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MAXIMUM LIKELIHOOD ESTIMATES VIA DUALITY FOR
LOG-CONVEX MODELS WHEN CELL PROBABILITIES

ARE SUBJECT TO CONVEX CONSTRAINTS

BY HAMMOU EL BARMI AND RICHARD DYKSTRA

Kansas State University and University of Iowa

The purpose of this article is to derive and illustrate a method for
fitting models involving both convex and log-convex constraints on the

Ž . Ž .probability vector s of a product multinomial distribution. We give a
two-step algorithm to obtain maximum likelihood estimates of the proba-

Ž .bility vector s and show that it is guaranteed to converge to the true
solution. Some examples are discussed which illustrate the procedure.

1. Introduction. Log linear models have proven to be useful and power-
ful tools for analyzing categorical data and several excellent sources are

� Ž .available to the interested reader see, e.g., Agresti 1990 , Bishop, Fienberg
Ž . Ž .�and Holland 1975 and Haberman 1978 . However, there are many in-

stances when one may wish to combine log-convex constraints with those that
place convex constraints directly on the cell probabilities. For example, ROC
Ž .receiver operating characteristic curves are often employed to evaluate the
merits of a proposed test for detecting whether a particular condition is
present. Thus, if large values of a measure T indicate the condition’s pres-

Ž � .ence, P T � t condition present is referred to as the sensitivity of the test
Ž � . Ž Žand 1 � P T � t condition absent is its specificity. The graph of P T �

� . Ž � ..t condition present , P T � t condition absent as t varies results in a non-
decreasing curve in the unit square and is referred to as the ROC curve.
The closer the curve is to the left and upper boundaries of the unit square,
the more appealing the test. If one assumes a discrete setting with p �i
Ž � . Ž � .P T � t condition present and q � P T � t condition absent and inde-i i i

pendent observations of T for both situations, a natural way to model the
measurements is as independent multinomial distributions. The point is,

j j Žboth convexity assumptions such as Ý p � Ý q for all j which impliesi�1 i i�1 i
.that the ROC curve never falls below the diagonal line and log-convexity

Žassumptions such as p �q nonincreasing in i which implies that the ROCi i
.curve is concave are naturally of interest. When multiple measures are

considered, identifying possible structure is often a key concern. Maximum
likelihood estimation and associated tests can often be carried out even when
various convex and log-convex assumptions are combined using the approach
in this paper.
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Ž .Haber and Brown 1986 have addressed this type of a problem for the
particular situation where p is a vector of multinomial probabilities. They
consider the problem of finding p when ln p is expressible as a linear
combination of the column vectors of a known matrix X and p also satisfies
CTp � d for known C and d. Haber and Brown propose a clever iterative
procedure based on solving two separate systems of equations which yields
vectors that converge to the MLEs under appropriate restrictions.

The essence of their procedure can be described as follows. A vector �
satisfying C� � r 0 � 1 is selected as an initial guess for the linear constraint
Lagrange multipliers after incorporating the log-subspace constraints into
the kernel of the likelihood. Treating � as the correct Lagrange multiplier
vector, the subspace parameters � are selected to optimize the objective

Ž . Ž .function Lagrangian by the method of Darroch and Ratcliff 1972 .
For step 2, the estimated values from step 1 are treated as the observed

frequencies and plugged into the linear restriction equations. This equation is
then solved for the vector � and these values are used as the new estimates
of the Lagrange multipliers. This two-step procedure is repeated until ade-
quate convergence is obtained.

Though very ingenious, this procedure will not work in the setting of this
paper. It may not be possible to incorporate the log-cone constraints into the
likelihood kernel by a finite-dimensional vector. If so, this would imply that
the differentiability characterization of the optimal value need not be avail-
able. Even if this could be done, it may be impossible to express the convexity
constraint Lagrange multipliers as a finite vector.

