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Advances in Markov chain Monte Carlo (MCMC) methods now make
it computationally feasible and relatively straightforward to apply the
Dirichlet process prior in a wide range of Bayesian nonparametric prob-
lems. The feasibility of these methods rests heavily on the fact that the
MCMC approach avoids direct sampling of the Dirichlet process and is
instead based on sampling the finite-dimensional posterior which is ob-
tained from marginalizing out the process.

In application, it is the integrated posterior that is used in the Bayesian
nonparametric inference, so one might wonder about its theoretical prop-
erties. This paper presents some results in this direction. In particular, we
will focus on a study of the posterior’s asymptotic behavior, specifically for
the problem when the data is obtained from a finite semiparametric
mixture distribution. A complication in the analysis arises because the
dimension for the posterior, although finite, increases with the sample
size. The analysis will reveal general conditions that ensure exponential
posterior consistency for a finite dimensional parameter and which can be
slightly generalized to allow the unobserved nonparametric parameters to
be sampled from a generalized Pélya urn scheme. Several interesting
examples are considered.

1. Introduction. Let f(x|0, y) denote a density taken with respect to a
o-finite measure A on a measurable space (2, %) and let P, , denote its
distribution, where (6, y) are parameters with real valued parameters in
0 ® Z C R ® R%, Notice that X, 6 or y can be either univariate or
multivariate. Let G, be some unspecified finite mixing distribution on %
with an unknown number of support points £ < o, unknown distinct support
values ¥, ,..., ¥, ; and unknown mixing probabilities p, = (pg 1,..., P 1)’
where p, ;> 0 and X; p, ; = 1 [we will also write yk = (¥0,15+++5Yo,5) for
the support vector]. Then

k
(1) fo(x) =f(x|00,G0) = /f(xwo,y)dGo(y) = Zpo,jf(x|00’y0,j)
j=1

is a finite semiparametric mixture density with respect to A.
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Write X" for the data X,..., X, and x” for the observed values x,,..., x,
[this same superscript notation will also be used to represent other sequences
of variables such as y" = (y4,...,y,) € Z", for example]. We assume that
X;,..., X, are sampled independently from the distribution P, having the
finite semiparametric mixture density (1). A popular nonparametric Bayesian
method for studying this problem is to assume that the mixing variables
Y,,...,Y, are conditionally independent given the distribution G, where G is
distributed as a Dirichlet process (Ferguson, 1973). It is also a standard
practice to assume that the data are conditionally independent given the
parameters and that the parameters Y" = (Y;,...,Y,) and 6 are indepen-
dent r.v.’s. Therefore, writing =, for the prior distribution of 6 and . for
the prior distribution of Y”, the joint distribution for (6,Y ") factorizes as
7 = @, X mwy.. Furthermore, by integrating out G, and by the assumption of
conditional independence, the Bayesian model implies the following hierar-
chical structure on the data:

0 (X:10,Y;) ~ 10aPs. v, i=1,...,n,
) (0,Y") ~ o= my X myn.

The main goal of this paper will be to study the asymptotic behavior of the
posterior for 6 from the Bayesian hierarchical model (2). In particular, the
paper will present general conditions which ensure that the posterior for 6
lies in each open neighborhood of 6, with exponentially high probability. The
analysis will also slightly generalize the method discussed above in which
Y,,...,Y, are assumed to be a sample from the Dirichlet process prior by
allowing Y,,...,Y, to be a (not necessarily exchangeable) sample from a
generalized Pélya urn scheme (an exact description of this mechanism is
given in Section 2).

The reader should note carefully that the posterior analysis for 6 in (2) will
be based only on the prior for § and the distribution 7. for the Pélya urn
scheme. The prior for G is left unspecified and plays no direct role in our
analysis of 6. Furthermore, by focusing only on the finite-dimensional param-
eters (0,Y"), we end up (as a special case) with the posterior that Bayesians
implicitly work with when they employ modern MCMC methods with the
Dirichet process prior. Indeed, the very success of these methods depends
upon hiding the Dirichlet process in the background while focusing instead
on the much simpler task of sampling the posterior of (,Y") [see Escobar
(1994) and Escobar and West (1995, 1998) for the general method as well as
MacEachern (1994, 1998) for a discussion of more refined MCMC techniques].

The posterior analysis presented here is based on methodology patterned
after Schwartz (1965), Barron (1988) and Clarke and Barron (1990). Related
material also appears in Barron, Schervish and Wasserman (1998), and
Wasserman (1998). These papers all consider the problem of exponential
posterior consistency in one way or another. Schwartz (1965) discusses the
problem for a general fixed parameter space, while Barron (1988), and
Barron, Schervish and Wasserman (1998) study nonparametric problems
with emphasis on density estimation. Clarke and Barron (1990) focus specifi-
cally on posterior consistency in parametric problems. The methods used in
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these papers can be adapted quite readily to our semiparametric problem,
which will involve the analysis of a posterior whose dimension increases with
the sample size. It is important to note, however, that although this posterior
is finite-dimensional for a fixed sample size n, the problem considered here is
still infinite-dimensional. This follows because the Bayesian inference is for a
semiparametric mixture distribution, which is infinite-dimensional when the
number of mixture points £ < o is unknown, as is studied here.

So far, very little seems to be known about the posterior consistency of the
Dirichlet process in Bayesian semiparametric problems, with the exception of
recent work by Diaconis and Freedman (1993), Ghoshal, Ghosh and Ra-
mamoorthi (1997a, b) and Shen (1995). Posterior consistency is not always
guaranteed in infinite dimensional problems. Indeed, although the relatively
rich nature of the Dirichlet process prior would suggest that it yield a
well-behaved posterior, there is a considerable amount of literature surround-
ing examples involving inconsistent posteriors. These counterexamples have
included nonparametric problems [Freedman and Diaconis (1983)] as well as
semiparametric problems [Diaconis and Freedman (1986a, b); Doss (1985)].
Nevertheless, we will see that the finite semiparametric mixture is an
example of an important class of models where the use of the Dirichlet
process works quite well (albeit indirectly). Indeed, we will see that the
posterior for 6 is exponentially consistent under fairly general conditions,
and that, furthermore, this consistency holds in the more general case when
the Y" are sampled from a generalized Polya urn scheme.

