of them are immediately true also in the nonlinear case. In-
deed, by construction, if k is any integer greater than or equal to 1 and
ψ�k� = �ψ1� ψ2� � � � � ψk� with ψj ∈ Ḣ1, the trace and the determinant of �ψ�X�
are maximized by taking ψ�k� = ϕ�k�. The possibility to introduce NLPCs by a
loss function seems (to be) more difficult. We limit ourselves to recalling that
if R−1�ψ = ∫

� ψ
2/

∫
� �∇ψ�2 denotes the reciprocal of the Rayleigh quotient

[see Bandle (1980)], then the so-called Poincaré principle holds: if Ek is an
arbitrary k-dimensional linear subspace of Ḣ1, then

λ∗
k = max

Ek

min
ψ∈Ek

R−1�ψ �

This result is the infinite-dimensional generalization of the one that in the
linear framework allows us to show the equivalence between the variational
and loss-function approaches to LPC analysis.

To conclude our remarks about NLPCs we prove a simple result concerning
the moments of a generic NLPC.

Theorem 5. Let � ⊂ Rn be a bounded domain with smooth boundary.
Then each NLPC Y∗

j of a r.v. X uniformly distributed on � admits moments
of any order and

E
(
Y∗n
j

) = �n− 1�E(
Y∗2
j

) ∫
�
ϕn−2
j �∇ϕj�2� j = 1�2� � � � � n = 2� � � � �

Proof. Since ∂� is smooth it follows from Remark 1 that ϕj ∈ Cp��� for
all p and so Y∗

j = ϕj�X� admits moments of any order. Furthermore, applying
the divergence theorem we obtain

E
(
Y∗n
j

) =
∫
�
ϕnj�x�dx = −λ∗

j

∫
�
ϕn−1
j �x�%ϕj�x�dx

= �n− 1�E(
Y∗2
j

) ∫
�
ϕn−2
j �x��∇ϕj�x��2 dx� ✷

4. Two examples: uniform distributions on rectangles and annuli.
We consider two particular examples which allow us to explore in detail
the meaning and the properties of NLPCs, especially their relationships
with LPCs.

4.1. Uniform distributions on the rectangle. Let X be a r.v. uniformly dis-
tributed on the open rectangle � = ∏n

i=1�−ai/2� ai/2� with a1 ≥ a2 ≥ · · · ≥
an > 0. Since m� = ∏n

i=1 ai, E�X� = 0 and � = diag
a2
1/12� a2

2/12� � � � � a2
n/12�,

the LPC transformation is the identity function.
The characteristic values of −% on � are [see Bandle (1980)]

λ∗
m1� ����mn

=
( n∑
i=1

(
miπ

ai

)2)−1

� mi ∈ ��(11)
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where i = 1�2� � � � � n and �m1�m2� � � � �mn� differs from the zero vector. The
corresponding normalized eigenfunctions are

ϕm1� ����mn
�x� =

[
m�

( n∏
i=1

ξi�mi�
)−1

λ∗
m1� ����mn

]1/2

×
n∏
i=1

cos
(
miπ

ai

(
xi + ai

2

))
�

(12)

where ξi�mi� = ai/2 if mi != 0 and ξi�0� = 1. It is interesting to observe that
if a1 > a2, the first NLPC Y∗

1 of X is a random variable with the celebrated
arcsine distribution on the open interval �−√

2a1 ·m�/π,
√

2a1 ·m�/π�. In-
deed the first characteristic value of −% is λ∗

1 = �a1/π�2 with corresponding
eigenfunction

ϕ1�x� = g�x1� =
√

2a1m�

π
sin

(
π

a1
x1

)
�

Eigenfunctions (12) are obtained with the so-called method of separation of
the variables: they are products of the solutions γij of the variational problems

maximize E
(
ψ�Xi�2

)
subject to E

(�ψ′�Xi��2
) = 1� ψ ∈ Ḣ1��i��

E
(
ψ�Xi�� γis�Xi�

) = 0� s = 1�2� � � � � j− 1� j > 1�

where �i = �−ai/2� ai/2�, i = 1�2� � � � � n, and Ḣ1��i� is defined as in the
multidimensional case. Putting γi = γi1, we call marginal nonlinear principal
components (MNLPCs) the random variables

