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INFORMATION THEORY AND SUPEREFFICIENCY

BY ANDREW BARRON1 AND NICOLAS HENGARTNER

Yale University

The asymptotic risk of efficient estimators with Kullback�Leibler loss
in smoothly parametrized statistical models is k�2n, where k is the
parameter dimension and n is the sample size. Under fairly general
conditions, we given a simple information-theoretic proof that the set of
parameter values where any arbitrary estimator is superefficient is negli-
gible. The proof is based on a result of Rissanen that codes have asymp-

Ž .totic redundancy not smaller than k�2 log n, except in a set of mea-
sure 0.

1. Introduction. In this paper we weave together two stories. One is
from statistics concerning the negligibility of the set of superefficient estima-

Ž .tion of a parameter originating in the work of Le Cam 1953 . The other story
is from information theory concerning the negligibility of a set of supereffi-

Ž .cient data compression due to Rissanen 1984, 1986 . The connection between
Žthese contexts is the use of the Kullback�Leibler informational divergence or

.relative entropy as the loss function between a parameter and its estimate.
Armed with information-theoretic techniques of Rissanen’s theory, we obtain
a proof of the negligibility of the set of superefficiency for both parameter
estimation and data compression.

The object of interest in the present work is the expected Kullback�Leibler
Ž � . Ž . Ž Ž . Ž ..loss D p p � Hp x log p x �p x dx between a density p and its estimateˆ ˆ

p. In the context of parameter estimation, we consider the Kullback�Leiblerˆ
loss induced through the plug-in estimators p � p of the density andˆ ˆn � nˆ ˆŽ � . Ž � . Ž � .denote it by D � � � D p p . A Taylor expansion suggests that D � �ˆn � � nn

ˆ t ˆŽ .Ž . Ž .Ž . Ž .is approximated by 1�2 � � � I � � � � , where I � is the Fisher infor-n n
mation matrix. Hence the anticipated behavior for maximum likelihood and
Bayes estimators is

kˆ�1 lim n� D � � � ,Ž . Ž .� n 2n��

where k is the parameter dimension. This motivates our definition of super-
efficiency.
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Ž .DEFINITION 1 Superefficiency and efficiency under Kullback�Leibler risk .
ˆ� 4We say an estimator sequence � is superefficient at � with Kullback�Lei-n

bler risk if

kˆ�2 lim sup n� D � � � ,Ž . Ž .� n 2n��

and is efficient if

kˆ�3 lim sup n� D � � � for all � � �.Ž . Ž .� n 2n��

ˆ� Ž .4For more general sequences of loss functions L � , � , Le Cam definedn n
ˆefficiency of an estimator � relative to the risk achieved by some choice of an

�̂ Žstandard estimator � typically the maximum likelihood estimator or an
.Bayes estimator with a suitable prior to mean that

ˆ �̂lim sup � L � , � � � L � , � � 0 for all � � � ,Ž . Ž .ž /� n n � n n
n��

and he defined the set of superefficiency of an estimator to be the set of � for
which

ˆ ˆlim sup � L � , � � � L � , � � 0.Ž . Ž .ž /� n n � n n
n��

Le Cam restricted his considerations of superefficiency only to estimators
that also were efficient. He gave regularity conditions on the family of
distribution such that for bounded loss functions, the set of superefficiency
has Lebesgue measures 0 in � k. The heart of his proof combines Fatou’s
lemma and the admissibility of a Bayes estimator used as the standard.

Historical motivation for work on superefficiency was the apparent conflict
ˆbetween the belief in the work of R. A. Fisher that for any statistic � forn

ˆ' Ž . Ž Ž ..which n � � � is asymptotically Normal 0, � � , the variance satisfiesn
Ž . �1Ž .� � � I � , and the counterexample due to Hodges of a superefficient

estimator. Le Cam resolves this conflict by showing that for efficient estima-
tors, superefficiency can only occur in a set of measure 0. An alternative proof

Ž . Ž .is provided by Bahadur 1964 under Cramer-type conditions. Brown 1993´
� Ž . �1Ž .4provides a proof that � : � � � I � has measure 0 based on a

Cramer�Rao-like inequality he develops for risk with a truncated squared´
error loss.

˜Our main result is the following: If there exists a sequence of estimators �n
˜ 'for which � � � is of order 1� n in probability, then k�2 is a lower boundn

for the asymptotic Kullback�Leibler risk of arbitrary estimator sequences, at
least for almost every parameter value. The conclusion holds for arbitrary
estimator sequences, not just efficient ones as in the theory of Le Cam. The
information-theoretic tools we use to derive this lower bound are a variant of
results of Rissanen that bounds the measure of the set of parameters for
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Ž n � n. Ž .Ž .which D p q � 1 � � k�2 log n and the chain rule of information the-�

ory that reveals the relationship between estimation and data compression.
In addition, we generalize these results in three directions. First, we want

Ž .to consider parameter sets that are subsets of arbitrary metric spaces MM, d ,
possibly infinite dimensional. Second, we consider the effect of assuming

˜ �1�2Ž .tightness of the sequence � � � �r for rates r other than n . Third,n n n
for nonparametric estimation problems, we identify the rate of convergence
such that for any estimator sequence, the set of functions that are estimated
at a faster rate is negligible.

This level of generality is needed to study the following estimation prob-
� 4lem: Suppose that the collection of distributions PP � P : � � � is domi-�

nated by some measure � . We parametrize PP by the probability densities
� 4� � p � dP�d� : P � PP and view the latter by a subset of HH, the metric

space comprising all the densities of distributions dominated by � , endowed
2 1�2Ž . � Ž . Ž .4' 'with the Hellinger metric h p, q � H p x � q x d� x . If �Ž . Ž .

has finite metric dimension, we will talk about parametric density estima-
tion, and otherwise, of nonparametric density estimation. Parametric density
estimation is more general than estimation of the parameter because we do

Ž . Ž .not require the estimator p x of p x to belong to PP. In either case, ourˆn �

Ž . Ž .theory quantifies the performance of estimators p x for p x . For paramet-ˆn �

ric density estimation, we identify lower bounds for the risk; for nonparamet-
ric density estimation, we identify lower bounds on the rate of convergence.

The outline of the remainder of this paper is as follows: Section 2 presents
the key ideas in the context of parameter estimation in smooth parametric
families. Section 3 generalized Rissanen’s theorem on the set of negligibility
of superefficient data compression to give a result that applies to both
parametric and nonparametric estimation. In Section 4, we apply the latter
result to make conclusions about the negligibility of the set of superefficient
estimation. Implications for nonparametric density estimation are presented
in Section 5. Finally, a few useful technical lemmas are found in the Ap-
pendix.

2. Superefficientparameter estimation. The present work yields con-
clusions for both parametric and nonparametric estimation. However, we will
first study parameter estimation in smooth parametric families of probability

� Ž . 4densities p x : � � � on a sample space X with a k-dimensional parameter�

vector � to expose the key ideas. We assume that the sample X n �
Ž .X , X , . . . , X consists of independent and identically P -distributed ran-1 2 n �

dom variables and the densities are with respect to a fixed sigma-finite
measure � .

We will give conditions for the set of superefficiency to have Lebesgue
measure 0 for arbitrary estimators that are not necessarily assumed to be
efficient. The information-theoretic proof technique will reveal k�2 as the
asymptotic lower bound for almost every � � � without recourse to analysis
of a standard estimator assumed or known to be efficient. Instead we only
require the existence of an estimator that converges at the right rate. This
tactic permits us to obtain the bound under the following general condition.
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Ž � Ž . 4.ASSUMPTION A Estimability in p x : � � � . For each bounded subset�
k ˜K of the parameter space � in � , there exists a sequence of estimators �n

n ˜' Ž . Žbased on X for which the sequence n � � � is tight i.e., bounded inn
n ˜'� � � 4 .probability, lim sup P n � � � � c � 0 for almost every � � K. Herec�� n � n

� � k	 is the Euclidean norm on � .