The main result describing exponential consistency is given in Theorem 3
of Section 3. Section 4 contains several examples. Sections 5-7 contain the
proof of three lemmas that are needed in establishing Theorem 3. Several
places in these proofs use the relative entropy measure of information
(sometimes called the Kullback—Leibler divergence number). To remind the
reader, if P and @ are two distributions, then the relative entropy from P to
Q is defined as K(P,Q) = Plog(dP/dQ), where dP/du and dQ/du are the
densities of P and @ taken with respect to a common dominating measure pu.
Notice that the definition makes use of the linear functional notation for
expectation. This same notation will be used throughout the paper when
convenient, although more traditional notation will be used as well, as in
K(P,Q) = [ log(dP/dQ) dP. Also, as convenience dictates, sets will some-
times be used as indicator functions in order to facilitate the use of the linear
functional notation.

2. Generalized Pélya urn scheme. Let Y*,...,Y* be a sequence of
iid. r.v.’s with sample space Z and with distribution H whose density % is
taken with respect to Lebesgue measure. We say that Y,,...,Y, is a sample
from a generalized Polya urn scheme if it is generated in the following
fashion:

Y, = Y7,
(3) - Y;,  with probability (1 -«a;)/(i—-1), j=1,...,i—1,
YY" l= . -
' Y;*, with probability «;,

13
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for i = 2,3,...,n. In particular, this implies that the distribution for Y"
satisfies

dry(yi,--55,) = h(y;) dy, ljz a;h(y;) dy; +

1—at

i—1
Y 8(y.,dy)|,
] El (¥5d;)

where 8(y, ) is the unit measure concentrated at y.

The sequence of values 0 < «; < 1in (3) are probabilities which reflect how
likely it is for a new value Y;* to be introduced into the sampling scheme. In
particular, when

H(1)

(4) “THQ+(i-1)°
then the resulting Y" are exchangeable and describe a sample from the
Dirichlet process with parameter H [Blackwell and MacQueen (1973)]. The
original Blackwell and MacQueen (1973) characterization described Y;* as a
sequence sampled from a normalized finite positive measure H. However, it
has now become more common to use a proper distribution for H and to
replace H(1) by a constant A > 0, usually referred to as the precision
parameter. In our treatment we will always assume that H is a proper
distribution having the density A.

A sample Y" from a Dirichlet process prior, or more generally from a
generalized Polya urn scheme, is characterized by its relatively few distinct
values. This is one of the fundamental reasons for its success in the finite
semiparametric mixture setting. The many ties induced by the Pélya scheme
make it appear as if Y” is an ii.d. sample from a discrete distribution.
Furthermore, the Polya scheme also ensures that Y" has enough distinct
values necessary to encompass the & distinct values of G,. In particular, the
expected number of distinct values equals D, =1 + X7_, «;, which guaran-
tees a steady stream of new values as n increases [see also Antoniak (1974),
page 1161]. However, as we will see, an important assumption for exponen-
tial consistency will also require that D, = O(log n) in order to suppress Y "
from having too many distinct values. Notice that by (4) the condition holds
when the sampling is from a Dirichlet process.

The choice for «; in (4) ensures that a sample Y” from a Dirichlet process
is an exchangeable sequence, but this is not true in general for the general-
ized Pélya urn scheme (3). Surprisingly, the exchangeability plays a limited
role in the exponential consistency for 6, although it does simplify the
verification of conditions needed for Theorem 3. From a modeling perspective,
nonexchangeability is certainly unappealing, but the results given here show
that consistency depends more upon the Pélya mechanism generating the
right number of distinct values for Y. This seems to be more important than
exchangeability in modeling the finite mixture distribution G.

1=2,3,...,n,

3. Exponential posterior consistency for 0. The hierarchical struc-
ture (2) implies that the Bayesian marginal density for X" is

m(x") = [e Ly L1057 dm (8, 57)
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and that the posterior distribution for 6 is defined by

_ Jueyr (2716, y") dm(6,y")
- m,(x")

7(U® Z"|x™) )
for each U in the Borel o-algebra for ©.

Note. We will always assume that f(x|6, y) is measurable in (x, 6, y). Also,
here we are using a variation of the superscript notation discussed in the
introduction. For example, fJ or f,(x"), represents the true joint density for
X" with distribution P§, while

f(x"6,y") = _:l_llf(xim’yi)

is the joint density for (X"[0, y") with joint distribution P, ,» =P, , ® -+ ®
Py, ) -

The main goal of the paper will be to show that the posterior for 6
concentrates on each open neighborhood of 6, with high probability. That
is, for each &> 0, we will show that 6 lies outside the open set 0, =
{0: 116 — 6,ll < £} with exponentially small posterior probability (see Theo-
rem 3 for a precise statement). In particular, establishing the exponential
posterior consistency in the finite mixture problem will depend upon showing
that the posterior odds satisfies the inequality

77(8 ®?n|Xn) _ feseag/" f(X"60,y")dm(6,y")
7T(®£ ®?”|X”) fe£®?n f(X"e0,y")dm(0,y")

with small probability (with respect to P}). Here r > 0 and §, > 0 is the
exponential convergence rate satisfying

8,=0(n) and §,'logn =o(1).

The integrals in (5) represent the Bayesian marginal densities for X"
when 6 is constrained to the sets ®, and ©¢ (numerator and denominator,
respectively). In verifying that (5) occurs with small probability, we follow the
approach used in Clarke and Barron (1990), which is to compare each of the
constrained Bayesian marginals to the true joint density f;. When the prior
density for 6 is positive and continuous at 6,, and the modified Pélya
sampling scheme is “rich enough,” we will see that the joint density matches
the Bayesian marginal constrained to ©,. If the true model P} can be
distinguished uniformly well from alternatives P, ,» for 6 & 0O,, then the
marginal constrained by ©OF will be exponentially smaller than the joint
density. In comparing the behavior of each of these marginals to £, we will
be led to the inequality (5).