Zi = γi�Xi� =
√

2ai
π

sin
(
π

ai
Xi

)
� i = 1�2� � � � � n�

The r.v. Z =ϒ�X�, ϒ = �γ1� � � � � γn�, has independent componentsZi, but ϒ does
not necessarily coincide with the identity operator since each γi is sensitive
to all the moments of Xi. In any case, the variances of the MNLPCs are
proportional to the corresponding linear ones:

E�X2
j �

E�Z2
j � = π2

12
� j = 1�2� � � � � n�

It is interesting to note that the zero set of ϒ̃i = �γ1� � � � � γi−1� γi+1� � � � � γn�
coincides with the ith LPC.

The following theorem collects some results about the relations between
NLPCs, MNLPCs and LPCs. Let r = min
k ∈ N\
0�� tr � ≤ tr �Y∗

k
�, where

Y∗
k = ϕ�k��X�. Obviously 1 ≤ r ≤ n.
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Theorem 6. Let � = ∏n
i=1�−ai/2� ai/2� with a1 ≥ a2 ≥ · · · ≥ an > 0. The

following conclusions hold:

(i) r = 1 if and only if a1 ≥
√∑n

i=2 a
2
i π

2/�12 − π2�;
(ii) Var�Zj� ≤ Var�Y∗

j � for all j = 1�2� � � � � n, and Var�Zj� = Var�Y∗
j � if

and only if an > a1/2. Under this assumption, the difference tr �Y∗
r
− tr � is

minimized with m� =constant if and only if r = n and a1 = a2 = · · · = an;
(iii) under the assumption of the previous point, r = n if and only if an >√∑n−1
i=1 a2

i �12 − π2�/π2. In particular, if a1 = a2 = · · · = an, then r = n if and

only if n ≤ 5.

Proof. (i) Since λ∗
1 = �a1/π�2 it is sufficient to note that the request r = 1

is equivalent to �a1/π�2 ≥ �1/12�∑n
i=1 a

2
i .

(ii) The first conclusion follows immediately from (11), the inequality on
the aj’s and the double implication an > a1/2 ⇔ λ∗

0�0� ���� n > λ∗
2� ����0�0.

Now, consider the minimum problem

minimize
1
π2

r∑
i=1

a2
i − 1

12

n∑
j=1

a2
j� 1 ≤ r ≤ n�

subject to
n∏
i=1

ai = V� V ∈ R+� a ∈ Rn�

Introducing the Lagrangian function and imposing the necessary condition for
a minimum, we obtain the system

2
(

1
π2

− 1
12

)
as − µ

V

as
= 0� s = 1�2� � � � � r�

−1
6
as − µ

V

as
= 0� s = r+ 1� � � � � n�

n∏
i=1

ai = V�

(13)

Clearly problem (13) admits a unique solution if and only if r = n. In this
case we obtain a convex objective function and the result follows by solving
system (13).

(iii) Under the assumption an > a1/2 the request r = n is equivalent to

1
π2

n−1∑
i=1

a2
i <

1
12

n∑
i=1

a2
i

and the thesis immediately follows. We omit the trivial proof of the last state-
ment. ✷

Statement (ii) tells us that MNLPCs give the same information as the first n
NLPCs if and only if the “weight” of each componentXi is not too relevant with
respect to the others. Under another point of view, we can say that eigenvalues
λ∗
j are sensitive to the shape of �. Indeed it is an easy task by (11) to verify
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that the eigenfunctions corresponding to the first k eigenvalues depend only
on x1 if and only if a1 > ka2. In particular, in the plane, this means that
if we consider a long, thin rectangular region (along the x1 axis), the two-
dimensional nonlinear eigenstructure of X = �X1�X2� is “similar” to the one
of X1. To remain in the bidimensional case, Sleeman and Zayed (1984) proved
that for the so-called trace function

)�t� = tr
(
e−t%

) =
+∞∑
j=1

exp�−µjt��

where µj = λ∗−1
j , the following asymptotic expansion on rectangular region

�0� a� × �0� b� holds:

)�t� ∼ ab

4πt
+ 2�a+ b�

4�4πt�1/2
+ 1

4
as t → 0�(14)

Thus, we may say that the trace function contains information on the volume
and the length of the perimeter of �.