In this paper, an iterative procedure is proposed which works much more
Ž .generally than that of Haber and Brown. In particular: a The subspace

p� 4 �X�; � � R can be replaced by a translated closed, convex cone K 	 r � x
4	 r; x � K which is a subset of the cartesian product of the extended reals

k Ž .R . We do assume that K those vectors in K with all finite coordinates
Ž .contains the constant vectors as did Haber and Brown for their subspace

Žalthough they need not belong to K 	 r we say that K is closed in the sense
Žn. Žn.� 4 .that if v � K, there exists v 
 K such that v � v as n � � for all i .i i

Ž . � T 4b The linear variety p; C p � d can be replaced by an arbitrary, closed,
k Ž k .convex set in R � P where P is the set of probability vectors in R . Note

that since these regions need not be polyhedral, they may correspond to
Ž .infinitely many linear inequality constraints. c Zero cells are allowed in p.ˆ

Since Haber and Brown’s results require that mŽ� . and qŽ� . be bounded awayt t
Ž .from 0, this essentially rules out zero-count cells. d Dual formulations of

both cycle steps are given which greatly simplify and illuminate the proce-
dure. An overall dual formulation is given which is especially appealing.
However, the dual formulation is not in terms of the conjugate function of
Ž .1.1 in any usual sense, and hence Theorem 2.1 is not an application of any
type of Fenchel duality theorem of which we are aware. In particular, there is
not the one-to-one correspondence between the solutions of the primal and
dual problems that is typical in Fenchel dual formulations.
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Ž .Historically, maximum likelihood estimates MLEs under linearity as-
�sumptions have been obtained by direct iterative algorithms Darroch and

Ž .� � Ž .�Ratcliff 1972 or by iteratively reweighted least squares Haberman 1974 .
Both of these techniques can be incorporated into the algorithm suggested in
this paper if the problem format is of the appropriate form.

We note that the negative of the log-likelihood of a multinomial probability
Ž .mass function is except for an additive constant equal to

k

1.1 f p � � p ln pŽ . Ž . ˆÝ i i
i�1

over P, the set of probability vectors in Rk, where p is the probability vectorˆ
of the observed relative frequencies and 0 ln 0 is taken to be 0. We define f to

Ž .be 	� elsewhere 0 times the log of a negative number is taken to be ��
and take multiplication and division of vectors to be done coordinatewise. Of
course, minimizing f over C, a closed, convex subset of P, is equivalent to

� 4minimizing f over K where K � � p; � � 0, p � C . El Barmi and Dyk-C C
Ž .stra 1994 showed that p* minimizes f over C if and only if y* � p�p* � 1ˆ

solves
k

1.2 sup p ln 1 	 yŽ . Ž .ˆÝ i i
�y�K i�1C

Ž .with appropriate definitions for indeterminate forms where

k
� kK � y � R ; p y � 0, � p � KÝC i i C½ 5

i�1

� kis the dual cone of K . For example, if C should be the region p; Ý r p �C i�1 i i
4 � � 40 � P, then K � � r; � � R is a one-dimensional region and the optimalC

Ž .value � r that solves 1.2 is obtained from the unique value of � that solvesˆ
k Ž .Ý p r � 1 	 � r � 0. This value can usually be found very quickly by aˆi�1 i i i

Newton�Raphson scheme. In the event that � replaces � in the definition
	 Ž .of C, the optimal value is � � max � , 0 . It is rather amazing that for anyˆ ˆ

Ž .closed convex set C contained in P, maximizing �f p over C is an equiva-
Ž .lent problem though with a different solution to maximizing the same

function over K� 	 1.C
Ž . Ž .Dykstra and Lemke 1988 considered the problem of minimizing 1.1

kŽ .subject to ln p � ln p , ln p , . . . , ln p � K, a closed, convex cone in R1 2 k
which contains the constant vectors. In particular, they proved that minimiz-

Ž .ing 1.1 subject to this constraint has the same solution as the problem

k

1.3 min p ln p ,Ž . Ý i i
p�p�K *ˆ i�1

k k k� 4where K* � y � R ; Ý p y � 0, � p � K � R is the dual cone of K �i�1 i i
Rk. Note that this is equivalent to an I-projection of the uniform distribution
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� Ž .�onto p � K* Csiszar 1975 . The optimal vector obtained in K* is theˆ
additive adjustment that must be made to p to obtain the desired solution.ˆ

This paper concerns the much more general situation of incorporating both
general convexity constraints on the multinomial probability vector and
translated cone constraints on the log of the probability vector. Of course, as a
corollary, the results of this paper must contain the earlier results of both of
the aforementioned papers. However, this paper addresses a much more
difficult task than either of the aforementioned problems since now these

Žconstraints are simultaneous note that this is not necessarily a convex
�Ž Ž . Ž .. 4programming problem since exp r 	 x , . . . , exp r 	 x ; x � K need not1 1 k k

.be convex . It is a rather remarkable fact that the two types of constraints
‘‘separate’’ in the manner discussed in Section 2. The rest of the paper is
organized as follows. In Sections 2 and 3, we give the main duality result and
describe the algorithm. Section 4 addresses the accuracy and the rate of
convergence of the suggested algorithm and Section 5 generalizes when it is
applicable. Section 6 discusses some applications.