From modern statistical theory, Assumption A holds for i.i.d. sampl-
ing from P when there exists, for each compact set K, positive constants c�

2Ž . Žand c such that the squared Hellinger distance h p , p � H p x' Ž .� n �

2. Ž .� p x � dx is bounded byŽ .' 


� � 2� � 
 22 � �4 c � h p , p � c � � 
Ž . Ž .� 
2� �1 � � � 


Ž .for all � , 
 � K. Under this condition, Ibragimov and Hasminskii 1982 , page
'54, show that suitable Bayes estimators converge at rate 1� n . Alterna-

tively, satisfaction of Assumption A can be deduced from the work of Le Cam,
Ž .assuming that the mapping � � p is one to one and that 4 holds locally;�

that is, for � � �, there is a neighborhood NN and constants 0 � c � c such� � �
2 22� � Ž . � � Ž .that c � � 
 � h p , p � c � � 
 for all 
 � NN . See Le Cam 1986 ,� � 
 � �

pages 580 and 608.
To avoid degenerate situations, we make explicit a technical requirement

on the Kullback�Leibler divergence.

Ž .ASSUMPTION B Finiteness . There exists an integer m and a distribution
Qm with density q m on XX m such that for every � � � there is a finite0 0

Ž m � m.constant c such that D p q � c .� � 0 �

Ž � .If for every � the Kullback�Leibler divergence D � 
 is bounded for all 

Ž � .in a neighborhood NN , which holds if D � 
 is continuous in its second�

Ž . Ž . Ž .argument, then the mixtures q x � Hp x w � d� for any positive proba-w �

Ž .bility density w � on � satisfy Assumption B with m � 1. The details are
spelled out in the Appendix.

The information-theoretic tool we use to establish superefficiency is a
Ž .variant of the results of Rissanen 1984, 1986 . The object of interest is the

Ž n � n. nKullback�Leibler distance D p q between the distribution P of the� �

Ž . n Žsample depending on � and an arbitrary distribution Q not depending on
. n� on the sample space X . This quantity arises as n times the per symbol

Ž . nredundancy of universal source codes for arbitrarily fine quantization of X
using Shannon’s code based on Qn. It also arises as the cumulative risk of a
sequence of estimators with Kullback�Leibler loss as discussed in Clarke and

Ž . Ž . Ž .Barron 1990 . As shown in Rissanen 1984 , Clarke and Barron 1990 and
Ž . nBarron and Cover 1991 , good choices for Q yield data compression satisfy-

ing
n � nD p q kŽ .�

5 lim � .Ž .
log n 2n��

Ž .Ž .The corresponding per symbol redundancy is of order k�2 log n �n.
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Ž .DEFINITION 2 Superefficient data compression . For any sequence of prob-
ability measures Qn used to code X n distributed according to P n, the set of�

superefficient data compression is the set of � � � for which
n � nD p q kŽ .�

lim sup � .
log n 2n��

A sequence of probability measure Qn on X n is asymptotically efficient for
data compression if

n � nD p q kŽ .�
lim sup � for all � � �.

log n 2n��

Ž . � n 4Rissanen 1986 gives conditions on the family P : � � � for the set of�

superefficiency for data compression to have measure 0 for any choice of
� n4sequence Q . A variant of his result and the implication for superefficiency

of parameter estimation are combined in the following proposition.

� n 4PROPOSITION 1. Suppose the family P : � � � satisfies Assumption A.�

Then for every sequence of probability distributions Qn on X n, the set
n � nD p q kŽ .�

� � � : lim sup �½ 5log n 2n��

has Lebesgue measure 0 in �.
Moreover, if in addition to Assumption A, Assumption B holds, then for

Ž . nany sequence of density estimators p x based on X , the set of parameters �ˆn
Ž � .for which lim sup n� D p p � k�2 has Lebesgue measure 0. In particu-ˆ� � n

ˆ nlar, for sequences of estimators � based on X , the setn

kˆ�� � � : lim sup nD � � �Ž .n½ 52n��

has Lebesgue measure 0.

PROOF. To establish the negligibility of the set of parameter values for
Ž n � n.which lim sup D p q �log n � k�2, we take E � X and bound the totaln�� �

Kullback�Leibler loss between P n and any probability distribution Qn on X�

by

P n E P n EcŽ . Ž .� �n n n n c�6 D p q � P E log � P E logŽ . Ž . Ž .Ž .� � �n n cQ E Q EŽ . Ž .
1 1

n n c� P E log � P E logŽ . Ž .� �n n cQ E Q EŽ . Ž .7Ž .
� P n E log P n E � P n Ec log P n EcŽ . Ž . Ž . Ž .� � � �

1
n8 � P E log � log 2.Ž . Ž .� nQ EŽ .
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Ž .Here 6 is a standard inequality between a total Kullback�Leibler loss and
	its restriction to a partition this is a consequence of Theorem 4 in Kullback

Ž .
 Ž .and Leibler 1951 and inequality 8 is from the bound log 2 on the binary
	 Ž . 
entropy function see Cover and Thomas 1991 , page 15 . With the sequence

˜ 'of estimators � of Assumption A and a � log n� n , define the setsn n

n n ˜ n� �EE � x � X : � x � � � a ,Ž .� 4� , n n n

˜'Ž . Ž .which we use in inequality 8 . Tightness of n � � � together with then
dominated convergence theorem imply that, for each subset K of � with
finite Lebesgue measure, the sequence of sets

n ˜' � �BB � � � K : P n � � � � log n � 1 � �½ 5n � n

nŽ .has measure tending to 0 with n. To upper bound Q EE , we show that the� , n
set

AA � � � K : Qn EE � ak log nŽ .� 4n � , n n

has Lebesgue measure tending to 0 with n.
Let M be the maximal number of disjoint balls of radius a having centern n

in AA , and denote by CC the associated collection of centers. The trianglen n
inequality implies

� �AA � 
 � � : 
 � � � 2 a ,� 4�n n
��CCn

and therefore

9 Volume AA � V k ak M ,Ž . Ž . Ž .n 2 n n

Ž . kwhere V k denotes the volume of a ball of radius 2 in � , and volume refers2
to Lebesgue measure. An upper bound for M is obtained by noting that then

� 4sets EE : � � CC are disjoint, and thus� , n n

10 1 � Qn EE � M ak log n.Ž . Ž .Ý � , n n n
��CCn

Ž . Ž .Combining 9 and 10 shows that

1
Volume AA � V k ,Ž . Ž .n 2 log n

Ž .which tends to 0 with increasing n. For � � K � AA � BB , then n
Kullback�Leibler loss is lower bounded by

1
n n n� 	 
D P Q � P EE log � log 2Ž .� � � , n nž /	 
Q EE� , n

'n
� 1 � � k log � log log n � log 2Ž . ž /log n

k
� 1 � 2� log n.Ž .

2



A. BARRON AND N. HENGARTNER1806

Whence for every � � 0, the sets

k
n n�� � K : D P Q � 1 � 2� log n for all n � kŽ .Ž .�½ 52

have Lebesgue measure 0 since their volume is bounded by the volume of
AA � BB for all n � k. The setn n

n � nD P Q kŽ .�
� � K : lim sup �½ 5log n 2n��

has measure 0 since it is contained in the set
n � nD P Q kŽ .� �1� : � 1 � j for all n � k .Ž .� � ½ 5log n 2j�1 k�1

This holds for all finite measure sets K in �, and so the first conclusion
follows.