The conditions needed for the comparison involving the marginal con-
strained by ©, are as follows.

(5)

< exp(rs,)

ConbpITION C1.

(i) 6, is an interior point of ® and y, ; is an interior point of %, for
Jj=1,... k.
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(ii) For a.a. x[[P,], the first and second partial derivatives of log f(x|6, y)
with respect to 6 and y exist and are continuous in some open neighborhood
of 6, and some open neighborhood of y, ;, for j = 1,..., k.

(iii) The partial derivatives in (ii) can be bounded in absolute value by a
square integrable function M € Z2(P,).

(v) Pollog f(x16,, yo ) <o, for j=1,..., k.

CONDITION C2.

(1) m, is absolutely continuous with respect to Lebesgue measure with a
density that is positive and continuous at 6,,.
(i) The density h is taken with respect to Lebesgue measure and is
positive and continuous at y, ;, for j = 1,..., k.
(i) X', a; = O(log n).

Condition C1 encourages a type of continuity for finite semiparametric
mixtures in a neighborhood of P,. The precise form of continuity is given in
Lemma 4 of Section 5 and is expressed in terms of the relative entropy.
Condition C2() ensures that the prior density for 0 is well behaved locally
around 6, while conditions C2(ii) and (iii) ensure that the Pélya urn scheme
can generate Y" values which (approximately) mimic values sampled from
G,. In particular, Condition C2(iii) is required so that the urn scheme is
hindered from generating too many distinct values of Y (remember that G, is
a finite discrete distribution).

Conditions C1 and C2 will show that the marginal for X", when 6 is
restricted to an open set around 6, “locally matches” the joint density f].
Lemma 1 makes this assertion more precise. Its proof is given in Section 6.

LEMmMmA 1. If Conditions C1 and C2 hold, then for each r > 0,

© Pg{fw?nf(X”I@,y”) dm(0,5") < exp(—r6n>fo<xn>}

= 0(5," logn).

A second ingredient for consistency requires that Py can be distinguished
exponentially well from the class

(P, ,:0€0:00,,y, €z

for chosen subsets ®, € ® and %;* c . This is Condition C3(ii), given
below, which amounts to establishing the existence of a uniformly exponen-
tially consistent test (UEC test) between a simple hypothesis and a composite
alternative hypothesis. Although this condition can sometimes be checked
directly in a particular problem (see the first example in Section 4), it is
usually easier to tackle the simpler problem of verifying the existence of a
uniformly consistent test (UC test). This is stated as the alternative Condi-
tion C33i1)* and requires that the Y” are exchangeable.
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CoNDITION C3.

(1) For each &> 0 there exists a sequence of subsets 0, ® Z* c® @ ™"
and an r;, > 0 so that eventually

(@) m(6,) > 1 - exp(~r,3,) and (b) myu(%*) > 1 — exp(—ryd,).
(i) Let ©; , = ©; N O,. Then for each ¢ > 0 there exists sets A, so that
eventually, uniformly,

Ps(A,) =1 —exp(—r,8,),
Py ,»(A,) <exp(—r,5,) where(6,y") €0;, K ®7".

(ii))* The sample Y" is exchangeable and for each 0 < y < 1 there exists a
test 0 < ¢, = ¢,(X;,..., X,) < 1 so that eventually, uniformly,

ng(d)n) >1- Y
Py ,n(#,) <y where(0,y") €0;, ®ZF.

When Condition C3 holds, Lemma 2 (which is given below) states that the
marginal for X" cannot properly match f; when 6 is constrained by Of.
Condition C3() is included in order to be able to restrict attention to
increasing subsets of ® ® " when constructing the required UEC or UC
test. In particular, the choice for %,* will depend upon the model under
study, and will typically be chosen to exclude values for y" which can make
the likelihood at 6 # 6, look similar to the value at 6,. The Pélya urn scheme
should therefore sample values from these excluded y" values with small
probability, as indicated by Condition C3(@i)}b). Remark 2 gives a simple
method for checking Condition C3@G)(b) in certain cases. Lemma 2 also
provides a rate of comparison for the case when Condition C3(i1)* is used in
place of Condition C3(ii). The result follows, using a straightforward modifi-
cation of ideas given in Schwartz (1965), and will rely on the exchangeability
of Y. The proof of the lemma is deferred until Section 7.

LEmmA 2. If Condition C3(@), (ii) holds, then there exists an r' > 0 such
that

(7) PZ}{ [, fX10,57) dm(0,57) = eXP(—r’Bn)fo(X")} =o(nY).

Alternatively, under Condition C3({1)—(i1)*, the expression (7) holds with §,
replaced by §,,. and O(n™') by O(n'), where n, is the largest integer less
than or equal to Vn .

Conditions C1, C2 and C3, coupled with Lemmas 1 and 2, lead to our main
result, which states that the posterior probability of ©®¢ is exponentially
small. Observe carefully that the weaker condition of a UC test leads to a
slower exponential rate of convergence.
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THEOREM 3. Suppose that Conditions C1, C2 and C3G) and (i) hold.
Then for each & > 0, there exists an r > 0 so that

(8) Pi{m(0; ® "IX") > exp(—r3,)} = O(8, " log n).

Alternatively, under Conditions C1, C2 and C3(1)-(ii)*, the posterior rate
(8) holds with 8, replaced by 3, .