Ž2. Main duality result. Suppose that the observed vector n , n ,1 2
.. . . , n is a realization from a multinomial distribution with parameters nk

Ž .and p � p , p , . . . , p . We wish to consider the general problem of finding1 2 k
the MLE of p subject to the constraint that p � C and ln p � K 	 r, where C
is a closed, convex subset of P, the set of probability vectors in Rk, and K is
a closed, convex cone containing the constant vectors. The basic problem is
thus to find a solution of

k
ni2.1 sup p .Ž . Ł i

i�1p�C , ln p�K	r

Although we will assume simple multinomial sampling, one can reduce the
Žcase of product multinomial and often product Poisson sampling with the

. Ž .same type of restrictions on the parameters to a problem equivalent to 2.1 .
Ž .Interestingly, an equivalent, dual problem formulation of problem 2.1 can be

obtained which phrases the constraints in terms of the dual cones K� andC
K*. To be specific, we state the following theorem.

Ž � .THEOREM 2.1. If y* � �1 y � �1, � i and z* minimizei

k p � zî i
2.2 p � z lnŽ . Ž .ˆÝ i i ž /1 	 y exp rŽ .i ii�1

subject to y � K� and z � K*, then the vector p* whose ith component isC

p � z�
î i�p � , i � 1, 2, . . . , k ,i �1 	 yi

Ž .attains 2.1 and satisfies the associated constraints.
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� Ž .PROOF. If y* � K and z* � K* minimize 2.2 , then by concavityC

kd
� �� p � z � � z � zŽ .Ž .ˆÝ i i i id� i�1

2.3Ž .
� �p � z � � z � zŽ .î i i i

�ln � 0� �ž /1 	 y 	 � y � y exp rŽ .Ž .i i i i ��0

for all y � K� and z � K*. Hence,C

k � kp � zî i� �z � z ln 	 z � zŽ . Ž .Ý Ýi i i i�ž /1 	 y exp rŽ .i ii�1 i�1
2.4Ž .

k � �p � z y � yŽ .Ž .î i i i	 � 0.Ý �1 	 yŽ .ii�1

�k kSince K contains the constant vectors, we know that Ý z � Ý z � 0i�1 i i�1 i
Ž .and 2.4 becomes

k � k � �p � z p � z y � yŽ .Ž .ˆ ˆi i i i i i�2.5 z � z ln 	 � 0Ž . Ž .Ý Ýi i � �ž / ž /1 	 y exp r 1 	 yŽ . Ž .i i ii�1 i�1

for all y � K� and z � K*. If z � z*, we obtainC

k � �p � z y � yŽ .Ž .î i i i
2.6 � 0Ž . Ý �1 	 yŽ .ii�1

for all y � K� and if y � y* we haveC

k �p � zî i�2.7 z � z ln � 0Ž . Ž .Ý i i �ž /1 	 y exp rŽ . Ž .i ii�1

Ž .for all z � K*. Moreover, if we take y � y*�2 and y � 2y* in 2.6 , we obtain
k � �p � z yŽ .î i i

2.8 � 0Ž . Ý �1 	 yŽ .ii�1

and
k �p � z yŽ .î i i

2.9 � 0Ž . Ý �1 	 yŽ .ii�1

� Ž . Ž . ��for all y � K which implies that p � z* � 1 	 y* � K � K . In a simi-ˆC C C
Ž .lar manner we can take z � z*�2 and z � 2z* in 2.7 and conclude that

k �p � zî i�2.10 z ln � 0Ž . Ý i �ž /1 	 y exp rŽ .i ii�1

and
k �p � zî i

2.11 z ln � 0Ž . Ý i �ž /1 	 y exp rŽ .i ii�1
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for all z � K* which implies that

p � z*ˆ
ln � cl K** � K ,Ž .ž /1 	 y* exp rŽ .

