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BACKFITTING IN SMOOTHING SPLINE ANOVA

By Zhen Luo

Pennsylvania State University

A computational scheme for fitting smoothing spline ANOVA models
to large data sets with a (near) tensor product design is proposed. Such
data sets are common in spatial-temporal analyses. The proposed scheme
uses the backfitting algorithm to take advantage of the tensor product de-
sign to save both computational memory and time. Several ways to further
speed up the backfitting algorithm, such as collapsing component func-
tions and successive over-relaxation, are discussed. An iterative imputation
procedure is used to handle the cases of near tensor product designs. An
application to a global historical surface air temperature data set, which
motivated this work, is used to illustrate the scheme proposed.

1. Introduction. Smoothing spline ANOVA (SS-ANOVA) is a multivari-
ate function estimation method based on an ANOVA type decomposition of the
function to be estimated. It generalizes the decomposition of multiple factor
effects in an ordinary ANOVA and the smoothing spline method for univariate
function estimation. It has been applied to various data sets, for example, an
environmental data set [Gu and Wahba (1993a, b)], and an epidemiological
data set [Wahba, Wang, Gu, Klein and Klein (1996)]. In this article, an appli-
cation to the spatial-temporal analysis of a global historical temperature data
set will be discussed.

A major difficulty in using SS-ANOVA is its large computational demand.
Gu (1989) carefully implemented a computational scheme for generic smooth-
ing spline estimation problems. The scheme that he used works well on data
sets of small to moderate sizes. Since it does not assume any special data
structures, it is inevitably slow and memory-demanding when dealing with
large data sets.

A subclass of SS-ANOVA models are those without any kinds of interactions,
that is, smoothing spline additive models. Buja, Hastie and Tibshirani (1989)
studied these models (and other additive models) and used the backfitting
algorithm to transform the problem of multivariate function estimation into
many univariate function estimation problems. Because of the existence of
sparse matrix representations of the univariate smoothing (polynomial) spline
estimate [see, for example, O’Sullivan (1985)], this transformation speeds up
computation considerably and saves memory as well.

When interactions are nonnegligible, special structures other than that of
complete additivity may be used to save computational memory and time. In
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this article, we will make use of tensor product designs that exist in many
large data sets, especially in spatial-temporal analyses. The key to our algo-
rithm is also backfitting, which enables us to fit a SS-ANOVA model by way of
decomposing matrices much smaller than those without the consideration of
tensor product designs. In this way, we can significantly reduce the demand for
computational memory. However, unlike the situation of additive models, the
“correlation” between component functions, which is a major factor in slowing
down the backfitting algorithm, is very often too high in SS-ANOVA models. It
makes the backfitting algorithm converge very slowly in its straightforward
version. Therefore we will also discuss several techniques to speed up the
backfitting algorithm.

In practice, tensor product designs very often hold only approximately, that
is, there are no observations at some tensor product grid points. An iterative
imputation procedure is used to handle this situation.

The motivation for this work came from the spatial-temporal analysis of a
global historical surface air temperature data set. The data set has tens of
thousands of observations, which makes the currently available methods to
fit SS-ANOVA models, such as the one implemented in Rkpack [Gu (1989)],
unusable. This data set will be used to illustrate our proposed computational
scheme.

The paper is organized as follows. The SS-ANOVA approach to multivari-
ate function estimation is introduced in Section 2. Section 3 describes our
general computational strategy using the backfitting algorithm. Several dif-
ferent techniques, such as grouping, collapsing and successive-overrelaxation,
used to speed up the backfitting algorithm, are discussed in Section 4. Sec-
tion 5 describes an iterative imputation procedure handling the situation of a
near tensor product design. An application to a global historical temperature
data set is discussed in Section 6. Finally, in Section 7 some comparisons of
timing are made between Rkpack and several versions of backfitting.