ProOOF. In order to prove (8), it suffices to show that the probability of the
event (5),

il SO0, 3% dr (0, 7)

< exp(rﬁn)fe%?nf(X”IO, y") dm (9, y”)},

is of the same order as the right-hand side of (8) for some r > 0. Bound this
probability using the upper bound

o Py exp(—r" 0 (XY < exp(ra) [ A(X10,5") dm(0,7)
- Py(B,),

where 0 < r” < r’ (for the r’ in Lemma 2) and where

B,=1{[  f(X"10,y")dm(0,5") < exp(~r"8,)fo(X") .
e,0%"

By Lemma 1, PJ(B,) = O(8," log n), while the first term in (9), when
reexpressed, equals

(10) Bg{esp(~(r +VBIRE = [ AKX, y7) dm(0,5)).
SHCV

By Lemma 2 under Condition C3(i), (ii), this is of order O(n~!) when

r =r' —r”. But this is smaller than P}(B,), which becomes the dominating

term O(§,' log n) due to 8, = O(n). This verifies (8). Under Condition

C3()-(@ii)*, substitute §, , for §, and deduce by Lemma 1 that Pj(B,) =

0(5;*1 log n) and by Lemma 2 that (10) is O(n ;') where r = r' — r". O

REMARK 1. Inference in the semiparametric model is more difficult than
in the classical parametric problem, and so it is not surprising that the rate
given in Theorem 3 with §, = n is slower than that given in the classical
problem. In both cases, the posterior probability of ®¢ is exponentially small,
exp(—rn), but for the semiparametric model this occurs at a Op(n_1 log n)
rate by Theorem 3, while for the parametric case the rate is OP(n_l) [Clarke
and Barron (1990), Proposition 6.3].
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The 6, = n, Op(n‘l) rate is the observed rate in the classical problem,
which is unlikely to be improved upon in the semiparametric mixture setting.
Therefore, we might suspect that §, = n with an Op(rf1 log n) rate is the
lower bound to the rate, with the log n term representing the loss of infor-
mation associated with studying the infinite-dimensional problem. However,
whether this rate is achievable in each model is still unclear, and, in fact, a

different rate was seen in each of the examples given in Section 4.

REMARK 2. It follows straightforwardly that H is the marginal distribu-
tion for each Y, defined in the Pélya scheme (3). When %;* is a product of sets
7 =%, ® - ® %,, Condition C3(1)(b) can be easily checked by showing that
H(%,) > 1 — exp(—rg,) for some r > 0. This is a simple consequence of
Bonferroni’s inequality,

Ty (ZF) 21-n+ YL PY €2} =1-n+nH(%,),
i=1
which is larger than 1 — exp(—r,3,) for some r, > 0.

REMARK 3. The assumption of exchangeability in Condition C3(@ii)* can be
removed when Z* is a product of sets %, where H(%,) > 1 — exp(—r3,) for
some r > 0. Note that by Remark 2 this will also verify Condition C3G)(b).

4. Examples of exponential posterior consistency. Here we present
several important examples of finite semiparametric mixtures for which the
exponential posterior consistency in Theorem 3 holds.

ExamMpLE (Rasch semiparametric mixture). For the interested reader, an
overview of the Rasch model, as well as further references to other articles,
can be found in Lindsay, Clogg and Greggo (1991). Briefly, though, the Rasch
model is an exponential model used in modeling 0—1 binary outcomes. One of
its many important uses is in item response studies where each individual i
elicits a binary response to each of L > 2 different items or questions. If X; ;
is the 0—1 binary response for individual i to question /, then X, has the
conditional density

exp((0; +¥:) x;,1)

.10 L) =
f(xl,l| ’yl) 1+eXp(91+yi)

for i=1,...,nand [ =1,...,L. Here 6 =(0,,...,0;) is the vector of item
response parameters measuring item difficulty, while Y, = y, is the unique
ability parameter for individual i. It is assumed that the X; ; are condition-
ally independent, given the item difficulty parameter 6 and the individual
parameter y;.

A useful method for modeling heterogeneity among individuals is to as-
sume that the Y; are independent random variables with an unknown finite
discrete distribution G, [see Lindsay, Clogg and Greggo (1991) for examples

and motivation]. Such an assumption implies that the response values have a
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finite semiparametric mixture density. In particular, if X; = (X; ;,..., X; )

is the vector of binary responses for individual i, then the X, are independent
r.v.’s with the Rasch semiparametric mixture density.

k L k
f(xi|07G0) = Z po,jll_llf(xi,lm, yO,j) = Z pO,jf(xi|0a yO,j)'
j=1 = j=1

A simple method to ensure that 6 is identified is to constrain 6, = 0 to act as
a baseline, although this will not guarantee identification for the mixing
distribution G,. Nevertheless, even though G, is unidentified, Lindsay, Clogg
and Greggo (1991) show that one can still apply nonparametric maximum
likelihood methods to estimate 6 properly and, to a lesser extent, recover
some partial information about the unknown mixing distribution. Here we
will show that the Bayesian method also leads to a useful method for
studying 6. In particular, we will see that the posterior for 6 is exponentially
consistent.

Under the baseline parameterization, ® = RL~! ® {0}, while % =R is
unconstrained. Condition C1 of Theorem 3 holds straightforwardly, while
Condition C2 is satisfied by the appropriate choice of prior (e.g., when m, and
h are positive continuous densities). Therefore, in verifying the conditions for
Theorem 3, the only tricky part will be in deriving the uniform test required
by Condition C3. In this example, very little additional work is needed in
constructing a UEC test instead of a UC test. Therefore, we will verify
condition C3(ii) in the proof of exponential consistency.

The method for constructing the UEC test involves conditioning on the
sufficient statistics S; = S(X;) = £}, X, ;, for i = 1,..., n. If Pyg , denotes
the conditional distribution for (XS, ), then Py, has the conditional
density

exp(6'x)

z“(x: s(x)=s} exp( Q/JC) ’

which is independent of y by sufficiency. Notice that the density equals one
when s equals zero or L, which occurs only for those observations which are
all equal to zero or all equal to one. We will avoid these observations because
they provide no information for 6, and will instead base our UEC test on the
discordant observations only. Indeed, it happens that the analysis can be
simplified even further, by only having to consider those observations X;
where S, = 1.