or, equivalently,

p � z*ˆ
ln � K 	 r.ž /1 	 y*

To conclude that p* gives the optimal value, note that if p � C is such that
ln p � K 	 r, we have

k k k
�� p ln p � � p ln p 	 z ln p � rŽ .ˆ ˆÝ Ý Ýi i i i i i i

i�1 i�1 i�1

k k
� �� � p � z ln p � z rŽ .ˆÝ Ýi i i i i

i�1 i�1

k �p � zî i�� � p � z lnŽ .ˆÝ i i �ž /1 	 yii�1

k � kp � zî i� �� 1 	 y p � � z rŽ .Ý Ýi i i i�ž /1 	 yii�1 i�1

by expanding ln p about p�.i i
However,

k � kp � zî i� �1 	 y p � � p y � 0Ž .Ý Ýi i i i�ž /1 	 yii�1 i�1

Ž .by 2.8 and the fact that

k �p � zî i � 1.Ý �1 	 yii�1

Hence,

k k � kp � zî i� �� p ln p � � p � z ln � z rŽ .ˆ ˆÝ Ý Ýi i i i i i�ž /1 	 yii�1 i�1 i�1

k � k �p � z p � zˆ ˆi i i i�� � p ln 	 z lnˆÝ Ýi i� �ž / ž /1 	 y 1 	 y exp rŽ .i i ii�1 i�1

k �p � zî i� � p ln ,ˆÝ i �ž /1 	 yii�1

Ž .where the final equality holds by 2.10 . The desired conclusion now easily
follows. �
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Ž .3. Algorithm. We now present an iterative procedure to minimize 2.2
subject to y � K� and z � K*. This procedure is guaranteed to converge toC
the true solution and encompasses the algorithm given in Haber and Brown
Ž .1986 .

Each cycle of the algorithm consists of two steps; the first associated with
the constraint set ln p � K 	 r and the second with the constraint set p � C.
We initiate the algorithm by setting qŽ0. � p, zŽ0. � 0, y Ž0. � 0 and n � 1. Atˆ
the nth cycle, step 1, we calculate the vector qŽn. which solves

k qi
min q lnÝ i Žn�1.ž /1 	 y exp rp�q�K *ˆ Ž .i ii�1

Žn. Žn. Žn. Žand then set z � p � q . The vector q is the I-projection of the prop-ˆ
. Ž Žn�1..erly scaled probability vector 1 	 y exp r onto the set of probability

� Ž .�vectors contained in �K* 	 p Csiszar 1975 . This is equivalent to findingˆ
Žthe multinomial MLE of p, subject to the constraint that ln p � K 	 r 	 ln 1

Žn�1..	 y .
Ž .The second step of the algorithm in the nth cycle amounts to deriving the

MLE of p, say pŽn., subject to p � C where qŽn. serves as the vector of
� Ž .�observed relative frequencies El Barmi and Dykstra 1994 . Equivalently,

we let y Žn. denote the solution to the problem
n

Žn.max q ln 1 	 yŽ .Ý i i�y�K C i�1

and then set the nth cycle estimate of p to be the vector pŽn. whose ith
component is given by

qŽn. p � z Žn.ˆi i iŽn.p � � , i � 1, . . . , k .i Žn. Žn.1 	 y 1 	 yi i

This two-step procedure is repeated for n � 1, 2, . . . until sufficient accuracy
Žis attained. Additional discussion on accuracy will be given in the following

.section. Note that we only need to solve problems of the form
k Ž .sup Ý p ln p with updated values for p or problems of the formˆ ˆp � C i�1 i i

k Ž .sup Ý p ln p with updated values for r .ˆlnp � K	r i�1 i i
Ž Žn. Žn.. Ž . ŽOne would hope that z , y would converge to z*, y* implying that

Žn. .p converges to p* and this is indeed the case. The nature of that conver-
gence is the essence of Theorem 3.2. We now state and prove a few lemmas
preliminary to that theorem. The proofs are given in the Appendix. We
assume that there exists at least one p � C such that ln p � K 	 r.