2. Smoothing spline ANOVA. The SS-ANOVA approach to multivariate
function estimation is introduced in this section through its application to the
spatial-temporal analysis of a global historical temperature data set. A general
formulation of this approach may be found in Wahba (1990), Gu and Wahba
(1993a, b) or Wahba, Wang, Gu, Klein and Klein (1995).

Consider the problem of estimating the global winter mean surface air tem-
perature field as a function, denoted by f, of year and geographical location
based on scattered noisy data:

yi = f�ti�Pi� + εi� i = 1�2� � � � � n�(1)

where ti ∈ �1�2� � � � � nt� denotes the year of the ith data point and Pi =
(latitude,longitude) denotes the location of the ith data point on the sphere
� . Here n is the total number of data points, nt is the total number of years
included in the data set. We also denote the total number of distinct locations
in the data set by nP for later use. The εi’s are assumed as independent noise
terms. (We note that in this particular application, εi contains not only the
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measurement error of the record yi, but also the local variation that is of much
smaller scale than the resolution of current modeling interest.)

The function f needs only a minimal condition, that f�t� ·� is integrable
over � for any t, to have a unique decomposition,

f�t�P� = d1 + d2φ�t� + g1�t� + g2�P� + gφ�2�P�φ�t� + g12�t�P��(2)

where φ�t� 	= t − �nt + 1�/2, g1� g2� gφ�2 and g12 satisfy the following side
conditions:

nt∑
t=1

g1�t� =
nt∑
t=1

g1�t�φ�t� = 0�

nt∑
t=1

g12�t�P� =
nt∑
t=1

g12�t�P�φ�t� = 0�(3)

∫
�
g2�P�dP =

∫
�
gφ�2�P�dP =

∫
�
g12�t�P�dP = 0

for any t and P. The uniqueness of this decomposition is easy to check using
these side conditions. To see the existence of such a decomposition, first define
three averaging operators on function f:

��tf��t�P� 	=
∑nt
t=1 f�t�P�
nt

�

�� ′
t f��t�P� 	=

∑nt
t=1 f�t�P�φ�t�∑nt

t=1φ
2�t� φ�t��

��Pf��t�P� 	=
∫
� f�t�P�dP

4π
�

Let I denote the identity operator, then f can be decomposed as

f = [�t + � ′
t + �I− �t − � ′

t �
][
�P + �I− �P�

]
f

= �t�Pf+ � ′
t�Pf+ �I− �t − � ′

t ��Pf
+ �t�I− �P�f+ � ′

t �I− �P�f+ �I− �t − � ′
t ��I− �P�f�

which gives the six components in (2). Note that averaging over t is defined
in a discrete form because “year” is treated as a discrete variable. While we
may consider t as a continuous time variable, we will see in Section 4.1 why
it is a better idea to treat it as a discrete one.

The decomposition of f generalizes the decomposition of ordinary two-way
ANOVA models. Note that a direct generalization would have only four com-
ponents in (2), and corresponds to the decomposition using only operators �t
and �P. Here we may call d2φ�t�, g1�t� and g2�P� main effect terms, and
gφ�2�P�φ�t� and g12�t�P� interaction terms. In this article, we will also call
d1+d2φ the “parametric component” and the other four terms in (2) “nonpara-
metric components.” The components in (2) are of interest to us because they
have clearly defined climatological meanings: d1 is the grand average winter
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temperature over both year and location; d2 is the linear trend (coefficient)
of global average winter temperature; d1 + d2φ + g1 is the global average
winter temperature history; g2, gφ�2 and g12 represent local adjustments to
the global average terms d1, d2 and g1� respectively. For example, gφ�2�P� is
the local adjustment to the grand linear trend (coefficient) d2 at location P.
In other words, d2 + gφ�2�P� is the linear trend (coefficient) at location P. A
map of d2 +gφ�2�P� would show where the warming areas are and where the
cooling areas are over the years covered by the data.