The relationship between the superefficiency for estimation and coding is
obtained by the chain rule of information theory. For any sequence of density

� 4 lestimators p that depend only on X , l � 1, . . . , n � 1, consider the proba-ˆl
bility measure Qn on X n having probability density

n�1
n n m mq x � q x p x ,Ž . Ž . Ž .ˆŁ0 l l�1

l�m

mŽ m.where q x satisfies Assumption B. The chain rule gives0

np X , . . . , XŽ .� 1 nn n� nD P q � � logŽ .� P n� q X , . . . ,Ž .1 n

m n�1� �p X � p X �Ž . Ž .m� 1
n n� � log � � logÝP Pm m� �ž /q X p XŽ . Ž .ˆ0 l l�1l�m

m n�1�p X �Ž .
�m� � log � � D p p .ˆŽ .ÝP � � lm m� ž /q XŽ .0 l�m

Ž � . Ž .An individual risk � D p p of c�l � o 1�l corresponds to a cumulativeˆ� � l
Ž n � n. Ž .risk D p q of c log n � o log n . Using this choice for the sequence�

� n4q , we see that the set of superefficiency, taken to be the set with
Ž � .lim sup n� D p p � k�2 is contained in the set of � withˆn � � n

Ž n � n.lim sup D p q � log n � k�2, the latter having asymptotically Lebesguen �
ˆŽ � . Ž . Ž .measure 0. Finally, the conclusion for D � � follows by setting p x � p x .ˆ ˆl � l

�

Ž .The original proof of Rissanen 1986 for superefficient data compression
˜'	 � � 
required that � n � � � � log n be summable in n uniformly in � for an� n

application of the Borel�Cantelli lemma. Inspection of our proof reveals that
˜' � �we only need for each � the tightness of the sequence n � � � �� forn n
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� Ž .some sequence � � 1 of smaller order than n for all � � 0, that is, log � �n n
˜'Ž . 	 � � 
o log n . For example, lim � n � � � � log n � 0 for each � suffices ton � n

obtain the stated conclusions. Our proof avoids use of the Borel�Cantelli
lemma by considering the limit superior.

Other choices of loss functions may be natural for investigation of super-
efficiency. We find that the Kullback�Leibler loss is most natural for a proof
that relates distance between estimates to total distance between joint distri-
butions. Among a broad class of measure of divergence between probability

Ž . Ž .distributions, discussed in Csiszar 1967 or Ali and Silvey 1966 ,´
Kullback�Leibler divergence is the unique choice satisfying the chain rule.

Ž .As we now discuss, the argument of Le Cam 1953 , originally developed
for bounded loss functions, also works for unbounded loss functions such as
squared error loss or Kullback�Leibler loss to show that the set of parameter
values at which a sequence of efficient estimators is superefficient has mea-

ˆ� 4sure 0. Recall that a sequence of estimators � is said to be efficient undern
ˆŽ � .the Kullback�Leibler loss if it satisfies lim sup n� D � � � k�2.n�� � n

Ž � . � Ž � .4Consider the truncated Kullback�Leibler loss L � 
 � min c, nD � 
 ,n, c
�̂and denote by � the Bayes estimate with respect to the prior distribution �n, c

Ž .and loss function L � , 
 . Under classical regularity conditions on then, c
parametric family p and the prior distribution � , the limit�

�̂ 2Ž . � � � 4 Ž .lim � L � , � exists and equals � min c, Z �2 for Z � Normal 0, I .n�� n, c n
The latter approaches k�2 for large c, and hence, for any � � 0, there exists a

� � � 2 4c � � such that � min c, Z �2 � k�2 � � . With this choice of c and � , it
ˆfollows for any sequence of efficient estimators � thatn

k ˆ�0 � � lim sup � D � � � d�Ž .Ž .H � n½ 52 n��

�̂ ˆ� lim � L � , � � � � lim sup � L � , � � d�Ž .Ž . Ž .H � n , c n , c � n , c n½ 5
n�� n��

�̂ ˆ� lim sup � L � , � � L � , � � d� � � ,Ž .Ž . Ž .½ 5H � n , c n , c n , c n
n��

where the last inequality is an application of Fatou’s lemma since the
�̂ ˆŽ . Ž .function L � , � � L � , � is bounded from below by �c. The estima-n, c n, c n, c n

�̂tor � being Bayes implies that, for each n,n, c

�̂ ˆ� L � , � � L � , � � d� � 0.Ž .Ž . Ž .½ 5H � n , c n , c n , c n

Whence we have shown that, for arbitrary � � 0,

k ˆ�0 � � lim sup � D � � � d� � � .Ž .Ž .H � n½ 52 n��

Letting � tend to 0, we conclude that

k ˆ�� lim sup � D � � � d� � 0Ž .Ž .H � n½ 52 n��
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and hence that the set of superefficiency has �-measure 0. It is important to
realize that the above argument only works for sequences of estimators
assumed to be efficient whereas our Proposition 1 yields the same conclusion,
but for arbitrary sequences of estimators.

Ž .The constant k�2 is sharp. Cencov 1982 shows that, for efficient estima-
ˆŽ � . Žtors in smooth parametric families, n� D � � converges to k�2 this is then

ˆ .reverse order of estimator � and parameter � to the one we consider .n
Ž .Komaki 1994 shows that, in curved exponential families, Bayes predictive

n Ž � . Ž 2 .densities have Kullback�Leibler risk � D p p � k�2n � O 1�n . Harti-ˆ� � n
Ž .gan 1998 reveals the asymptotics beyond the leading k�2n term. He gives

conditions such that for maximum likelihood and Bayes estimates, the trun-
Ž � . 2cated Kullback�Leibler risk satisfies � D p p � � � k�2n � C �n �ˆ� � � �

Ž 2 .o 1�n for all � � 0. Furthermore, he identifies the constant C and how it�

depends on the choice of the prior.
Efficiency may also be addressed in the context of the exponential conver-

n ˆŽ . 	 � � 
gence rate large deviation principle for � � � � � � as n � �. Bahadur� n
Ž . Ž1967, 1971 identifies this rate also related to Kullback�Leibler divergence

.and to Fisher information in the limit of small � and shows that supereffi-
ciency is not possible in his setting. For an algorithmic information-theoretic

Ž .perspective on statistical efficiency, see Vovk 1991 .
Ž .Merhav and Feder 1995 provide additional insight into the information-

theoretic nature of the lower bounds for the total Kullback�Leibler diver-
Ž .gence source coding redundancy . The fundamental quantity is the minimax

Ž n � n.nvalue C � min D p q which is in agreement with the maximin valuen q �

Ž � n. Ž .nmax min HD p q W d� , known in information theory as the informa-W q �

Ž . ntion capacity. They show that for any code distribution Q the set of
Ž n � n. Ž .parameter values for which D p q � 1 � � C has probability, under an� n

Ž .asymptotic least favorable capacity-achieving probability measure, that
vanishes to 0 as n tends to �. In particular, as they point out, in smooth

	 
'parametric families, Jeffreys prior proportional to det I � is asymptot-Ž .Ž .
	 Ž .
 Ž .ically least favorable cf. Clarke and Barron 1990 and C 
 k�2 log n,n

thereby establishing in a different manner the negligibility of superefficient
data compression.

Ž .Brown, Low and Zhao 1997 study the superefficiency phenomena in the
context of nonparametric regression under squared error loss. They exhibit
sequences of estimators whose mean squared error, when divided by the
minimax rate of convergence, converges to 0 for each regression function in
the considered class. That pointwise convergence to 0 cannot be uniformly at
a faster rate. In a related nonparametric problem, we show in Section 5 that
the set of functions, when reconvergence occurs at a faster than the minimax
rate, is negligible in a sense that will be made precise.

In this paper we focus on the case that X , . . . , X are modeled as1 n
independent and identically distributed. Nevertheless, the techniques permit
general forms of dependence for P . The cumulative Kullback�LeiblerX , . . . , X ��1 n

Ž � . Ž . Ž .divergence D p q is made to be of order k�2 log n � O 1X , . . . , X �� X , . . . , X1 n 1 n
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�1 Ž � .by suitable mixtures Q , as long as n D p p �X , . . . , X X , . . . , X �� X , . . . , X �
1 n 1 n 1 n

� � 2 Ž .c � � 
 for 
 in a neighborhood NN of � cf. Lemma 12 in the Appendix .� �

If Assumption A holds, then for any Q , the set of � for whichX , . . . , X1 n

Ž � .lim sup D p q �log n � k�2 has Lebesgue measure 0.n X , . . . , X �� X , . . . , X1 n 1 n

When X , . . . , X are allowed to be dependent, the chain rule becomes1 n

n�1

� �l l lD p q � � D P Q .Ž . Ž .ÝX , . . . , X �� X , . . . , X P X � X , � X � X1 n 1 n � l�1 l�1
l�0

Correspondingly, the set of � for which

�n n nlim sup n� D p q � k�2Ž .P X � X , � X � X� n�1 n�1
n��

has measure 0. That is, the predictive distributions P n are estimatedX � X , �n� 1

with Kullback�Leibler loss not less than k�2n except for a negligible set of
parameters.