LEMMA 3.1. After the nth cycle of the algorithm described previously, we
have

k
Žn.q � 1Ý i

i�1
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and
k

Žn.p � 1.Ý i
i�1

k Žn. Ž Žn. .LEMMA 3.2. The sequence Ý q ln p �exp r is monotone nonincreas-i�1 i i i
ing and bounded below.

THEOREM 3.2. If there exists p � C such that ln p � K 	 r, then the
sequences qŽn. and pŽn. converge. Moreover, lim pŽn. � p� is the uniquen��

Ž .solution to 2.1 .

4. Accuracy. One of the negative aspects of iterative procedures for
computing MLEs is the difficulty in ascertaining accuracy of the estimates.
Even though the rate of change over subsequent cycles may be small, close
proximity to the true MLEs may not be the case. The duality approach,
however, often allows additional statements concerning accuracy.

Suppose we define the function

k p � zî i
f̃ z, y � p � z lnŽ . Ž .ˆÝ i i ž /1 	 y exp rŽ .i ii�1

Žn.� ŽŽand also suppose p � C and ln p � K 	 r where p is near p � p �˜ ˜ ˜ ˆ
Žn.. Ž Žn...�z � 1 	 y . If we let

k p̃iŽn. Žn.˜� � f z , y � p ln ,Ž . ˆÝ i ž /exp rii�1

then

k piŽn. Žn.˜ ˜f z , y � inf f z, y � sup p ln ,Ž .Ž . ˆÝ i� ž /exp rz�K * , y�K C ii�1p�C , ln p�K	r

or, equivalently,

k k

� � sup p ln p � p ln pˆ ˆ ˜Ý Ýi i i i
i�1 i�1p�C , ln p�K	r

k k
�� p ln p � p ln p ,ˆ ˆ ˜Ý Ýi i i i

i�1 i�1

Ž .where p* denotes the solution to 2.1 . Expanding the second part in a Taylor
series about p* gives

2� �k kp p � p 1 p � pŽ . Ž .ˆ ˜ ˜i i i i i
4.1 � � � 	 p ,Ž . ˆÝ Ý i� 2p 2 �i ii�1 i�1
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� Ž .where � lies between p and p . Although the constraint region for 2.1˜i i i
Ž .need not always be a convex set, it often is e.g., if K is an isotonic cone . In

Ž .this case, 1 � � p* 	 � p lies within the constraint region and hence˜
k kd p̂i� � �4.2 p ln p 	 � p � p � p � p � 0,Ž . Ž . Ž .ˆ ˜ ˜Ž .Ý Ýi i i i i i�d� pii�1 i�1��0

so that
2�k p � pĩ i

2� � p � 1ˆÝ i �ž /p 
 pĩ ii�1

Ž .where ‘‘
’’ denotes sup and ‘‘�’’ denotes inf . Thus, the region

2p � p˜
4.3 S � p � P ; � 1 � 2�Ž . ½ 5p 
 p˜ p̂

Ž . � �must contain the solution to 2.1 where � denotes the L norm withp̂ 2
weights p.ˆ

Even when the preceding convexity assumption does not hold, the value of
Ž .4.2 is typically small and S will generally contain the true solution. More-

Ž .over, since the � in 4.1 are generally very close to p , S is generally very˜i i
similar to the region

� � 2
24.4 S* � p � P ; p � p � 2� .Ž . ˜ p�p½ 5ˆ ˜

The rate of convergence for the algorithm described here will vary substan-
tially depending on the nature of the constraint regions. However, this
algorithm is a cyclic descent algorithm similar in many aspects to the least

�squares projection method known as Von Neumann’s algorithm also referred
Ž .�to as alternating conditional expectations ACE as well as Boyle and Dyk-

Ž .stra’s 1985 generalization to arbitrary, convex sets. There is a long history
� Žof interesting applications of this type of algorithm see Deutsch 1983,

.�1992 .
Ž . Ž .Recent elegant work by Deutsch 1995 and Deutsch and Hundal 1994

has established geometric convergence rates for Boyle and Dykstra’s proce-
� � ndure in a wide variety of settings. That is, x � lim x � 	c , for all n,n n�� n

for fixed constant 	 and c � 1 where x denotes the estimate at the nth stepn
� �of the algorithm and � is a least squares norm. The constants 	 and c

depend only on the constraint sets and not on the initial starting points.
Since the algorithm in this paper is similar in terms of its basic approach,

we would conjecture that its convergence properties are similar to those
derived by Deutsch and Hundal in the least squares situation.