Let e, denote the vector in R” whose /th coordinate equals one and is zero
elsewhere. Also, let W, = X7 {S,; = 1} record the number of observations
with S; = 1. Then our UEC test is based on the modified empirical measure
P.(-) = P,(:|X") defined by
{e, € B}, ifW, <n,

W iyr (X, €B,S, =1}, otherwise,

over the measurable space (£,2%) where & = {e;: [ = 1,..., L}. Thus when

W, >n,, P, is the empirical measure based on only those observations X;

f(x1s,0)=

P.(BIX") =
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for which S, = 1, while for W, < n,, P, is the degenerate measure at e, (the
choice for e; is purely arbitrary and plays no special role in the analysis).
For each 6 > 0, let

& = {PX|S=1,0: K([FDX\S:I,B’PX\S:LHO) <6,0€ ®}

be a set of measures on (£,2%). Then &, is a completely convex set of
measures [Csiszar (1984), Definition 2.3]. Our test will be the indicator set
A, = {P, € %,}, which records whether P, is a member of %,. In verifying
that this is a UEC test, we will show that A, has exponentially large
probability under P and exponentially small probability, uniformly, over the
set of alternatives {P, ,.: (6, y") € O] ® Z"}.

No measure in %, puts mass 1 at e;. Therefore, conditioning on S" =

(Sy,...,8,),

Py ,o(A,) =P, P, €%, W, >n,}

(11)

= Pgujg, yPxogn, o{P) € G, W, > 1}

10,y

While integrating over S”, we need only consider those values of S™ = s" for
which W, > n .. For a fixed one of these s” values, the inner expectation of
the last expression is evaluated over the product space formed by the W,
values of (X"|s", §) for which s; = 1. These values are ii.d. from Pys_; 4,
which allows us to exploit an inequality of Csiszar [(1984), Theorem 1] due to
the convexity of #; [also see Barron (1989)]. Thus, for each fixed S" = s”
value, the inner expectation in (11) is bounded by

(12) exp[— ), K(gaalpxiw,-,e) Sexp(—n*K(%,Px‘S=Lg)),
{i,s;=1}

where

K(g57PX\S=1,9) = inf K(@, [FDX|S=1,9)'
Qe

By setting 6, = 0 we have ensured that 6 is identified in Py5_; ,. Hence, by
the continuity in 6,

K(Pxi5-1,6>Px5-1,6,) = 0 if and only if 6 — 6,.

Therefore, for a small enough &> 0 there exists a 6 > 0 so that
K(%;5,Pxi5-1,4) > 8’ for each 6§ € OF. Hence, from (11) and (12),

(13) Py ,»(A,) <exp(—d'n,) for(6,y") €0 7"
Similar reasoning as in (11) shows that
(14) Pi(A,) = Psug, 0, Pxosn o Py € G, W, > 1}

Let Z, , ={X; =¢;} and &, ;, = Pxs_1,,{X; = ¢;} be its expectation, for [ =
1,...,L. Then for a small enough 8" > 0, the inner expectation on the
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right-hand side of (14) is larger than

Z (Z f(),l) <é"W, forl=1,...,L,,

_1}

where W, > n,. The Z; ; variables are iid. Bernoulli (£,,) r.v’s under
Px)s-1,4,- Therefore, by Bennett’s inequality [Shorack and Wellner (1996),
page 855] each of the L probabilities in the previous expression will be
larger than 1 — exp(—Cn ) for some C > 0. Hence, the inner expectation in
(14) occurs with exponentially high probability, uniformly over values for S”
with W, > n . Conclude from this and (13) that A, is a UEC test for §, = n
with the rate O, (n;' log n).

ExamMPLE (Weibull semiparametric mixture). There has been some recent
interest in studying the relationship between identification constraints for Y
and inference for 0 in the Weibull semiparametric mixture. This research has
mostly focused on how tail bounds on Y translate into rates of estimation
for 0. Heckman and Singer (1984) used a moment constraint on Y to verify
consistency using nonparametric maximum likelihood estimation, while
Honoré (1990) and Ishwaran (1996b) constructed estimators having polyno-
mial rates under more stringent moment conditions. An exact relationship
between the rate of estimation for 6 and tail bounds on Y is given in
Ishwaran (1996a). As we will see, the behavior of Y will also play a role in
the Bayesian approach, with the exponential posterior consistency for 6
depending upon the tail behavior of the distribution of H used in the Pélya
urn scheme.

For convenience, we will work with a log-transform of the Weibull semi-
parametric mixture. Therefore, we will consider the i.i.d. r.v.’s

wAY? 1
=log(7t) =, (log W, —log ),

i

where W, ~ exp(1) are independent of Y; ~ G,. Hence, (X | 6, y) has the

1

conditional density
f(x16,y) =y0exp(6x —yexp(6x)) wherex € Rand(6,y) e R"® R".

In applying Theorem 3, we will verify Condition C3(3i1)* by constructing a
UC test between Pj and
{Pﬁ.y": b€ ®§7 Yn € Z/n*}’

where %Z* will be the product of sets %", with %, = {n"° <Y < n®} chosen
to control the tail behavior of Y. Later we will see that an appropriate choice
for 26 is ¢/6, < 1. The UC test will be based on the indicator set
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where Z; = {X; < —log(K,n)/6,} are Bernoulli r.v.’s and K, K, are positive
constants. By choosing K, large enough and K, small enough, we can make
Pg(A,) arbitrarily close to one and P, ,.(A,) arbitrarily small, uniformly
over OFf ® Z*.

Checking Conditions C1 and C2 is straightforward. Therefore, we can
proceed to Condition C3. By Remark 2, Condition C3(i)(b) holds for §, = n®
when H(%,) = 1 — exp(—rn®) for some r > 0. This condition is easily satis-
fied by many continuous densities, and so we will assume it is true here. To
determine the value of P, ,.(A,) over (6, y") € ©; ® %,*, we will consider the
two cases when 6> 6, + ¢ and 6 < 6, — «.

When 0 > 6, + ¢, Markov’s inequality gives the bound

(15) P, yn(A,) < Pe,y"{ Y Z > K11} <K, ) P,
- i=1

However,

(16) P, ,,Z = 1 — exp(—y,(K,n) /™).