3. Superefficiency in a metric space context. In this section we
study the asymptotics for the Kullback�Leibler divergence between members
of the family P n and any distribution Qn on X n. For the lower bound, we�

examine the negligibility of the set of � with small total Kullback�Leibler
Ž n � n.loss D p q in the sense of having a small cardinality cover as we shall�

make precise. For the upper bound, we explicitly construct distributions Qn

that, under additional assumptions, have total Kullback�Leibler loss of the
same order as the lower bound. Both these theorems are stated for general
metric spaces.

Ž .Let K be a compact set in a metric space MM, d . For subsets A � K � MM,
Ž .the packing number M A, � is the largest number of points in A that are at

Ž .least distance � apart and the covering number of N A, � is the smallest
number of balls of radius � with centers in A needed to cover the set A. The
related metric entropy is

H A , � � H � � log N A , � .Ž . Ž . Ž .

Ž .Both the packing and covering numbers and associated metric entropy
provide an intrinsic measure of dimension as � tends to 0. For example, the

k Ž . Ž .kcovering number of open balls B on � is of order N B, 
 
 1�� , where
we use a 
 b to indicate that a �b � 1. By analogy, sets with coveringn n n n
numbers of this order are said to have metric dimension k. If the covering

Ž .knumber grows faster than 1�� for every k, the set A is said to be infinite
Ž .dimensional. Implicitly, we will assume that the covering number N �, �

tends to � as � goes to 0.
For A � B � K, the relative size of A to the size of B can be measured by

the ratio of the number of small balls needed to cover A and B, respectively.
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DEFINITION 3. For sets A � B � K, the relative measure of A to B is

N A , �Ž .
�v A � lim sup .Ž .B

� N B , �Ž .��0

� Ž .Moreover, the set A is said to be negligible in B if v A � 0.B

In the Appendix we show for parameter sets � that have finite metric
dimension, that if there exists a locally invariant measure on � assigning the
same mass to small radius balls, then negligibility is equivalent to having
measure 0. When d is the Euclidean distance, Lebesgue is the invariant
measure; when d is the Hellinger metric, Jeffreys prior provides the local

	 Ž . Ž . 
invariant measure cf. Jeffreys 1946 and Hartigan 1983 , page 49 . To
handle more general contexts of interest, we reformulate the assumption and
conclusion in terms of negligibility.

Ž .ASSUMPTION C. Let � � MM, a metric space with metric d 	, 	 . For a
� 4sequence r which tends to 0 as n � � and for each compact subset K � �,n

˜ Žthere exists a sequence of estimator � based on X , . . . , X possibly depend-n 1 n
.ing on K and finite integer n , such that the setso

n ˜BB � � � K : sup P d � , � � lr � 
Ž .l , 
 � n n½ 5
n�no

have covering numbers satisfying

N BB , �Ž .l , 

lim lim sup � 0

� N K , �l�� Ž .��0

for every 
 � 0.

˜Ž .In the setting of Assumption A, tightness of the sequence of d � , � �r forn n
almost every � implies Assumption C.

We first exhibit the lower bound for the total Kullback�Leibler divergence.

� n 4THEOREM 2. Suppose the sequence of families of distributions P : � � ��

on X n has a parameter set � contained in a compact set K in the metric space
Ž . Ž . Ž .MM, d . Assume that the H � � log N �, � increases to � while � decreases
to 0. If Assumption C holds, then for every sequence of probability distribu-

� n4� n � 4 Ž .tions Q on X and divergent sequence � for which � r � o 1 , then�1 n n n
set

n � nD p qŽ .�
� � � : lim sup � 1½ 5H � rŽ .n�� n n

is negligible in � with respect to the metric d.

REMARK. The conclusion of the theorem is easily extended to �-compact
parameter spaces. Given a countable collection of compact sets K whosem
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union contains �, we apply Theorem 2 to each of the sets � � K . Take H tom
be the logarithm of the minimum of the covering numbers required to cover
each individual intersection � � K , m � 1, 2, . . . , where � � � K pro-m m m
duces a lower bound for the total Kullback�Leibler divergence.

PROOF OF THEOREM 2. As in Proposition 1, we consider the inequality

1
n n n�D p q � P E log � log 2,Ž .Ž .� � nž /Q EŽ .

with sets of the form

�nn n n˜EE � x � X : d � x , � � ,Ž .Ž .� , n n½ 52
nŽ .where � � 2� r . We bound Q EE by showing that the setn n n � , n

log N � , �Ž .nnAA � � : Q EE �Ž .n � , n½ 5N � , �Ž .n

is asymptotically negligible. Let M be the maximal number of disjoint ballsn
of radius � �2 having center in AA and denote by CC the collection of theirn n n

Ž . �centers. The triangle inequality implies N AA , � � M . Since the sets EE :n n n � , n
4� � CC are disjoint,n

log N � , �Ž .nn1 � Q EE � M ,Ž .Ý � , n n N � , �Ž .n��CCn

which implies that

N � , �Ž .n
M � .n log N � , �Ž .n

The ratio of the covering numbers of AA and � is thus bounded byn

N AA , � M 1Ž .n n n
11 � � ,Ž .

N � , � N � , � log N � , �Ž . Ž . Ž .n n n

Ž .which goes to 0 as n tends to � since � � o 1 . Whence the setsn

log N � , �Ž .nn� � � : Q EE � for all n � nŽ .� , n 0½ 5N � , �Ž .n

are negligible for all n .0
n	 
 Ž .We now turn to bounding P EE . For this, define for 
 � 0, 1 the sets� � , n

n	 
BB � � � � : inf P EE � 1 � 
½ 5
 � � , n
n

and

n ˜BB � � � � : inf P d � , � � lr � 1 � 
 .Ž .½ 5l , 
 � n n
n
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Since l � l implies that BB � BB , it follows that BB � BB for all l.1 2 l , 
 l , 
 
 l, 
1 2

From Assumption C, we conclude that

N BB , � N BB , �Ž . Ž .
 l , 

lim � lim lim � 0.

N � , � N � , ���0� l�� ��0�Ž . Ž .
Ž .cFor � � AA � BB , the relative entropy is lower bounded byn 


1
n n n� 	 
D p q � P EE log � log 2Ž .� � � , n nž /	 
Q EE� , n

N � , �Ž .n� 1 � 
 log � log 2.Ž . ž /log N � , �Ž .n

Ž . Ž .Identifying H � � log N �, � , we conclude that the setn n
n � n12 � � � : D P q � 1 � 2
 H � for all n � n� 4Ž . Ž . Ž .Ž .� n 0

Ž .is negligible for all 
 � 0, 1 and n .0
� Ž n � n. Ž .4We conclude that the set � � �: D p q � H � is negligible in � by� n

�noting that it is the limit in j of the increasing sequence of sets � � �:
Ž n � n. Ž . Ž .4D p q � 1 � 2�j H � , each of which is negligible in �. �� n

Ž .In general, Theorem 2 identifies H r as a lower bound for the conver-n
Ž n � n.gence rate of D p q . The conclusion can be more precise in the case that�

� has finite metric dimension. Indeed we show that the metric dimension k
Ž n � n.is a lower bound for D p q �log r , except for a negligible set of � .� n

THEOREM 3. Let the parameter space � � MM have finite metric dimension
Ž .k in a �-compact metric space MM, d . If Assumption C holds, then for any

sequence of distributions Qn on X n, the set
n � nD p qŽ .�

� � � : lim sup � k½ 5log rn�� n

is negligible in �.