5. Intersection of convex regions. The duality correspondence is espe-
cially useful when the constraint regions can be expressed as the intersection
of a finite number of ‘‘nice’’ convex regions. To be specific, suppose we want to
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s tŽ .minimize 1.1 subject to p � � C and ln p � � K 	 r, where C is aj�1 j j�1 j j

closed, convex subset of P, K is a closed, convex cone containing thej
constant vectors for all j and r is a fixed, known vector. Define K as inC
Section 2 to be the cone corresponding to C � �s C . We assume thatj�1 j

s Ž . t Ž . Ž� ri K and � ri K are nonempty where ri denotes the ‘‘relativej�1 C j�1 jj
. � Ž . �interior’’ to avoid problems with closure see Rockafellar 1970 , page 146 .

We have the following theorem.

Ž � � � . � � �THEOREM 5.1. If y , y , . . . , y � K � K � ��� � K and1 2 s C C C1 2 s
Ž � � � . � � �z , z , . . . , z � K � K � ��� � K solve1 2 t 1 2 t

k p � z � ��� �zî 1 i t i
5.1 min p � z � ��� �z lnŽ . Ž .ˆÝ i 1 i t i ž /1 	 y 	 ��� 	y exp rŽ .1 i si ii�1

subject to y � K� , j � 1, 2, . . . , s, z � K�, j � 1, 2, . . . , t, and 1 	 y 	 yj C j j 1 2j

	 ��� 	y � 0, then the vector p* whose ith component iss

p � z� � ��� �z�
î 1 i t i�p �i � � �1 	 y 	 y 	 ��� 	y1 i 2 i si

s tŽ .minimizes 1.1 subject to p � � C and ln p � � K 	 r.j�1 j j�1 j

PROOF. This result follows from Theorem 2.1 and the fact that

s *
� �K � K 	 ��� 	K� C C Cj 1 sž /

j�1

and
t *

� �K � K 	 ��� 	K .� j 1 tž /j�1

As one would expect, it is possible to extend the algorithm in Section 3 to
Ž .cyclically optimize over one z or y at a time and still establish correct,j j

monotone convergence. However, we forbear from imposing the messy details
on the reader.

6. Examples.

Ž .EXAMPLE 1 Nonnegative local log odds ratios and marginal homogeneity .
Odds ratios are commonly used to measure association between ordinal
categorical variables. It is well known that independence is equivalent to all
local odds ratios being equal to 1. When all the local odds ratios are at least 1
Ž . Ž .at most 1 , the variables are said to be positively negatively associated. We
consider the estimation of the cell probabilities of a k � k contingency table
when, in addition to being positively associated, the variables are equal in

Ž .their marginal distributions i.e., marginal homogeneity holds .
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� 4If K � x; x 	 x � x � x � 0 for i, j � 1, . . . , k � 1 andi j i j i	1, j	1 i	1, j i, j	1
� k k 4L � x; Ý x � Ý x � x � x � 0 for m � 1, . . . , k � 1, then them j�1 m j j�1 jm m	 	m

problem we wish to solve can be expressed as follows:
k k

ni jmax pŁ Ł i j
i�1 j�1

subject to
k�1

p � L ,� m
m�1

k�1 k�1

ln p � K� � i j
j�1 i�1

and p � P. Note that
k�1 *

� �L � L 	 ��� 	L ,� m 1 k�1ž /
m�1

� Ž .where L is the orthogonal complement subspace of L and is given bym m

L� � � y Žm. ; yŽm. � �yŽm. � 1, j � 1, . . . , k ,�m m j jm

yŽm. � 0, otherwise, � � R .4i j

Ž .Dykstra and Lemke 1988 showed that if

A � l , m ; 1 � l � i , 1 � m � j� 4Ž .i j

and

�
x; x � 0 , if 1 � i � k � 1, 1 � j � k � 1,Ý lm½ 5

Ai j�H �i j

x; x � 0 , if i � k or j � k ,Ý lm½ 5� Ai j

then
k�1 k�1 k k*

K � H .� � � �i j i jž /j�1 i�1 j�1 i�1

The dual problem can then be expressed as

k k p � zî j i j
min p � z lnˆŽ .Ý Ý i j i j k�1 Žm.ž /1 	 Ý � ym� 1 l i ji�1 j�1

subject to � � � for l � 1, . . . , k � 1 andl

k k

z � H .� � i j
j�1 i�1
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Ž .Therefore, the algorithm developed in El Barmi and Dykstra 1994 can be
used in the second step of the algorithm to compute the � ’s while Dykstra’s
Ž .1985 iterative algorithm for I-projections can be used in the first step to