To make any inferences about the function f at points other than the data
points, some “smoothness” assumptions about f have to be made. First, as
usually done in nonparametric function estimation, we will restrict f to a
class of functions with some degree of differentiability. Then, we will estimate
f by maximizing a penalized least square criterion with appropriately chosen
penalty terms on its component functions.

Let � �t� denote the space of the functions of t that we will restrict our
attention to. Since t has only a finite number (nt) of possible values, we will
add no differentiability restrictions; that is, � �t� is the Euclidean space of a
dimension nt. For the functions of P, we will restrict our attention to a func-
tion space defined in Wahba (1981), denoted there by �2�� �. Here let � �P�

denote it in order to be consistent with the notation � �t�. Roughly speaking,
� �P� consists of functions g defined on the sphere � that are twice differen-
tiable and that �g is square integrable. The Laplace–Beltrami operator for the
sphere is denoted by �� which is a direct analogue of the Laplace operator for
a Euclidean space. For a precise definition of � �P�, please see Wahba (1981),
page 7. Both � �t� and � �P� are reproducing kernel Hilbert spaces (RKHSs)
with squared norms,

�g�2
� �t� 	=

[∑nt
t=1 g�t�
nt

]2

+
[∑nt

t=1 g�t�φ�t�∑nt
t=1φ

2�t�

]2

+
nt−2∑
t=1

[
g�t+ 2� − 2g�t+ 1� + g�t�]2�

(4)

�g�2
� �P� 	=

(∫
� g�P�dP

4π

)2

+
∫
�
��g�2 dP�(5)

respectively. Note that
∑nt−2
t=1 
g�t+2�−2g�t+1�+g�t��2 is a discrete version of

integrated squared second derivative. The function f�t�P� in (1) is restricted
to the tensor product space of � �t� and � �P�, denoted by � . Here � is also
a RKHS since the tensor product space of any two RKHSs is a RKHS. The
restriction to RKHSs is barely restrictive because the only requirement for
a Hilbert function space to be a RKHS is that every evaluation functional is
continuous. That is, a small change of the function measured in the function
space should induce only a small change of the value of this function evalu-
ated at any fixed point. For details on reproducing kernel Hilbert spaces and
their tensor product spaces, please see Aronszajn (1950). Some introductory
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material can also be found in Wahba (1990), or Tapia and Thompson [(1978),
Appendix I].

Let 
1�t��, 
φ� and �
�t�
a denote the three subspaces of � �t� defined by �t�

�t�,
� ′
t�

�t�, and �I− �t − � ′
t �� �t�� respectively. They are orthogonal to each other

with respect to the inner product corresponding to the norm defined in (4).
The three terms on the right side of (4) are the squared norms in these three
subspaces. We have

� �t� = 
1�t�� ⊕ 
φ� ⊕�
�t�
a �

Let 
1�P�� and �
�P�
a denote the two subspaces of � �P� defined by �P�

�P�

and �I−�P�� �P�� respectively. These two subspaces are also orthogonal with
respect to the inner product corresponding to the norm defined in (5). The two
terms on the right side of (5) are the squared norms in these two subspaces.
We have

� �P� = 
1�P�� ⊕�
�P�
a �

Now the function space we restrict f to can be written as an orthogonal sum
of six subspaces:

� = � �t� ⊗� �P�

= (
1�t�� ⊗ 
1�P��)⊕ (
φ� ⊗ 
1�P��)⊕ (� �t�
a ⊗ 
1�P��)(6)

⊕ (
1�t�� ⊗�
�P�
a

)⊕ (
φ� ⊗�
�P�
a

)⊕ (� �t�
a ⊗�

�P�
a

)
�

These six subspaces correspond to the six components in (2). Let the first
two subspaces be combined into a two-dimensional space, denoted by � 0.
This is the parametric subspace. The last four subspaces, denoted by � α for
α = 1�2�3�4� respectively, correspond to the four nonparametric components
in (2). We note that the subspaces discussed here are all RKHSs.