A final remark: since a trivial computation shows that the zero set of
cos�miπ�xi + ai/2�/ai is given by

xi = ai
mi

(
k− mi + 1

2

)
� mi != 0� k ∈ Z�

we conclude by (11) that in the bidimensional case the zero set (known as
nodal lines) of eigenfunctions corresponding to simple eigenvalues is a union of
equally spaced lines, parallel to the coordinate axis, that is, the intersection of
principal curves with the rectangle [see Duchamp and Stuetzle (1993), page 9].
In the other cases, zero sets can be very complicated [see Courant and Hilbert
(1989)]: they probably contain principal curves.

4.2. Uniform distributions on the annulus. Consider now a uniform distri-
bution on the annulus (in polar coordinates) � = 
�ρ� θ�� 0 < R1 < ρ < R2� θ ∈
�0�2π �. Obviously E�X� = 0 and X has uncorrelated but not independent
components. By the separation of variables method it can be shown that the
characteristic values λ∗

n�m of −% are of the form

λ∗
n�m = R2

1

x2
�

where x is the nth root of the cross-product derivative Bessel equation

J′
m�x�N′

m�δx� −J′
m�δx�N′

m�x� = 0� m ∈ ��

Jm and Nm are Bessel functions of order m of the first and second kind, re-
spectively, and δ = R2/R1 [see, e.g., Arfken (1966)]. The corresponding eigen-
functions are

ϕn�m�ρ� θ� = Jm

(√
µ∗
n�mρ

)
�αn�m cosmθ+ βn�m sinmθ�

+Nm

(√
µ∗
n�mρ

) (
α̃n�m cosmθ+ β̃n�m sinmθ

)
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with µ∗
n�m = λ∗−1

n�m. Since the constants αn�m, βn�m� α̃n�m and β̃n�m are arbitrary
when m != 0, all the eigenvalues are at least double since, if α̃n�m = β̃n�m = 0,
the associated eigenfunctions Jm

(√
λ∗
n�mρ

)
cosmθ and Jm

(√
λ∗
n�mρ

)
sinmθ are

linearly independent.
For the annulus the definition of MNLPC is not immediate: the marginal

distributions are not uniform and so definitions and results previously ob-
tained are not available. The notion of weighted Sobolev space is necessary,
but we do not develop this subject here.

Sleeman and Zayed (1984) showed that

)�t� ∼ π�R2
2 −R2

1�
4πt

+ 2π�R1 +R2�
4�4πt�1/2

+O
(
t1/2

)
as t → 0�

that is, the spectral decomposition of X into NLPCs determines the area of �
and the length of its boundary ∂� as happens for rectangular regions. Fur-
thermore, the constant term in (14) is now zero because � presents one hole.

5. Unbounded domains. In Section 2 we showed that a r.v. uniformly
distributed on a bounded domain � with sufficiently regular boundary ∂�
always admits NLPCs. It is evident that such a r.v. has finite moments of
every order and its moment generating function (m.g.f.) ψX�t� = E�e�t�X�� is
finite for any t ∈ Rn.

Now, if X is distributed on an unbounded domain �, the existence of its
moments is not guaranteed. The main result of this section is that if ∂� is
sufficiently regular, the existence of NLPCs can be considered equivalent to
the global existence of ψX. This result appears (to be) reasonable since NLPCs
are “objects” sensitive to the covariability between the moments of every order
of X.

So, let X be a uniformly distributed r.v. on the unbounded domain � in Rn

with m� = 1. We suppose that X has expectation and finite second-order mo-
ments. To apply the previous variational approach to our eigenvalue problem
we need to prove the compactness of the imbedding i�� Ḣ1 → � 2� This result
is more difficult to obtain with respect to the bounded case since both the reg-
ularity of ∂� and its behavior at infinity are relevant. We start by recalling a
simple necessary condition of compactness.

Theorem 7 (Adams and Fournier (1971a). Let � be a domain in Rn. If i�
is compact the following conclusions hold:

(i) m� < +∞;
(ii) limr→+∞ ekrm�r = 0 ∀k, where �r = 
x ∈ �� �x� > r�.