Ž .compute the optimal z. As noted in Robertson, Wright and Dykstra 1988 ,
the individual projections needed for using Dykstra’s algorithm can be easily
programmed since the solution for an I-projection problem of the form

k pi
inf p lnÝ i ž /rp�P ii�1

Ý p �bj� A j

is given by

r Ý r� i j� A j
, if � b ,

Ý r Ý rj j j j

r b Ý ri j� A j
� � , if i � A and � b ,p �i Ý r Ý rj� A j j j

r 1 � b Ý rŽ .i j� A jcif i � A and � b.� cÝ r Ý rj� A j j j

Ž .EXAMPLE 2. Next we consider problem 2.1 when K is an isotonic cone.
At the first step of the nth iteration of the proposed algorithm, we need to
solve the following problem:

k p � zî i
inf p � z ln .Ž .ˆÝ i i Žn�1.ž /1 	 y exp rz�K * Ž .i ii�1

If we let v � p � z, this problem is equivalent to minimizingˆ
k vi

v lnÝ i Žn�1.ž /1 	 y exp rŽ .i ii�1

subject to

p vˆ Žn�1. rŽ1	y .e� � K* ,Žn�1. r Žn�1. r1 	 y e 1 	 y eŽ . Ž .
Ž1	y Žn�1..er Ž .where K* is the dual cone of K when the inner product is u, v �

k Ž Žn�1..Ý u v 1 	 y exp r . By Corollary A of Theorem 1.7.4 in Robertson,i�1 i i i i
Ž .Wright and Dykstra 1988 , the solution v* is given by

p̂
Žn�1. r �Žn�1. rv* � 1 	 y e E K ,Ž . Ž1	y .e Žn�1. rž /1 	 y eŽ .

Ž Ž Žn�1.. r � . ŽŽn�1. rwhere E p� 1 	 y e K is the least squares projection of p� 1ˆ ˆŽ1	y .e
Žn�1.. r Ž Žn�1.. r	 y e onto K with weights 1 	 y e . This least squares projection

can be computed using one of the algorithms described in Robertson, Wright
Ž . Ž .and Dykstra 1988 such as the pool adjacent violators algorithm PAVA . The
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value of zŽn. is then given by p � v*. In the second step of the nth iteration,ˆ
we need to find y Žn. which solves

k
Žn.sup p � z ln 1 	 y .Ž .ˆŽ .Ý i i i

�y�K i�1C

The nth cycle estimate of p is then the vector pŽn. whose ith component is
given by

Žn�1. Žn�1. �Žn�1.1 	 y exp r E p� 1 	 y exp r KŽ .ˆŽ .Ž .i i Ž1	y .exp r iŽn.p � .i Žn.1 	 yi

It then follows from the continuity of the projection operator that the solution
p* � lim pŽn. is given by the vector whose ith component isn��

p̂
� �p � exp r E K ,i i Ž1	y*.exp r ž /1 	 y* exp rŽ . i

i � 1, 2, . . . , k, where y* � lim y Žn.. Finally, we note that since ordern��

constraints on the components of p are preserved under the log transforma-
tion, one can improve the computational efficiency of the algorithm by incor-
porating these types of constraints as log-convex constraints in the algorithm.

EXAMPLE 3. Stochastic orderings of distributions are an important con-
cept in statistics and applied probability. Many different types of stochastic
orderings have been defined in the literature and for an extensive discussion

Ž .of this and other related issues, see Shaked and Shanthikumar 1994 . If F
Žand G are two distribution functions which possess densities or probability

.mass functions f and g respectively, then F is greater than G in the
Ž . Ž .likelihood ratio ordering sense if f x �g x is nondecreasing in x. Dykstra,

Ž .Kochar and Robertson 1995 obtain maximum likelihood estimates of the
probability vectors corresponding to two likelihood ratio ordered multinomi-
als. For more than two multinomials which are likelihood ratio ordered,
maximum likelihood estimates do not exist in a closed form. However, the
algorithm described in this paper can be applied to solve this problem.