The smoothing spline (ANOVA) estimate of f is defined as a penalized least
square estimate with the four nonparametric components in (2) penalized by
their squared norms in the corresponding subspaces, or a maximum penalized
likelihood estimate if the noise terms (ε’s) in (1) are assumed to be indepen-
dent and identically distributed Gaussian random variables. We penalize the
nonlinear part of a function of t by its squared norm in the subspace �

�t�
a

and the nonconstant part of a function of P by its squared norm in the sub-
space �

�P�
a . Specifically, the smoothing spline estimate of f is defined as the

minimizer of
n∑
i=1

(
yi − f�ti�Pi�

)2 + 1
θ1
J1�f� +

1
θ2
J2�f� +

1
θ3
J3�f� +

1
θ4
J4�f�(7)

in � where θ’s are positive numbers called smoothing parameters, J’s are
penalty terms on four nonparametric components of f in (2). The expression
J1�f� =

∑nt−2
t=1 �g1�t+ 2� − 2g1�t+ 1� + g1�t��2 is a penalty on the component

g1 = �I − �t − � ′
t ��Pf; J2�f� = ∫� ��g2�2 dP is a penalty on the component
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g2 = �t�I − �P�f; J3�f� = ∫
� ��gφ�2�2 dP is a penalty on the component

gφ�2φ = � ′
t �I−�P�f and J4�f� is the squared norm of g12 in � 4 = �

�t�
a ⊗�

�P�
a ,

a penalty on the component g12 = �I− �t − � ′
t ��I− �P�f.

The choices of J’s given here are not the only ones we may make. How to
choose J’s and θ’s is an important issue in smoothing spline methods. Discus-
sions about this issue can be found in many places, for example, Wahba (1990).
For now, suppose that they have been chosen appropriately. Let us move our
attention to the computational aspect of this procedure.

3. Computing SS-ANOVA estimates using backfitting. Even though
the SS-ANOVA estimate of f is defined as the minimizer of (7) in an infinite-
dimensional space � , the solution has a finite-dimensional representation
[see Wahba (1990), pages 12, 127, 128],

fθ�t�P� = d1 + d2φ�t� +
4∑
α=1

θα

n∑
i=1

ciRα�ti�Pi� t�P��(8)

where Rα is the reproducing kernel of RKHS � α, a known nonnegative def-
inite function, for α = 1�2�3�4; d 	= �d1� d2�T and c 	= �c1� � � � � cn�T are the
coefficient vectors to be decided.

In general, the reproducing kernel (RK) of a RKHS F of the functions of x
is a two-variable function R�x� x′� satisfying (i) for every x′, R�·� x′� belongs to
F; (ii) for every x′ and every f ∈ F, f�x′� = �f�·��R�·� x′�� where �·� ·� denotes
the inner product of F. Since R�·� x′� is in F, using (ii), we get R�x� x′� =
�R�·� x′��R�·� x��. Therefore R�x� x′� is symmetric and nonnegative definite.
See Aronszajn (1950) for more information on reproducing kernels.

It is not difficult to verify that the RK of space 
1�t�� defined in Section 2 is
R�t� t′� = 1, the RK of space 
φ� isR�t� t′� = φ�t�φ�t′� and the RK of space �

�t�
a

is R�t� t′� = the �t� t′� entry of �LTL�†, where † denotes the Moore–Penrose
generalized inverse and L is a �nt − 2� × nt matrix given by



1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0

0 0 1 −2 · · · 0 0 0

���
���

0 0 0 0 · · · −2 1 0

0 0 0 0 · · · 1 −2 1



�(9)

From now on, let Rt�t� t′� denote the reproducing kernel of �
�t�
a . Note that

this form of RK is only suitable for the equally-spaced design of variable t.
It is easy to verify that the RK of space 
1�P�� is R�P�P′� = 1. The RK

of space �
�P�
a , denoted by RP�P�P′�, is given in equations (3.3) and (3.4) of
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Table 1