REMARK. The conclusion of Theorem 3 remains unchanged when the rate
Ž Ž .. � Žr is increased to r log 1�r for any � � 0 as can be seen by inspectingn n n

.the proof below . Whence Assumption C can be weakened to assuming
negligibility of the set

rnn ˜BB � � � K : sup P d � , � � l � 
Ž .l , 
 � n½ 5log rn n

as l goes to �.

PROOF OF THEOREM 3. Without loss of generality, we assume that � is
bounded. If not, write MM � � K , where K are compact sets with nonemptyj j j
interior, and apply the argument to each of the bounded sets � � K . Sincej

Ž .the set � has finite metric entropy, the covering numbers N �; � are of
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Ž .k Ž .order 1�� . Now apply Theorem 2 with � � log 1�r to conclude that then n
set of parameters for which

n � nlog 1�r D p qŽ .n �
lim sup 	 � k

log 1�r � log log 1�r log 1�rn�� n n n

is negligible. The conclusion follows by noting that

log 1�rn � 1 with n � �. �
log 1�r � log log 1�rn n

We now provide conditions for the existence of sequences of distributions
n n Ž n � n.Q on X having Kullback�Leibler divergence D p q matching the lower�

bounds of Theorems 2 and 3 up to asymptotically negligible terms, and this
for all � � �. In particular, in the finite metric dimension case, it reveals the
efficient constant in terms of the metric dimension k.

To construct such distributions Qn on X n, let W be a sequence of discreten
prior distributions on �. Consider the sequence of distributions Qn with
probability densities

n n n n � nq x � p x 
 W d
Ž . Ž .Ž .H
�

on X n. This choice is motivated by the fact that, for each n, Qn minimizes the
Ž n � n. Ž .average total Kullback�Leibler loss HD p q W d� . When W are judi-� n n

nŽ n. Ž n � n.ciously chosen, the mixture q x is a good candidate to achieve D p q�

Ž . Ž .of order H r with best constants in the finite metric dimension case .n
The following theorem gives an upper bound in terms of the covering

numbers of the parameter set by �-balls of the Kullback�Leibler divergence
�1 Ž n � n. Ž � .n D p p . In the i.i.d. case this divergence reduces to D p p . A subset� 
 � 


Ž .K of � has an � information cover of cardinality N � if there exists a setn
� 4CC � 
 , 
 , . . . , 
 of points in � such that for every � � K there existsn 1 2 N Ž� .n

�1 Ž n � n . 2
 � CC for which n D p p � � .l � 
 l

THEOREM 4. Suppose that parameter set � is represented as � K , wherej j
the subsets K are independent of n and have � information covering numberj

Ž .bounded by N � uniformly in j. Then for every sequence of positive numbersn
r , there exists a sequence of distributions Qn on X n such thatñ

n � n 213 D p q � log N r � nr � C �Ž . Ž .Ž .Ž . ˜ ˜� n n n

Ž . � 4for some constant C � not depending on n or the sequence r .ñ

ŽREMARK 1. The best such bounds are obtained by choosing r to ap-ñ
. Ž . 2proximately minimize log N r � nr . Combining this bound with its impli-˜ ˜n n n

cations for the existence of estimators satisfying Assumption C at rate
r � r , as developed in Section IV, will reveal the optimality of our upper˜n n
and lower bounds.
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Ž .REMARK 2. The proof applies techniques from Clarke and Barron 1990 ,
Ž .and uses Lemma 12 in the Appendix that is implicit in Barron 1987 .

Ž . �PROOF OF THEOREM 4. Given r , let N � N r and CC � 
 , 
 ,˜ ˜n n n n j j, 1 j, 2
4 Nn � �1 Ž n � n .. . . , 
 be the set of centers in K such that K � � � : n D p p �j, N j j l�1 � 
n j, l24r . Define a prior W via the following two-stage process: First draw JJ, anñ n

Ž .integer-valued random variable with probability mass function � j � 0.
Given JJ � j, draw a point uniformly from the finite collection CC . We nowj

� Ž n � n. 24apply Lemma 12 in the Appendix with B � 
 � �: D p p � nr to˜n � 
 n
conclude that

1 W d
Ž .nn n n n� �D p q � log � D p pŽ . Ž .H� � 
W B W BŽ . Ž .Bn n n nn

1
2� log � nr .ñW BŽ .n n

By construction of the prior W , if � � K thenn j

1
log � log N r � log � j .Ž .Ž .˜n nW BŽ .n n

Thus the total Kullback�Leibler loss is bounded by
n � n 2D p q � log N r � nr � C � ,Ž .Ž .Ž . ˜ ˜� n n n

Ž . � Ž . 4where C � � min �log � j : K � � . �j

The exhibited sequence of distributions Qn in Theorem 4 are not Kol-
mogorov consistent since the prior W changes with n. One might expect then
upper bound to be much larger when one requires the sequence Qn to be
Kolmogorov consistent. This is not the case, as we now proceed to show.

Consider the mixing distribution on �:
� 1˜ m� 1W � W ,Ý 2m m � 1Ž .m�1

� Ž Žwhere W are the mixing distributions used in Theorem 4 and Ý 1� m mn m�1
˜..� 1 � 1. The mixture using W achieves asymptotically the same upper

bound as the one obtained from the sequence W . Indeed, for B as inn n
˜ mŽ . Ž Ž .. Ž .nTheorem 4, we have that W B � 1�m m � 1 W B , where m �n n n 2 n n


Ž . �log n �2 , and the bound on the total Kullback�Leibler loss
n � n 2D p q � log N r � nr � 3 log log n � C �Ž .Ž .Ž . ˜ ˜� n n

follows. In all the cases considered in this paper, the additional log log n term
Ž . 2is of smaller order than log N r � nr for any choice of r .˜ ˜ ˜n n n

The upper bound involves the covering number of the parameter set in
Kullback�Leibler divergence whereas the lower bound from Theorem 2 uses
covering numbers of the parameter sets using the metric d. These quantities
are related in the i.i.d. case if the Kullback�Leibler divergence is locally
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bounded by

� 2D p p � C � d � , 
 for all 
 in a neighborhood NN of � ,Ž .Ž .Ž .� 
 � �

Ž .where � is a continuous, monotone increasing function with � 0 � 0. It then
Ž . Ž �1Ž 2 ..follows that, for small r , log N r � H � r �C . The following theorem˜ ˜ ˜n n n �

considers an important special case of the latter.

THEOREM 5. Suppose that the parameter set � has finite metric dimension
Ž .k in MM, d and that for each � � � the Kullback�Leibler divergence is locally

Ž � . Ž .�upper bounded by D p p � C d � , 
 for all � in a neighborhood NN . If� 
 � �

X , . . . , X are i.i.d. P , then there exists a sequence of distributions Qn such1 n �

that the total Kullback�Leibler loss is bounded by

k
n n�14 D p q � log n � C �Ž . Ž .Ž .� �

Ž .for some constant C � not depending on n.
If the Kullback�Leibler divergence and the squared Hellinger distance are

Ž � . 2Ž . Ž .�further locally lower bounded by D p p � h p , p � c d � , 
 for all� 
 � 
 �


 � NN and c � 0, then, for all sequences of distributions Qn,� �

k
n n�D p q � log nŽ .� �

for all but a negligible set of � .

We momentarily delay the proof of Theorem 5 to first exhibit sequences of
estimators whose Kullback�Leibler risk converges at an appropriate rate. In
Theorem 5, we use these estimators to show that Assumption C holds with a
suitable rate to produce the desired conclusions. We note that efficient
parameter estimation will be considered in the next section.