The first statement is obviously equivalent to the possibility of defining a
r.v. uniformly distributed on �� The second statement allows us to prove the
following theorem.

Theorem 8. If i� is compact, then X admits moments of every order.
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Proof. From Theorem 7 the compactness assumption implies conclu-
sion (ii). This implies the existence of an index n such that for every n > n
and for any positive integer k we have m�n < e−nk. Furthermore,∫


n<�x�<n+1�∩�
�x�k dx ≤ �n+ 1�km
n < �x� < n+ 1� ∩�

≤ �n+ 1�km�n

≤ �n+ 1�ke−nk�
So the series

∑+∞
n=0

∫

n<�x�<n+1�∩� �x�k dx converges and this proves the the-

sis. ✷

The statement of the last theorem cannot be reversed: later we will show
that if a r.v. X is uniformly distributed on � = 
�x�y� ∈ R2� x > 0, 0 <
y < e−x�, then it admits moments of every order but the imbedding i� is not
compact.

The following theorem tells us that even if we consider more restrictive
assumptions on the moments of X, the compactness of i� is not guaranteed.

Theorem 9. Condition (ii) in Theorem 7 is equivalent to the existence on
Rn of the m.g.f. of X.

Proof. The existence on Rn of ψX is equivalent to

lim
r→+∞

∫
�r

e�t� x� dx = 0 ∀t ∈ Rn(15)

and so we prove the theorem with respect to this condition. Since

e��t�x�� ≤ e�t�x� + e−�t�x��

if (15) holds, then limr→+∞
∫
�r
e��t�x�� dx = 0 ∀t. So if we put t = �α�0� � � � �0�,

we obtain ∫
�r

e��t� x�� dx =
∫
�r

exp��α� �x1��dx ≥ e�α�rm�r

and the thesis follows immediately from the choice �α� = k.
Conversely, let t ∈ Rn and choose k > 0 such that �t� < k. Then if n ∈ N, we

have ∫
�∩
n<�x�<n+1�

e�t� �x� dx < e�t��n+1�m
n < �x� < n+ 1� ∩�

≤ e�t��n+1�m�n

≤ Ce�t��n+1�e−kn

= Ce−n�k−�t��+�t��

which implies the convergence of
∫
� e

�t� �x� dx. ✷
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The result stated in Theorem 9 tells us that it is not sufficient that the tail
of the distribution of X converges quickly to zero to obtain the compactness of
i�: as in the bounded case, a sufficient regularity of ∂� is also crucial.

Necessary and sufficient or just sufficient conditions for the compactness of
i� are known [see, e.g., Adams and Fournier (1971a) or Berger (1991)], but they
are difficult to apply. In any case, particular domains allow us to determine
the compactness of i� directly. In Adams and Fournier (1971b) it is shown that
if � = 
�x�y� ∈ R2� x > 0�0 < y < f�x��� where f is a positive, decreasing,
continuously differentiable function on �0�+∞� with bounded derivative f′

(we call � Adams domain), then i� is compact if and only if

lim
x→+∞

f�x+ ε�
f�x� = 0 ∀ε > 0�(16)

Now we show that condition (16) is equivalent to the global existence of the
m.g.f. of X.

Theorem 10. Let � be an Adams domain. Then condition (16) is equiva-
lent to the existence for all �t� τ� ∈ R2 of the m.g.f. ψX of a r.v. X uniformly
distributed on �.

Proof. First we observe that

ψX�t� τ� =



∫ +∞

0
f�x�etx dx� if τ = 0�

τ−1
∫ +∞

0
�eτf�x� − 1 etx dx� if τ != 0�

We conclude that the existence for all �t� τ� ∈ R2 of ψX is equivalent to the
convergence for all t ∈ R of the integral

∫ +∞
0 f�x�etx dx. Note that the only

relevant case is t > 0.
Now suppose that (16) is true and consider the series with positive terms

+∞∑
n=0

an =
+∞∑
n=0

∫ n+1

n
f�x�etx dx�(17)