The reproducing kernels used in the representation (8) of the
SS-ANOVA estimate

� HHH � R�

1 �
�t�
a ⊗ 
1�P�� R1�t�P� t′�P′� = Rt�t� t′�

2 
1�t�� ⊗�
�P�
a R2�t� p� t′�P′� = RP�P�P′�

3 
φ� ⊗�
�P�
a R3�t�P� t′�P′� = φ�t�φ�t′�RP�P�P′�

4 �
�t�
a ⊗�

�P�
a R4�t�P� t′�P′� = Rt�t� t′�RP�P�P′�

Wahba (1981), and reproduced here:

RP�P�P′� = 1
2π

[
1
2
q2�z� −

1
6

]
�

where z is the cosine of the angle between P and P′ on the sphere, and

q2�z� =
1
2

{
ln
(

1 +
√

2
1 − z

)[
12
(

1 − z
2

)2

− 4
(

1 − z
2

)]

− 12
(

1 − z
2

)3/2

+ 6
(

1 − z
2

)
+ 1
}
�

We note that this RP, strictly speaking, does not correspond exactly to the
squared norm

∫
� ��g�2 dP, but a norm topologically equivalent to it. In other

words, we are not computing the minimizer of (7), but the minimizer of (7)
with slightly changed J’s. The reason is purely computational since the RP
corresponding to

∫
� ��g�2 dP does not have an explicit form and is expensive to

compute. On the other hand, as discussed in Stein (1990), this type of change
to the penalty terms should not make much difference in the results when
sufficient data are available.

The reproducing kernel of the tensor product space of two RKHSs is the
product of their individual reproducing kernels [Aronszajn (1950), Theorem I
of Section 8]. Therefore the RKs of ��α� α = 1�2�3�4� are the products of the
RK’s given above and listed in Table 1.

The fθ expressed in the form of (8) has an obvious decomposition
corresponding to (2). For example, g1�t� = θ1

∑n
i=1 ciR1�ti�Pi� t�P� =

θ1
∑n
i=1 ciRt�ti� t�. Plugging the representation (8) into (7) [note that

�∑ni=1 ciRα�ti�Pi� t�P��2 = ∑
i� j cicjRα�ti�Pi� tj�Pj� for α = 1�2�3�4],

we end up with a finite-dimensional quadratic optimization problem

min
d� c

{�y−Sd−Qθc�2 + cTQθc
}
�(10)
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where y = �y1� � � � � yn�T, S is a n × 2 matrix with the ith row given by
�1� φ�ti��, Qθ is a n × n matrix defined as

∑4
α=1 θαQα and Qα is a n × n

matrix with its �i� j� entry given by Rα�ti�Pi� tj�Pj�, for α = 1�2�3�4. Since
the objective function in (10) is quadratic and nonnegative (Qθ is nonnegative
definite), it must have a minimizer. It is easy to show that even though the
minimizer c and d may not be unique, the corresponding fθ is unique if S
is of full rank [see, e.g., Chen, Gu and Wahba (1989), page 517]. That is, the
SS-ANOVA estimate fθ is uniquely defined. Because the decomposition (2) is
unique, all the component functions of fθ are also uniquely defined.

One of the minimizers of (10) is the solution of

0 = STc�
�Qθ + I�c = �y−Sd��

(11)

which is the system of linear equations usually solved for computing smooth-
ing spline estimates [see, e.g., Wahba (1990), pages 12, 13]. When n, the sample
size, is not too large, this system can be solved by direct matrix decompositions
of S and Qθ, which is essentially what Gu (1989) did for general SS-ANOVA
models. However, this approach has limitations in terms of both computational
time and memory requirement. The memory required is O�n2� and the time
is O�n3�.

When the data and model exhibit some special structures, we may be able
to find more efficient ways to compute. The following fact will be used later.
Let f0 denote the vector of the values of the parametric component, d0 +d1φ,
evaluated at the data points, and fα denote the vector of the values of the
αth nonparametric component of fθ evaluated at the data points. From the
representation (8) we know that f0 = Sd, fα = θαQαc for α = 1�2�3�4. If we
can get f0 and fα’s, then we can compute d by solving Sd = f0, and c through
the second equation of (11), that is,

c = y−Sd−Qθc = y−
4∑
α=0

fα�(12)

With c and d, we can compute the values of fθ and its components at any
points using (8).