By 26 = &/6,, this is less than 1 — exp(—Cn~®*?) for some C > 0 when
yv; €%, and 0 > 6, + . Therefore, the right-hand side of (15) is uniformly
o(1).

Now suppose that 6 < 6, — &. If u, = ¥/, P, , Z;, then u, > Cn® by (16)
and our choice for 6. Hence, for 6 < 6, — ¢ there ex1sts some C > 0 (a generic
constant) such that

(17) lp@,y"(An) = P@,y”{ Z Zi M, = Kl - lu'n} = { Z = C/"Ln}a

where ZF = Z, — B, y,Z;- But by Bennett’s inequality [Shorack and Wellner
(1996), page 855] the rlght hand side of (17) is no larger than

(Cu,)?
2u,(1+C/3)

2exp| —

) < 2exp(—Cn®) uniformly.

Therefore, P, ,.(A,) is arbitrarily small, uniformly over (6, y") € 0; ® Z*.
To choose K, and K,, note that

POZi=GO[1—exp(— ” =%(1+0(1)),

where y, = G,(Y)/K, > 0. Therefore, ©"_; Z, ~> Poisson(y,) under P,. Hence
Py(A,) - P{K;! < Poisson(y,) < K},

for each noninteger K, > 1. By choosing K; large enough and K, small
enough, we can make the right-hand side arbitrarily close to one. This verifies
that A, is a UC test and establishes Condition C3(i)-(i1)*. Consequently,
Theorem 3 can be applied with §, = n} for the rate O, (n;° log n).

Note. Here 8 depends upon & and therefore the size of the neighborhood
around 6,.

2n
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ExamPLE (Paired exponentials). Another interesting example is the semi-
parametric paired exponential model studied by Lindsay (1985). This model
arises through data X; = (X; |, X; ,) = (W, ,/Y;, W, ,/(6Y))), where W, |, W, ,
are independent exp(1) r.v.’s, independent of Y; ~ G,. The parameter 6 is
interpreted as the ratio of the hazard rates of a sample of paired exponential
variables.

The conditional density of (X; | 6, y,) equals

X;10,Y;) =Y, exp( —Yy;X; y; exp(—0y,;x; or x. € ® ,
f L|0 i i Ll,lol OLL,Z f i R+ R+

where (0, y,) € R"® R*. Verifying Conditions C1 and C2 is straightforward.
In verifying Condition C3(ii), one can simplify the problem by constructing a
UEC test based on the transformed data
X, O0W,,

i

Z. =
' Xi,2 VVi,Z ’

i=1,...,n.

By transforming the data, the construction of the UEC test is made simpler
because it will only require distinguishing P, , exponentially well from P,
over 0 € OF. The methodology for finding such a test is fairly straightforward.
For example, apply the methods in Clarke and Barron [(1990), Proposition
6.2]. Doing this will show that the posterior is exponentially consistent with
8, = n for the rate O, (n"'log n).

5. Continuity at P,. Lemma 1 asserts a type of local matching between
the Bayesian marginal and the true joint density. The lemma is essential in
the proof of the exponential consistency stated in Theorem 3 and relies on a
form of continuity for finite semiparametric mixtures at the true mixture P,,.
This type of continuity can be expressed in terms of the relative entropy and
depends upon regularity conditions for the density f(x | 0, y), such as those
expressed in Condition C1. Here we give a statement and a proof of this local
continuity. The proof of Lemma 2 will be given in Section 6.

LEMMA 4. Suppose that Condition Cl1 holds and that 0O, ® Z* is a
shrinking open neighborhood of (6, y¥) and 2, a set of probability vectors
shrinking to p,. Let Q, ,+ , be the distribution for the mixture density

k
q(x16,y*, p) = X p;f(x6,y;)
j=1
(18) )
where (0,y*) € ®@ @ *, p; >0, ) p;=1.
j=1

Then, uniformly over ©, ® #* @ %,

(19) K(PO’@G,yk,p) = O(”(9 — by, yk _y(])e,p —p0)||2).
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Furthermore,
(20) K(Po,Py,,,) <=

uniformly over (0, yj) values in the neighborhood of Condition C1, for j =
1,...,k.

ProOF. First, let us prove (19). By definition, the relative entropy equals

fo(X)
q(Xl6,y*, p) ]

We can assume that (6, y*) is close enough to (6, y) so that Condition C1
can be applied. Therefore, by Condition C1(@ii), the first- and second-order
partial derivatives for f(x|6, y) exist for the # and y values of interest for
a.a. x[P,]. Hereafter, ignore the set with measure zero where the derivatives
may not exist. With 8 = (6 — 6,, y* — y&, p — p,)’, a two-term Taylor series
expansion around (6, y&, p,) gives

fo(x)
q(x10, y*, p)

where V; is the vector of first-order partial derivatives and V is the matrix of
second-order partial derivatives, both evaluated at (6, yg, Do)- The remain-
der term is defined by

18177 (x, 0, 5%, p) = 8'[V(x,0, 5", p) = Vo(x)]
where V(x, 0, y*, p) is the matrix of second-order partial derivatives evalu-
ated at some point between (6, y*, p) and (6, v%, p,).
By Condition C1(ii), each element in V can be bounded in absolute value
by an Z%(P,) function. For example, consider an element such as

9? fo(x)
lo Z
96,6, q(x16,y*, p)

K([FDO, @o,yk’p) = [FDO log(

=8'Vy(x) +8'Vy(x)d + ||6||2r(x, 0,y", p),

(21) log(

2
q(x16,y*, p) ZPJ&HZ f(x16,y;)

J g
+q(x106,y",p)" ijﬁf(x | 6 y,) Z P} Owlf(xl 0,y;)-

Because q(x | 6, y*, p) > p;f(x 16,y for each j, the right-hand side can be
bounded in absolute value by

k 2 k J P
! )+ L1 )—1 |
El 706,08 F(x10.5) El 7g 08 F(x 10, 37) Zo-log f(x 16, 3))
k| o )
+j§1 P f(x10,y) jgl (?—Ollogf(xl 0,y;)|-
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By Condition C1(ii), this can be bounded by the P,-integrable function
EM + (k + k?)M?2. The other terms in V can be handled in a similar way
(keeping in mind that the p; are close enough to p, ; to ensure that they are
bounded away from zero). Therefore, by the dominated convergence theorem
and the continuity of V(x,-,-,-) [Condition C1Gi)], P,r(X, 6, y*, p) > 0 as
6 — 0.