Having fixed ε ∈ �0�1�, we obtain

an+1

an
=

∫ n+2

n+1
f�x�etx dx∫ n+1

n
f�x�etx dx

≤

∫ n+2

n+1
f�x�etx dx∫ n+1−ε

n
f�x�etx dx

≤ et�n+2�f�n+ 1�
�1 − ε�etnf�n+ 1 − ε� = e2t

1 − ε

f��n+ 1 − ε� + ε 
f�n+ 1 − ε� �

So, for all t, an+1/an → 0 as n → +∞ and
∫ +∞

0 f�x�etx dx converges.
Conversely, let (17) converge when t > 0. Observe that since f is decreasing,

limx→+∞ f�x + ε�/f�x� ≤ 1. By contradiction, suppose there exists an ε > 0
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such that (16) is not true. Then there exists a δ > 0 such that for all real
numbers M> 0 we can find x �M� >M:

f�x�M� + ε�
f�x�M�� ≥ δ > 0�(18)

Since f is monotone, if (18) holds for ε > 0 then it holds for every ε < ε. Con-
sider now a sequence 
xn�n≥0 whose elements are (note that a such sequence
is not uniquely determined)

x0 = x�1�� xn = x�xn−1 + ε� ∀n ≥ 1�

The sequence 
xn�n≥0 is increasing, it diverges to +∞ and xn+1 − xn > ε for
all n. Now we introduce the sequence 
yn�n≥0 defined as

y3n = xn� y3n+1 = xn + ε

2
y3n+2 = xn + ε� n ∈ N�

and study the convergence of the series

+∞∑
n=0

bn =
+∞∑
n=0

∫ yn+1

yn

f�x�etx dx�

For γ ∈ �0� ε/2� we obtain

b3n+1

b3n
=

∫ xn+ε
xn+ε/2 f�x�etx dx∫ xn+ε/2
xn

f�x�etx dx
≥

∫ xn+ε
xn+ε/2+γ f�x�etx dx∫ xn+ε/2
xn

f�x�etx dx

≥ ε/2 − γ

ε/2
etγ

f�xn + ε�
f�xn�

≥ ε/2 − γ

ε/2
etγδ

for n sufficiently large. From the arbitrariness of t it follows that the existence
of t > 0 is such that

lim inf
n→+∞

bn+1

bn
> 1

and this implies that the integral
∫ +∞

0 f�x�etx dx cannot globally converge. ✷

A more general class of domains in Rn for which i� is compact was intro-
duced in Berger (1991). Let

� =
{
x ∈ Rn� 0 < xn < +∞�

(n−1∑
i=1

x2
i

)1/2

< g�xn�
}
�

where g�s� = exp
−φ�s�� is continuous on �0�+∞�. Furthermore suppose
there exists s0 > 0 such that:

1. φ ∈ C2��s0�+∞��;
2. φ′ → +∞ as s → +∞;
3. φ′ is strictly monotone if s ≥ s0.
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Since for such domains i� is compact, from Theorem 7 it follows that X
admits m.g.f. on Rn. We are able to give a direct proof of this fact.

Theorem 11. A r.v. X uniformly distributed on a “Berger domain” � ad-
mits m.g.f. on Rn.

Proof. Put x′ = �x1� x2� � � � � xn−1� and t′ = �t1� t2� � � � � tn−1�. If t != 0, we
have∫

�
e�t�x� dx =

∫ +∞

0
exp�tnxn�dxn

∫
�x′�<g�xn�

exp��t′� x′��dx′

≤
∫ +∞

0
exp�tnxn�dxn

∫
�x′�<g�xn�

exp��t′� �x′��dx′

= ωnn
∫ +∞

0
exp�tnxn�

×
[�−1�n−1�n− 1�!

�t′�n
(
exp��t′�g�xn�� − 1

) +R�xn�
]
dxn�

where ωn denotes the measure of the unit sphere in Rn and

R�xn� = exp
(�t′�g�xn�

) n−1∑
j=1

�−1�j−1�n− 1�!
�t′�j�n− j�!