A special structure we have here is the tensor product structure of Qα’s
when the data have a complete tensor product design, that is, one obser-
vation at every tensor product grid point �ti�Pj� for i = 1�2� � � � � nt and
j = 1�2� � � � � nP. In practice we will more likely only have a near tensor prod-
uct design, that is, one observation at almost every point �ti�Pj�. For the
moment, however, we will assume that we do have a complete tensor product
design and wait till Section 5 to discuss the way to deal with the situations of
near tensor product designs. In the cases of complete tensor product designs,
the sample size n is nt×nP. Assuming that the data is ordered in such a way
that all the data of one location is listed before the data of the next location,
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the S and Qα’s in (11) have the following forms:

S = 1 ⊗ S̃�
Q1 = 11T ⊗Qt�
Q2 = QP ⊗ 11T�(13)

Q3 = QP ⊗φφT�
Q4 = QP ⊗Qt�

where 1 is a vector of ones of appropriate length, φ = �φ�1�� � � � � φ�nt��T, S̃ is
a nt×2 matrix with its ith row given by �1� φ�i��, Qt is an nt×nt matrix with
its �i� j� entry given by Rt�i� j� and QP is an nP × nP matrix with its �i� j�
entry given by RP�Pi�Pj�. Therefore, Qt = �LTL�† and Qt1 = Qtφ = 0. This
fact, which results from the equally spaced design for t and the special form
of penalty terms involving t in (7), will be used in Section 4.1.

Even though every Qα has such a tensor product structure, their linear
combination Qθ may not. Therefore, (11) still cannot be solved using this spe-
cial structure. In order to make use of this structure, we consider another
representation of the SS-ANOVA estimate,

fθ�t�P� = d0 + d1φ�t� +
4∑
α=1

θα

n∑
i=1

ci� αRα
(�ti�Pi�� �t�P�)�(14)

which is more general than the one in (8). With a slightly abused notation,
let cα denote the vector �c1� α� c2� α� � � � � cn� α�T for α = 1�2�3�4. Plugging (14)
into (7), we end up with another finite-dimensional quadratic optimization
problem,

min
d� c1� c2� c3� c4

{∥∥∥∥y−Sd−
4∑
α=1

θαQαcα

∥∥∥∥
2

+
4∑
α=1

θαc
T
αQαcα

}
�(15)

Any solution of this problem should satisfy

�STS�d = ST
(
y−

4∑
α=1

θαQαcα

)
�

�θβQβ + I�Qβcβ = Qβ
(
y−Sd− ∑

α �=β
θαQαcα

)
for β = 1�2�3�4�

(16)

Again, it is easy to show that even though the solution cα’s and d may not be
unique, their corresponding fθ, the SS-ANOVA estimate and all its component
functions are uniquely defined if S is of full rank. With the representation (14),
the components of fθ evaluated at the data points can be written as f0 = Sd,
fα = θαQαcα for α = 1�2�3�4. According to system (16), they must satisfy

fβ = Sβ
(
y− ∑

α �=β
fα

)
for β = 0�1�2�3�4�(17)
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where S0 	= S�STS�−1ST and Sβ 	= �Qβ + �1/θβ�I�−1Qβ for β = 1�2�3�4.
Since (15) must have a minimizer, (16), hence (17), must have a solution. For
any solution of (17), there exists a corresponding solution to (16) which in
turn corresponds to the uniquely defined SS-ANOVA estimate fθ; therefore
the solution of (17) is unique.