APPENDIX

PROOF OF LEMMA 3.1. Since K contains constant vectors and p � qŽn. �ˆ
K*, we know

k
Žn.p � q � 0,ˆŽ .Ý i i

i�1

and hence
k k

Žn.q � p � 1.ˆÝ Ýi i
i�1 i�1
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Žn. Ž . Ž Žn..Since y solves 2.8 with z* replaced by z , we know

k Žn. Žn.q yi i � 0,Ý Žn.1 	 yii�1

and hence

k k Žn. k Žn. Žn. kq q 1 	 yŽ .i i iŽn. Žn.p � � � q � 1. �Ý Ý Ý Ýi iŽn. Žn.1 	 y 1 	 yi ii�1 i�1 i�1 i�1

PROOF OF LEMMA 3.2. We have

k Žn. k Žn. kp qi iŽn. Žn. Žn. Žn.q ln � q ln � q ln 1 	 yŽ .Ý Ý Ýi i i iž / ž /exp r exp ri ii�1 i�1 i�1

k Žn.qiŽn.� q lnÝ i Žn�1.ž /1 	 y exp rŽ .i ii�1

k k
Žn. Žn. Žn. Žn�1.� q ln 1 	 y 	 q ln 1 	 yŽ . Ž .Ý Ýi i i i

i�1 i�1

k Žn�1.qiŽn�1.� q lnÝ i Žn�1.ž /1 	 y exp rŽ . .i ii�1

k Žn�1.piŽn�1.� q ln ,Ý i ž /exp rii�1

since

k Žn. k Žn�1.q qi iŽn. Žn�1.q ln � q lnÝ Ýi iŽn�1. Žn�1.ž / ž /1 	 y 1 	 yi ii�1 i�1

and
k k

Žn. Žn. Žn. Žn�1.q ln 1 	 y � q ln 1 	 y .Ž . Ž .Ý Ýi i i i
i�1 i�1

�Therefore, we have the first conclusion of the lemma. We now note El Barmi
Ž .� Žn.and Dykstra 1994 that p solves

k
Žn.max q ln p .Ý i i

p�C i�1

Therefore, if p � C and ln p � K 	 r, we have˜ ˜
k Žn. kp p̃i iŽn. Žn.q ln � q ln .Ý Ýi i ž /ž /exp r exp ri ii�1 i�1
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Žn.In addition, since p � q � K* and ln p � K 	 r we knowˆ ˜
k p̃iŽn.p � q ln � 0,ˆŽ .Ý i i ž /exp rii�1

and hence

k Žn. k kp p p˜ ˜i i iŽn. Žn.A.1 q ln � q ln � p ln ,Ž . ˆÝ Ý Ýi i iž / ž /ž /exp r exp r exp ri i ii�1 i�1 i�1

which is the desired conclusion. �

� 4�PROOF OF THEOREM 3.2. Let n be a subsequence of the positivej j�1
� � 4�integers. Then there must exist a sub-subsequence n such thatj j�1

Žn�
j. � Žn�

j. � Ž .lim q � q and lim p � p exist. From A.1 ,j�� j��

k Žn� .jp p�i iŽn .jsup p ln � lim q lnˆÝ Ýi iž / ž /exp r exp rj��i ii�1 i�1p�C , ln p�K	r

k Žn� .jp� iŽn .j� lim p � z lnˆŽ .Ý i i ž /exp rj�� ii�1

k �pi� p ln .ˆÝ i ž /exp rii�1

Ž . Ž .Moreover, from arguments similar to those used in deriving 2.9 and 2.11 ,
k

��y p � 0 � y � KÝ i i C
i�1

and
k �pi

z ln � 0 � z � K*,Ý i ž /exp rii�1

� � k �which implies that p � K and ln p � K 	 r. However, Ý p � 1, so thatC i�1 i
� Ž . � Žn.4�p � C, and since the solution to 2.1 is unique, the entire sequence p n�1

must converge to p�. �
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