Taking the Pj-expectation of the right- and left-hand sides of (21) gives

K(Py,Qy i+ ,) = Po(8'Vy) + Po(8'V,8) + o(ll811*).

Both 6'V, and 8'V,;6 must be integrable by Condition C1(iii), which means
that P,(8'V,) equals zero or it is the dominating term as & — 0. However,
because (6,, y¢) is an interior point, it must be the case that P,(5'V,) = 0,
otherwise the left-hand side (a positive distance) would be negative for
certain values of 6.

Note. The components of 6'V, related to p must have zero expectation,
because

P
Po(p — po)’ Tplogq(X| 00, Yo» Do)

J j=1,..., k

k
=2 (Pj _Po,j)ff(x | 90,3’0,1‘) dA(x) = 0.
j=1

Thus,
K(Py,Qy ,r ) = Po(8'V,8) + o(l1811*) = O(II8]1*)  uniformly.

To prove (20), first use the bound

k

(22) K(UJ)Oa[FD@,yj)S )y l]j)0|10gf(X|607yj’,0)|+||]j)010gf(X|O’yj)|-
i=1

The sum on the right-hand side is finite by Condition C1(iv). To work out the
remaining term, apply a one-term Taylor series expansion to the integrand
[this is justified by Condition C1(Gi)]:

log f(x| 0, yj) = log f(x | eo,yj',o) + (9 - eo,yj' _yj,o)’v(x, 0, yj)7

where V(x, 0, y;) is the vector of first-order partial derivatives of log f(x | 6, y;)
evaluated at some point between (6, y;) and (6,, y, ;). This term can be
bounded by a P,-integrable function using Condition C1(ii). From this and
Condition C1(@iv), deduce that the Taylor series expansion is uniformly inte-
grable over the neighborhood of (0, yj) values. Therefore, the right-hand side
of (22) is uniformly finite. O

6. Locally matched marginal. This section provides a proof of Lemma
1 and makes use of the local continuity expressed in Lemma 4 of Section 5.
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Proor or LEMMA 1. For each open set U C 0, let
1
( U)

(23) m,(x" | U) = [ fxm 10,y dm(0, y")

Uey™"

denote the density for the marginal when 7, is conditioned on 6 € U. Write
M,(-| U) for its distribution. To verify (6), first divide by f§ inside the
probability, invert both sides and then increase the bound by restricting 6 to
the smaller set ©, = {6: |6 — 6,/ < n~'/%}. Now multiply both sides by
7,(0,), take logs and then increase the bound even further by taking the
absolute value of the log ratio term involving the densities. Therefore,
the left-hand side of (6) is less than

fo(X™)

1 -
(X710,

>ré, +logm(0,);.

(24) Py {

The density for m, is continuous and positive around 6, by Condition C2(i).
Therefore, m,(0,) = O(n~9/2) (recall that © is d,-dimensional) and

ré, + log m(0,) > Cs, forsome C > 0,

because &' log n = o(1) (hereafter C will be used for a generic positive
constant). Apply Markov’s inequality to (24) in order to obtain the upper
bound

(25) cmlpgmg;7%§§2;7 < C8; [K(PE, M,(-10,)) + 2exp(—1)],

where the last inequality follows by bounding the negative part of the
log-ratio using the inequality u log(z) > —exp(— 1) [this same trick is used in
Clarke and Barron (1990) in their equation (6.3)].

To bound the relative entropy in (25), we use a lower bound for m, by
restricting the range of integration for y". We will restrict attention to the set
of y" values whose first £ values are all different and constrained by

yhegl={y ez lly, -y ll<n? forj=1,... k}

and whose last n — &k values are chosen from the set of unique values
{¥1,--.,¥,}. That is, the last n — & values y,,,..., y, are repetitions from
y*, for each y* € *. The key idea underlying this constraint to m, is to
select a subset of 2" which occurs with nonnegligible probability, so that the

Y,.1,.-.,Y, values sampled from this set approximate an i.i.d. sample from
G,. In allowing only Y* to be unique, we ensure that (Y, ,,...,Y, | Y* = y*)
are exchangeable r.v.’s with the discrete sample space {y;, ..., ¥,}. Notice that

these values lie in a shrinking neighborhood of the support points y, ; for G,.

Call W,,..., W, a finite Pélya sequence with a Polya(.%) distribution if W,
is sampled uniformly from the set of values .7, followed by W, sampled
uniformly from #U {W,}, and so forth, ending with W, sampled uniformly
from U {W;} U - U{W, _;}. In particular, when Y, ,,...,Y, are condi-
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tioned to take only sampled values from a fixed set of y* values, then the
conditioned sequence has a Pélya(y*) distribution. This is helpful because it
allows us to exploit a well-known connection between finite Pélya sequences
and the Dirichlet distribution. In particular, Theorem 2.3 in Mauldin,
Sudderth and Williams (1992) implies that for the conditioned Y, there exists
a random probability vector P such that

(Y;15%, P =p) ~qBernoulli,(y*,p), Jj=k+1,...,n,
P ~ Dirichlet,(1,...,1),

where Bernoulli,(y*, p) is the discrete distribution with support y* and
probability vector p (k-dimensional).