The system (17) suggests a natural iterative method to compute fβ’s, that is,

f
�k�
β = Sβ

(
y− ∑

α<β

f�k�α − ∑
α>β

f�k−1�
α

)
for β = 0�1�2�3�4�(18)

This is exactly the backfitting algorithm studied by Buja, Hastie and Tibshi-
rani (1989) in which additive models are fitted. In the case of additive models,
each Sβ is a one-dimensional smoother and has a sparse matrix representation
which makes computation very efficient. Here each Sβ has a tensor product
structure because S and Qβ do. Therefore, updating in (18) can be done with
the decompositions of matrices QP and Qt which are much smaller than Qβ’s.
In this way, we may save computational memory and time. The tensor product
structure plays the same role here as the sparsity structure does in additive
models.

Rewrite (17) as 


I S0 · · · S0

S1 I · · · S1

· · ·
S4 S4 · · · I







f0

f1

���

f4




=




S0y

S1y

���

S4y



�(19)

It is clear that the backfitting algorithm (18) is a (block) Gauss–Seidel algo-
rithm.

Since all the smoothers �Sα� here are symmetric with eigenvalues in 
0�1�,
Theorem 9 of Buja, Hastie and Tibshirani (1989) shows that the backfitting
algorithm (18) starting with any initial vectors �f�0�α � does converge to the
unique solution of (17). Chen, Gu and Wahba (1989) pointed out the possibility
of applying the backfitting algorithm to SS-ANOVA models and the above
derivation of (18) is basically theirs. Another interesting discussion about the
convergence of backfitting is given by Ansley and Kohn (1994). Note that (17)
is the system of stationary equations for the following minimization problem:

min
f0∈� �S�� fα∈� �Qα�

∥∥∥∥y−
4∑
α=0

fα

∥∥∥∥
2

+
4∑
α=1

1
θα
fTαQ

†
αfα�(20)

where Q†
α is the Moore–Penrose generalized inverse of Qα, and � �A� denotes

the space spanned by the columns of A. The backfitting algorithm (18) is the
same as the coordinate descent algorithm for this minimization problem where
each component fα is treated as one “coordinate.” See also the discussion in
Buja, Hastie and Tibshirani [(1989), pages 477 and 488]. As a matter of fact,
thinking the backfitting algorithm in this way, there is a direct way to show
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its convergence. Let 'α be a matrix such that its columns are the eigenvectors
of Qα that correspond to the nonzero eigenvalues. Let (α be a diagonal matrix
with its diagonal elements given by the nonzero eigenvalues of Qα. Then (20)
is the same as

min
d�a1� a2� a3� a4

∥∥∥∥y−Sd−
4∑
α=1

'αaα

∥∥∥∥
2

+
4∑
α=1

1
θα
aTα(

−1
α aα�(21)

which has a system of stationary equations:


STS ST'1 · · · ST'4

'T1S I+ 1
θ1
(−1

1 · · · 'T1 '4

· · ·
'T4S 'T4 '1 · · · I+ 1

θ4
(−1

4







d

a1

���

a4




=




STy

'T1 y

���

'T4 y



�

The matrix on the left side is symmetric and nonnegative definite because the
objective function in (21) is quadratic in d and aα’s and nonnegative for any
choice of d and aα’s. It is also nonsingular since (20) has a unique minimizer
because (17) has a unique solution. Now, theorems about the convergence of
the Gauss–Seidel algorithm for a positive definite matrix in the numerical
analysis literature can be applied here. Note that Theorem 10.1.2 in Golub
and Van Loan (1989) is also true for the block Gauss–Seidel algorithm, and
the proof is exactly the same as the one given there except that all the matrices
should be interpreted as corresponding block matrices.

4. Techniques for speeding up the backfitting algorithm. While
the backfitting algorithm has significantly reduced the memory demand from
O�n2

t n
2
P� to O�max�nt� nP�2�, a straightforward implementation of this algo-

rithm often needs many iteration steps to converge. The problem is especially
serious here because with interaction terms in the SS-ANOVA models, the
“correlation” between component functions, which is a main factor slowing
down backfitting, is usually much higher than that in additive models. There
are many studies on how to speed up the Gauss–Seidel algorithm in the
numerical analysis literature, especially on a technique called successive
over-relaxation. See, for example, Young (1971). Here we would like to discuss
several techniques in the context of fitting smoothing spline ANOVA models.