(
g�xn�

)n−j
�

By the assumptions on g, the term R �xn� is negligible and thus the conver-
gence of the last integral is equivalent to the convergence of∫ +∞

0
exp�tnxn −φ�xn��dxn�(19)

From the assumptions on φ we can write

φ�s� = φ�s0� +
∫ s

sn

φ′�u�du�

Furthermore, by assumption 2, for any tn there exists s > s0 such that for all
s > s we have φ′�s� > 2�tn�. So, for every fixed tn we obtain

φ�s� = φ�s0� +
∫ s

s0

φ′�u�du+
∫ s

s
φ′�u�du > C+ 2�s− s��tn��

We can conclude that

exp
{
tnxn −φ�xn�

}
< exp

{−C− 2�xn − xn��tn� + tnxn
}

= C1 exp
−2xn�tn� + tnxn�
< C1 exp
−xn�tn��

and so the integral (19) converges. ✷
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6. Discussion: extensions and open problems. As seen above, the no-
tion of NLPC generalizes the classical linear notion and maintains several
of their characteristics such as invariance under orthogonal transformations,
orthogonality or dependence on all the components of the initial r.v. The re-
sults of the previous sections have shown that each NLPC is sensitive to all
the moments of every component of X and on its marginal of every order. In
particular, as proved in Section 5, this requires X to have higher regularity
than the finiteness of its second moments.

Our approach to nonlinear principal components relates them to the spec-
tral theory of differential operators. This relation between the statistical prob-
lem and its mathematical formulation seems to be promising. For example, in
Section 4, we have succeeded in exhibiting all the NLPCs for rectangular and
annular domains; moreover, several other domains allow a direct calculation.
As far as we know this does not generally happen in other approaches to
nonlinear principal components. Another advantage is that we obtain, when
possible, a way to compute an orthonormal basis of � 2���, whereas the other
approaches for the calculation of the corresponding nonlinear principal compo-
nents require us to know a priori the “right” basis to compute their transforma-
tions [see Donnell, Buja and Steutzle (1994) and De Leeuw, Van Rijekevorsel
and Van der Wouden (1981)]. Roughly speaking, knowledge of the differential
operator whose spectrum is studied yields the basis.

Even from a theoretical point of view, a lot of results and techniques like
the finite elements method for the computation of the eigenfunctions and the
corresponding eigenvalues are available. We have not developed here a sample
theory of NLPCs, but it seems to be straightforward; indeed, it is not a pos-
teriori surprising that our problem for a uniform distribution is associated
with the spectral analysis of the Laplacian operator: remember that uniform
density is an eigenfunction corresponding to the zero eigenvalue of −%. This
remark might allow us to obtain a “discrete theory” starting from the discrete
version of the Laplacian.

The assumption on the distribution of X is obviously too restrictive and for
this reason this paper must be viewed as introductory. To explore more general
situations, it is necessary to refer to the more sophisticated theory of weighted
Sobolev spaces. Thus it also should be possible to introduce the definition of
MNLPCs sketched in Section 4 and to prove some extensions of Theorem 6
such as the reasonable conjecture that in the normal case the MNLPC trans-
formation is the identity operator. Furthermore, we hope to clarify the rela-
tions between NLPCs or MNLPCs and some of the nonlinear generalizations
of the LPCs existing in the literature, perhaps obtaining a unifying approach
to generalized principal components. Our research is continuing and further
results will be announced.

In any case, even in the simple case considered here several questions are
open. As an example, it would be of interest to study the stochastic processes
associated by NLPCs to the r.v. X or to investigate of the unbounded domains
class for which the existence of NLPCs is guaranteed. In particular, it should
be relevant to construct an example of a r.v. X with finite second moments for
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which the spectrum of the associated Green operator is not discrete: if such an
example exists, the presence of a continuous spectrum needs to be clarified.
Moreover, our analysis performed on rectangles and annuli can be extended
to other domains such as the equilateral triangle, where the components of X
are correlated.

Finally, we observe also that from a mathematical point of view, the study of
NLPCs seems to be relevant: on one hand it can justify more research in some
classical areas as, for example, the study of the Laplacian spectrum; on the
other hand, we cannot exclude that the statistical–probabilistic approach could
produce some technique to solve some mathematical problems. For example,
conditions that assure the entirety of the characteristic function of a r.v. might
be used to study the compactness of the imbedding i��
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