Therefore, by conditioning on y* and P = p and by restricting the values
for y" as described above, Y, {,...,Y, must have the same distribution as
an ii.d. sample from a discrete distribution with support y* and probability
vector p. In particular, by restricting attention to our constrained set of Y”"
values, we obtain the lower bound

m,(x"10,) > C;;/dm,,n(e)[ dH*(y*)f(x* 1 0, y*)
%k

x [dDy(p) TT a(x:16,5", p),
i=k+1

where m, , = m,/m,(0,) is the prior 7, conditioned on 6 € ©,, the mixture
density g is defined by (18), D, is the distribution for a Dirichlet,(1,...,1)
and

Cr=ay (1 - y) (1~ a,)

n

is the probability that Y, ,,...,Y, are repetitions from the set of unique
values Y*.
Restrict p to values in

k

yﬂ: p: (pl""’pk): |pj—p0’j|gn_1/2,pj>0, Zp]: 1
Jj=1

in order to bound m,(x" | ©,) even further. Let H* = H* /H*(%/) be the
distribution for H* conditioned on y* € %} and D, , = D,/D,(#,)
the distribution for D, conditioned on p €.%,. Then,

m,(x"10,) = C, [[[ dm, ,(6) dH}(y*)dD, ,(p)f(x*16,y")

n
X l_[ q(xile’ykap)>
i=k+1

where C, = CXH*(z*)D, ().
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Using the previous bound, Jensen’s inequality, and then Fubini’s theorem

to interchange the order of integration, we can bound the relative entropy
in (25) by

K(Pg, M,(-10,))

<P [[[ dm, ,(0) dH}(y") dD; ,(p)
) fo( X7)
f(xk | e?yk)l_‘[?:k+1 q(xi | e,ykap)

~ [[[ dm,.(6) dH}(y*)dD, ,(p)

k
Y K(I]:DO,IR,’},I_) +(n — k)K(PO,@O’yk’p)} —log C,
i=1

—log C,, log

X

By Lemma 4, the first %2 relative entropy terms are uniformly finite, while

the entropy term containing @, .+ ,, is uniformly O(n~1). Therefore,

K(Py, M,(-16,)) < C [[[ dm, ,(0) dH}(y*)dD, ,(p) - logC,
=C—-1logC,.

By Condition C2(iii) and the continuity and positivity of H* and D, around
y¥ and p,, —log C, = O(log n). Hence, by (24) and (25), we can bound the
left-hand side of (6) by

O(5," logn) +0(8,') =0(5," logn). 0

7. UC and UEC tests. This section provides a proof of Lemma 2. Being
able to substitute the simpler assumption of a UC test (Condition C3(ii)*) in
place of the assumption of a UEC test [Condition C3(ii)] is made possible by a
simple modification to a result given in Schwartz [(1965), Lemma 6.1]. Some
of these details are sketched below.

ProoF oF LEMMA 2. First we will prove (7) under Condition C3(@) and (ii).
To bound the left-hand side of (7), divide both sides inside the set by
m (O f,(X™), take square roots and then apply Markov’s inequality. There-
fore, remembering the definition (23) for m,(-| ©F), we obtain the upper
bound

{ m,(X"|0f) exp(—r"én/2)}
Po

(XD 5 w0

(26) r'Sn) o | ma (X" 16)
Sexp( 2 |7 TRy
'8
< exp( r2n )[1 —v(Pgy, M,(-| @f))2]1/2,
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where v(P, Q) is the total variation distance between distributions P and Q,
v(P,Q) = 3IIP — Qll, = sup | PB — QB |
Be#

[a similar inequality is used by Schwartz (1965) in the proof of her Theorem
(6.1)]. Remembering that §,! log n = o(1), we can show that (7) is O(n™!) by
verifying that
(27) v(Pg, M,(-10f)) =1~ Cexp(—ry8,) for0<r' <rgy,
where C > 0 represents a generic constant. This will prove (7) for any r’
constrained as above.

However, by Condition C3(ii), we know there exist sets A, such that
eventually, uniformly,

Pe(A,) =1 —exp(—r,8,),
Py ,»(A,) <exp(—r,8,) where(6,y") €0, ® 7.
Therefore,
v(Pg, M,(-10;)) = Pi(A,) — M,(A,10;)
>1—exp(—ryé,)

(28) - 770(1(95) [fe;n@%*dﬂ-(O? yn)l]:DO,y”(An) + 7T(Bn)
e (B
=1 zen(Tnd) ey

where B, = (0; ® ") N (O; , ® %,*)°. However, by condition C3(i),
m(B,) < wy:(ZF) + m,(0;) < 2exp(—r,8,).
Therefore, by (26), (27) and (28), the left-hand side of (7) is O(n~1).

To prove a variation of (7) under Condition C3(i)—-(i1)*, replace §, in (26)
and (27) by §, . The proof in Lemma 6.1 of Schwartz (1965) can be easily
extended to allow for independent, but not identically distributed r.v.’s.
Follow the same construction in the proof, but for convenience only use the
first m = n% observations X,,..., X, . Now block these values into n,
groups, each of size n,. Using Schwartz’s method and applying Condition
C3(iD)* to each of these blocks, it easily follows that there exist sets A, (based
only upon Xj,..., X,,) and an r” > 0, such that eventually, uniformly,

|:FDS(IAn) = l]:D(Sn(An) = 1 - exp(_r”n*)’
Py ,n(A,) =P, ,n(A,) <exp(—r"n,) where(0,y")<€0;, ® (%*x)n*
Hence, following the same type of argument leading to (28), we find that
o(Pg, M,(105)) = 1~ Zexp(—r'n,) — w(B})/m(6),

where By = (0 ® ™) N (07, ® (%, )"*)°. A similar argument as before
shows that

m(BF) < [1 - wym((%**)”*)] +[1 - m(0,)].
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However, by Bonferroni’s inequality and the assumed exchangeability of Y "

myn((72)")

Tyn[(Yioo s Y ) €25 s (Y s1s Yy) €47
>1—-n, + n*ﬂ'yni[(Yl,...,Yn*) EZ/H**].

Therefore, by Condition C3(i), 7(B)) = O(n, exp(—r,3, )) and

v(Pg, M,(-10;)) =1 —2exp(—r"n,) — Cn, exp(—ry,5, ) forsomeC > 0.

By choosing r’ > 0 to be small enough, deduce that the left-hand side of (7)
is O(n3;1). O
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