� 4LEMMA 6. Assume that the family of distributions P : � � � is domi-�

nated by � and that P n makes X , . . . , X i.i.d. with density p . Then to any� 1 n �

sequence of Kolmogorov-consistent distributions Qn, there is a related se-
quence of density estimators p that satisfy˜n

1
n n� �� D p p � D p q .Ž .˜Ž .� � n �n

Ž . 1Ž .PROOF. Let p x � q x , and for n � 1 setˆ0

q n�1 x n , xŽ .
n�p x � � q x xŽ . Ž .ˆn n�1n nq xŽ .

and define the Cesaro average density estimator´
n�11

p x � p x .Ž . Ž .˜ ˆÝn ln l�0
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An application of Jensen’s inequality produces

p xŽ .�
�D p p � log p x � dxŽ . Ž .˜Ž . H� n ��1 nž /n Ý p xŽ .ˆl�1 l

n1 p xŽ .�� log p x � dxŽ . Ž .Ý H �ž /n p xŽ .ˆll�1

n1
l� �� D p p x x .Ž .ˆŽ .Ý � ln l�1

Taking the expectation and applying the chain of information theory pro-
duces

n�11 p XŽ .� l�1
�� D p p � � log˜Ž . Ý� � n � lž /�n q X XŽ .l�1l�0

1
n n�� D p q . �Ž .�n

PROOF OF THEOREM 5. By Theorem 4, the total Kullback�Leibler loss is
bounded by

n � n 2D p q � log N r � nr � C � .Ž .Ž .Ž . ˜ ˜� n n

The bound on the Kullback�Leibler loss implies that

r 2
ñ�2�
 : D � 
 � r � 
 : d � , 
 �Ž .Ž .� 4ñ ½ 5C�

Ž . Ž 2 .k �� Ž .kand therefore log N r � log aC �r , where a�� is a bound on the˜ ˜n � n
metric entropy of � using metric d. Whence

k��aC�n n 2�D p q � log � nr � C �Ž .Ž . ˜� n2ž /r̃n

2k 1
2� log � nr � C �Ž .ñ 1� r̃n

Ž . 'for some constant C � . The latter is minimized by taking r � kn��˜1 n
which leads to the claimed upper bound

k
n n�15 D P Q � log n � C � .Ž . Ž .Ž .� 2�

To prove the lower bound, we will show that Assumption C holds. For this,
let K be a compact set. From the proof of the above upper bound, there exists
a sequence of Kolmogorov-consistent distributions Qn for which

k
n n�16 D p q � log n � 3 log log n � C �Ž . Ž .Ž .� �
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Ž . 1Ž .for all distributions p with � � K. As in Lemma 6, p x � q x , defineˆ� 0
Ž . n�1Ž n . nŽ n.p x � q x , x �q x with n � 1 andˆn

n�11
p � p x .Ž .˜ ˆÝn ln l�0

Ž .By Lemma 6 and 16 , there exist density estimators p satisfying, for every˜n
� � K,

k log n
�� D p p � 1 � o 1 .Ž .Ž .˜Ž .� � n � n

˜ 2Ž . ŽLet � be any value of � � K minimizing h p , p or within a factor of 2˜ ˜n n � n
.of the infimum if the minimum is not exactly attained . The assumed relation

between d and h, the triangle inequality for the Hellinger distance and the
bound h2 � D imply that

�
2 2˜� c d � , � � � h p , p � 4� h p , pŽ .Ž . ˜Ž . ˜� � n � � � � � nn

4k log n
�� 4� D p p � 1 � o 1 .Ž .Ž .˜Ž .� � n � n

An application of Markov’s inequality shows that Assumption C holds with
	Ž . 
1� �r � log n �n . The second conclusion therefore follows from Theorem 3.n

�

4. Superefficient parametric estimation. In this section we use the
results of the previous section to establish the negligibility of the set of
superefficiency for estimation in finite-dimensional parametric families. First,
we state the conclusions for estimation in general metric spaces. Then we
specialize the conclusion to express negligibility in terms of the Hellinger
metric.

� 4THEOREM 7. Let X , X , . . . , X be an i.i.d. sample from P � P : � � � ,1 2 n � �

a parametric family of distributions with parameter space � of finite metric
Ž .dimension k, satisfying Assumptions B and C. Let � n be any nonnegative

sequence satisfying

1 rn
17 
 logŽ .

� n rŽ . n�1

in the sense that the ratio of the two sides converges to 1. Then for any
Ž . Ž n. Ž .sequence of estimators p x � p x; X of the density p x , the set of � forˆ ˆn n �

which
�lim sup � n � D p p � kŽ . ˆŽ .� � n

n��

ˆ nis negligible in �. In particular, for sequences of estimators � based on X ,n
ˆŽ . Ž � .the set of parameter values of � for which lim sup � n � D � � � k isn�� � n

negligible in �.
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�1�2 Ž .REMARK 1. For r � n , one can set � n � 2n in accordance with then
conclusions derived in the Introduction.

REMARK 2. The individual Kullback�Leibler risks are connected to a total
Kullback�Leibler risk via the chain rule. By use of this chain rule, we give a

Ž .lower bound on the individual risk for arbitrary estimators for almost all � .

PROOF OF THEOREM 7. To show that the set

�AA � � � � : lim sup � n � D p p � kŽ . ˆŽ .½ 5� � n
n��

is negligible, consider the sets

1
�AA � � � � : � n � D p p � k 1 � for all n � m .Ž . ˆŽ .s , m � � n½ 5ž /s

From the definition of lim sup, it follows that AA � �� �� AA and thes�1 m�1 s, m
� Ž . � � � Ž .union bound implies � AA � Ý Ý � AA . By the monotonicity AA� s�1 m�1 � s, m s, m

� Ž .� AA , it suffices to show that � AA is 0 for all large l. For this, wes, m�1 � s, lm0

will apply the chain rule of information theory.
Given s � 1, pick m � lm large enough such that0

1 1 rj� 1 � log for all j � m.ž /� j s rŽ . j�1

Define the probability distribution Qn on X n via its probability density

q x n � q m x m p x p x 			 p x ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ0 m m�1 m�1 m�2 n�1 n

mŽ m. m0where q x is the l-fold product of the densities of the measure Q from0
Assumption B. For � � AA and n � m,s, m

n�1
n n m m� � �D p q � D p q � � D p pŽ . Ž . ˆŽ .Ý� � � � j

j�m

n�11 1
m m0 0�� lD p q � k 1 �Ž . Ý� ž /s � jŽ .j�m

1
m m0 0�� lD p q � k 1 �Ž .� ž /s

18Ž .

n�1 1 1 1
	 1 � log � logÝ ž / ž /s r rj�1 jj�m

1 1 1
m m0 0�� lD p q � k 1 � log � log .Ž .� 2ž / ž /r rs n m
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For n large enough, the latter implies that
n � nD p q 1Ž .�

19 � 1 � kŽ . 2ž /log 1�r 2 sn

and the conclusion follows from Theorem 3. �

We now specialize the previous results to the problem of parametric
density estimation. To express negligibility, we parametrize the �-dominated

� 4 � 4family of distributions P : � � � by their probability densities p � dP �d�� �

and view the latter as a subset of HH, the space of all densities dominated by � ,
2 1�2Ž . � Ž . Ž .4' 'endowed with the Hellinger metric h p, q � H p x � q x dv x .Ž . Ž .

We assume that X , X , . . . , X are i.i.d. with density in the family.1 2 n

THEOREM 8. Suppose that the parameter set of the family of distributions
� 4P : � � � has finite metric dimension k for some metric d, and suppose that�

there exists an � � 0 such that for each � � � there exist a constant C � 0�

and an open neighborhood NN such that the relative entropy is locally bounded�

by
�

�20 D p p � C d � , 
 for all 
 � NN .Ž . Ž .Ž .� 
 � �

Then the set of densities for which

k
�p � PP : lim sup n� D p p �ˆŽ .p n½ 5�n��

is asymptotically negligible in PP with respect to the Hellinger metric.

REMARK 1. The proof reveals that the upper bound on the Kullback�
Leibler divergence implies Assumption C in the Hellinger metric with rn'� log n �n , and this regardless of the value of � .Ž .

REMARK 2. Negligibility in � with respect to the Hellinger distance does
not imply negligibility in � with respect to d unless there is a suitable
relationship between h and d.

PROOF OF THEOREM 8. The Kullback�Leibler loss is bounded from below
by the square of the Hellinger distance. Thus the upper bound on the
Kullback�Leibler loss implies that locally

�2 �h p , p � D p p � C d � , 
 .Ž . Ž .Ž .� 
 � 
 �

Whence it follows that the covering numbers of every compact subset of PP

by Hellinger balls of radius � are bounded by C��2 k ��, which implies that
the Hellinger metric dimension of PP is bounded by 2k�� , where k is
the d-metric dimension of �. The lower bound on the Kullback�Leibler loss
also implies that Assumption C holds in the Hellinger metric with

'r � log n �n . The argument is the same as the one presented in Theo-Ž .n
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rem 5. Assumption B follows from the assumed local upper bound on the
Kullback�Leibler loss, and the conclusion follows from Theorem 7 with
Ž . Ž .� n � 2n. Indeed, this choice satisfies condition 17 since

'1 log n �nŽ .
� log

� nŽ . ' log n � 1 � n � 1Ž . Ž .Ž .
1 1

� � O . �ž /2n n log n

5. An implication for nonparametric rates. We now present the
implication of Theorem 2 for lower bounds on nonparametric rates of conver-
gence in the Hellinger metric. As in the previous section, we view the

� 4�-dominated family of distributions PP � P : � � � as being parametrized�

� 4by the densities � � p � dP�d� : P � PP , and take the latter as a subset of
the space HH of all densities dominated by � endowed with the Hellinger
metric. Our result identifies nonparametric rates of convergence, such that
the set of densities that can be estimated at a faster rate is Hellinger
negligible. Related results on minimax convergence rates are also found in

Ž . Ž .Yang and Barron 1995 and Birge 1986 .´

THEOREM 9. Let PP be a dominated collection of distributions and assume
Ž .that H � , the Hellinger metric entropy of the associated set of densities, is

Ž . Ž .such that, for every c � 0, lim sup H c� �H � is finite. Further assume� ��

that for each P � PP there exist a Hellinger ball NN and a positive constant CP P
Ž � . 2Ž .such that D p q � C h p, q for all Q � NN � PP. Choose r such thatP P n

H r � nr 2Ž .n n

� 4and lim sup r �r � 1. Then for any estimator sequence p , the set ofˆn�� n�1 n n
densities which can be estimated in Kullback distance at rate faster than r 2 isn
Hellinger negligible. That is, for any sequence c decreasing to 0 such thatn
lim sup c �r � 0, the setn�� n n

� 2p � PP : lim sup � D p p �c � 1ˆŽ .½ 5p n n
n��

is Hellinger negligible.

REMARK. From the assumed equivalence between h2 and D, it follows
that the set

p � PP : lim sup h p , p � cŽ .ˆ½ 5n n
n

is also Hellinger negligible. In infinite-dimensional spaces, we no longer can
identify best constants, but we can still reveal the best rate.
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PROOF OF THEOREM 9. Combining the upper bound on the Kullback�
Leibler loss and Theorem 4 shows that Assumption B holds with m � 1. We
now parallel the argument of Theorem 7 to show that Assumption C holds
with rate r . Indeed, the sequence of density estimators p considered in˜n n
Lemma 6, satisfies, for all p � PP,

n � nD p qŽ .
2� h p , p �Ž .˜n n

log N r � nr 2Ž .n n�
n

H r � nr 2Ž .n n�
n

� 2r 2 .n

Assumption C follows from Markov’s inequality.
As in Theorem 7, the conclusion will follow if the set

n � nD p qŽ .
21 p � PP : � 1Ž . n 2½ 5Ý cj�1 n

is Hellinger negligible. By the definition of r ,n

H r � H r � n � 1 r 2 � nr 2Ž . Ž . Ž .n�1 n n�1 n

r 2
n�12 �1� nr 1 � n � 1Ž .n 2ž /rn

� r 2 1 � o 1Ž .Ž .n

n 2 Ž .Ž Ž ..and whence the sum Ý r telescopes into H r 1 � o 1 . By assump-j�1 n n�1
n 2 Ž n 2 . Ž .tion, Ý c � o Ý r , so that, by the monotonicity of H � , the definitionj�1 j j�1 j

Ž . Ž .of r and the assumption that lim sup H c� �H � � � for all c � 0, theren � ��

exists a sequence l increasing to � such thatn

n
2c � H l r .Ž .Ý j n n

j�1

The conclusion follows from Theorem 2. �

Ž . 'EXAMPLE. Let � x � p x and denote by PP the set of densitiesŽ . s, � , C
	 
supported on 0, 1 satisfying:

Ž . 1 Žk .Ž .2i H � x dx � C for k � 1, 2, . . . , s;0
Ž . 1Ž Ž s.Ž . Ž s.Ž ..2 �ii H � x � � x � h dx � Ch , 0 � � � 1;0
Ž . � Ž . �iii log � x � C.

In this example, we consider the problem of estimating p � PP . Followings, � , C
Ž .Lorentz 1966 , we know that the Hellinger metric entropy of PP is ofs, � , C
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Ž . Ž .1� � Ž . 2order H � � 1�� , where � � s � � . Whence the solution to H r � nr
Ž . � Ž1�2 � .is r � 1�n . In Theorem 9, we show that there exists a sequence ofn

Ž . � Ž1�2 � . Ž .density estimators p x for which the sequence n h p, p is tight. Byˆ ˆn n
Theorem 9, we conclude that the set of densities in PP which can bep, � , C
estimated at a rate faster than n�2 � �Ž1�2 � . in Kullback distance is asymptot-
ically Hellinger negligible. This gives another sense, other than minimax, in
which the rate n�� �Ž1�2 � . is optimal to estimate densities in PP .s, � , CC

APPENDIX A: TECHNICAL LEMMAS

Ž . Ž . �DEFINITION 4. Let MM, d be a metric space and denote by BB x, r � y:
Ž . 4 Ž .d y, x � r , the open ball of radius r and center x. A measure � on MM, d is

Ž .said to be invariant if, for each r, � assigns the same mass to BB x, r for all
x � MM ; that is, for each r,

� BB x , r � � BB y , r for all y � MM .Ž . Ž .Ž . Ž .
It is said to be locally invariant if

� B x , rŽ .Ž .
lim � 1

� B y , rr�0 Ž .Ž .
for all pairs x, y � MM.

We remark that, when MM is a linear space, the invariant measures
Ž .are translation invariant. When MM, d is a space of densities with Hellin-

ger metric, the locally invariant measure gives small Hellinger balls the
Ž . 2Ž .same measure, an idea due to Jeffreys 1946 . In particular, if h p , p 
� 


�1Ž .t Ž .Ž . k4 � � 
 I � � � 
 as 
 � 0 in � , then the locally invariant measure
Ž Ž ..1�2has density on the parameter set proportional to det I � . That is, our

results naturally allow superefficiency on the subset of the parameter space
Ž Ž ..where det I � � 0.

Ž .LEMMA 10. Let �, d be a sigma-compact metric space with finite metric
dimension. Assume there exists a locally invariant measure � which assigns
finite mass to every open ball BB. Then a set A is negligible in � with respect to

Ž .the metric d 	, 	 if and only if it has outer �-measure 0.

REMARK. In � k, sets with zero outer �-measure have Lebesgue mea-
sure 0.

PROOF OF LEMMA 10. We can assume that � is compact. If not, there
exists a countable collection of compact sets with nonempty interior K , suchj

� Ž . Ž .that � � � � � K , and the proof is done on each set � � K sepa-j�1 j j
rately.

Ž .Denote by BB x, r the open ball of radius r centered at x. Since the
Ž . Ž .measure � is locally invariant, there exist functions m � and M � such

Ž . Ž Ž .. Ž . Ž . Ž .that m � � � B x, � � M � for all x � K and such that M � �m � � 1
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	as � � 0. It then follows from the definition of outer �-measure see Halmos
Ž . 
1988 , Chapter 1.10 that the outer measure of any set A � K is bounded by

�� A � N A , � M � .Ž . Ž . Ž .
The minimum number of balls of radius � covering A is less than the

�maximum number of balls of radius ��2 packing the set A � y:� �2
� Ž . 4 4inf d x, y : x � A � ��2 . By the definition of inner measure and the local

Ž . Ž .invariance of �, this packing number is less than �� A �m ��2 . Thus� �2

�� A � AŽ . Ž .� �2� N A , � � ,Ž .
M � m ��2Ž . Ž . .

so that

m ��2 �� A N A , � M � �� AŽ . Ž . Ž . Ž . Ž .� �2� � .
M � � � N � , � m ��2 � �Ž . Ž . Ž . Ž . Ž .

Ž . Ž .Since � has finite metric dimension and � is locally invariant, M � �m ��2
converges to a strictly positive and finite constant as � converges to 0. The

Ž . � Ž .conclusion follows by noting that �� A � � A and by the continuity� �2 � �2
of the outer measure as � goes to 0. �

LEMMA 11. Let the parameter space � have finite metric dimension k and
a locally invariant measure � on �. If for �-a.e. � the sequence of random

�1 ˜ nŽ .variables r d � , � is tight under P , then Assumption C is satisfied.n n �

PROOF. Let K be a compact set in �. Fix 0 � 
 � 1, and consider the set

n ˜BB � � � � � K: sup P d � , � � lr � 
 .Ž .l � n n½ 5
n

From Lemma 10, there exists a constant C such that

N BB , � ��
BBŽ . Ž .l l

22 lim � C .Ž .
� N � � K, � � � � KŽ . Ž .��0

˜Ž .Tightness of d � , � �r implies that the sets BB are decreasing to a set ofn n l
measure 0 as l goes to �. The dominated convergence theorem thus implies

Ž .that the right-hand side of 22 converges to 0 with l � �. �

� 4LEMMA 12. Let P : � � � be a dominated family of distributions and�

assume that � is a measurable space. With a prior probability distribution W
Ž . Ž . Ž .on �, define the mixture Q 	 � HP 	 W d
 . Then for any measurable B � �


the Kullback�Leibler loss is bounded by

1 W d
Ž .
� �D p q � log � D p pŽ . Ž .H� � 
W B W BŽ . Ž .B

1
�� log � D � B ,Ž .

W BŽ .
Ž � . Ž � .where, for any subset B � �, D � B � sup D p p .
� B � 
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Ž . Ž � . Ž .PROOF. Denote by q x � Hp x 
 W d
 the density of the mixture Q
�with respect to the dominating measure of the family of distributions P :�

4� � � . Integrating only over the set B bounds

W d
Ž .
� �q x � p x 
 W d
 � W B p x 
 ,Ž . Ž . Ž .Ž . Ž .H H W BŽ .B B

Ž . Ž .where W B � H W d
 . Applying this and Jensen’s inequality, the Kull-B
back�Leibler loss is bounded by

�p x �Ž .
� �D p q � log p x � � dxŽ . Ž .Ž . H� q xŽ .

�1 p x �Ž .
�� log � log p x � � dxŽ . Ž .H �W B H p x 
 W d
 �W BŽ . Ž . Ž .Ž .B

�1 p x � W d
Ž . Ž .
�� log � log p x � � dxŽ . Ž .H H½ 5�W B p x 
 W BŽ . Ž .Ž .B

1 W d
Ž .
�� log � D p p .Ž .H � 
W B W BŽ . Ž .B

Ž � .By the definition of D � B , the latter is further bounded by
1

� �D p q � log � D � B ,Ž .Ž .� W BŽ .
proving the claims. �

Acknowledgments. We gratefully acknowledge the constructive com-
ments of two anonymous referees, an Associate Editor and Larry Brown that
have helped to improve the presentation of our results.

REFERENCES
Ž .ALI, S. and SILVEY, S. 1966 . A general class of coefficient of divergence of one distribution from

another. J. Roy. Statist. Soc. Ser. B 28 131�142.
Ž .BAHADUR, R. R. 1964 . On Fisher’s bound for asymptotic variances. Ann. Math. Statist. 35

1545�1552.
Ž .BAHADUR, R. R. 1967 . Rates of convergence of estimates and test statistics. Ann. Math. Statist.

38 303�324.
Ž .BAHADUR, R. R. 1971 . Some Limit Theorems in Statistics. SIAM, Philadelphia.

Ž .BARRON, A. 1987 . Are Bayes rules consistent in information? In Open Problems in Communica-
Ž .tion and Computation T. Cover and B. Gopinath. eds. 85�91. Springer, New York.

Ž .BARRON, A. and COVER, T. 1991 . Minimum complexity density estimation. IEEE Trans. Inform.
Theory 37 1034�1054.
Ž .BIRGE, L. 1986 . On estimating a density using Hellinger distance and some other strange facts.´
Probab. Theory Related Fields 71 271�291.

Ž .BROWN, L. D. 1993 . An information inequality for the Bayes risk under truncated squared error
Ž .loss. In Multivariate Analysis: Future Directions C. R. Rao, ed. . North-Holland,

Amsterdam.
Ž .BROWN, L. D., LOW. M. G. and ZHAO, L. H. 1997 . Superefficiency in nonparametric function

estimation. Ann. Statist. 25 2607�2625.



INFORMATION THEORY AND SUPEREFFICIENCY 1825

Ž .CENCOV, N. N. 1982 . Statistical decision rules and optimal inference. Amer. Math. Soc. Transl.
Ser. 2 53.

Ž .CLARKE, B. and BARRON, A. 1990 . Information-theoretic asymptotics of Bayes methods. IEEE
Trans. Inform. Theory 36 453�471.

Ž .COVER, T. and THOMAS J. 1991 . Information Theory. Wiley, New York.
Ž .CSISZAR, I. 1967 . Information-type measures of difference of probability distributions and´

indirect observations. Studia Sci. Math. Hungar. 2 299�318.
Ž .HALMOS, P. R. 1988 . Measure Theory, 4th, ed. Springer, New York.
Ž .HARTIGAN, J. A. 1983 . Bayes Theory. Springer, New York.
Ž .HARTIGAN, J. A. 1998 . The maximum likelihood prior. Ann. Statist. 26 2083�2103.

Ž .JEFFREYS, H. 1946 . An invariant form for the prior probability in estimation problems. Proc.
Roy. Soc. London Ser. A 186 453�461.
Ž .KOMAKI, F. 1994 . On asymptotic properties of predictive distributions. Technical Report, Dept.

of Mathematical Engineering and Information Physics, Faculty of Engineering, Univ.
Tokyo.

Ž .KULLBACK, S. and LEIBLER, R. 1951 . Information and sufficiency. Ann. Math. Statist. 22 79�86.
Ž .IBRAGIMOV, I. A. and HASMINSKII, R. Z. 1982 . Statistical Estimation: Asymptotical Theory.

Applications of Mathematics. Springer, New York.
Ž .LE CAM, L. 1953 . On some asymptotic properties of maximum likelihood estimates and related

Bayes estimates. Univ. California Publ. Statist. 277�330.
Ž .LE CAM, L. 1986 . Asymptotic Methods in Statistical Decision Theory. Springer, New York.

Ž .LORENTZ 1966 . Metric entropy and approximation. Bull. Amer. Math. Soc. 72 903�937.
Ž .MERHAV, N. and FEDER, M. 1995 . A strong version of the redundancy�capacity theorem of

universal coding. IEEE Trans. Inform. Theory 41 714�722.
Ž .RISSANEN, J. 1984 . Universal coding, information, prediction, and estimation. IEEE Trans.

Inform. Theory 30 629�636.
Ž .RISSANEN, J. 1986 . Stochastic complexity and modeling. Ann. Statist. 14 1080�1100.

Ž .VOVK 1991 . Asymptotic efficiency of estimators: algorithmic approach. Theory Probab. Appl. 36
329�343.

Ž .YANG, Y. and BARRON, A. 1995 . Information theoretic determination of minimax rates of
convergence. Unpublished manuscript.

DEPARTMENT OF STATISTICS

YALE UNIVERSITY

NEW HAVEN, CONNECTICUT 06520-8290
E-MAIL: barron@stat.yale.edu

nicolas.hengartner@yale.edu