4.1. Orthogonality. An important reason for the slowness of the conver-
gence of the backfitting algorithm is the correlation between the components.
To illustrate this point, consider a trivial problem of minimizing h�x�y� 	=
x2 − 2ρxy + y2 where ρ is between −1 and 1. Starting with an arbitrary
point �x�0�� y�0��, the kth iteration of the coordinate descent or backfitting al-
gorithm is x�k+1� = ρy�k�� y�k+1� = ρx�k+1�. Therefore, x�k+1� = ρ2x�k�. Hence
the speed of x�k� going to the solution 0 depends on ρ2. The larger the abso-
lute “correlation coefficient” ρ (thinking of h as the negative log-likelihood of
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a two-dimensional Gaussian random vector) is, the slower the convergence of
the backfitting algorithm will be. If ρ is zero, the backfitting algorithm con-
verges to the solution in one step. Note that the corresponding linear system
for h�x�y� is (

1 −ρ
−ρ 1

)(
x

y

)
=
(

0

0

)
�

Therefore, if possible, we may want to formulate the original problem in such
a way that as many as possible off-diagonal elements of the system matrix
[the matrix on the left side of (19)] are zeros.

Recall that Qt = �LTL�† where L is given by (9), hence Qt1 = Qtφ =
φT1 = 0. Considering (13), it is clear that all QαQβ for α �= β and QαS are
zero matrices except Q1Q4, Q2S and Q3S. Since f0 ∈ � �S�� fα ∈ � �Qα�, the
left side of (19) is 



I 0 S0 S0 0

0 I 0 0 S1

S2 0 I 0 0

S3 0 0 I 0

0 S4 0 0 I







f0

f1

f2

f3

f4



�

Therefore, solving (19) is equivalent to solving the following two smaller sys-
tems separately: 


I S0 S0

S2 I 0

S3 0 I





f0

f2

f3


 =



S0y

S2y

S3y


(22)

and (
I S1

S4 I

)(
f1

f4

)
=
(
S1y

S4y

)
�(23)

The key to such a reduction is that variable t has an equally spaced design,
but the choice of penalty form is also important. For example, if the penalty on
the nonlinear part of a function g�t� is chosen as

∫ �g′′�t��2 dt treating t as a
continuous variable, then the above orthogonality will not be true even though
it may be approximately so. Note that orthogonality here is different from the
orthogonality discussed in Section 2. While we can always choose appropriate
norms to make the subspaces there orthogonal, their corresponding Q matri-
ces, which are the reproducing kernels evaluated at data points, may not be
orthogonal. If the design for variable P is also uniformly spaced in some sense,
then by choosing appropriate penalty terms, we may make all QαQβ for α �= β
and QαS zero matrices or at least close to that. In that case, fα = Sαy or at
least approximately, that is, we only need to apply marginal smoothers once
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to the data in order to get all the component functions including interaction
terms.

4.2. Grouping and collapsing. Since, as discussed before, the “correlation”
between component functions is a main factor that slows down the backfitting
algorithm, sometimes we may want to update two (or more) highly correlated
components simultaneously in one iteration step to get rid of the effect of their
correlation. This is called “grouping.” For example, suppose we want to group
fα1

and fα2
together. Rewrite (17) as

(
I Sα1

Sα2
I

)(
fα1

fα2

)
=
(
Sα1

Sα2

)(
y− ∑

α �=α1�α2

fα

)

fβ = Sβ
(
y− ∑

α �=β
fα

)
for β �= α1� α2�

This suggests an updating scheme similar to (18) except that now fα1
and fα2

are updated simultaneously.
In many cases grouping will reduce the number of iterations needed in

the backfitting algorithm [see Varga (1962), page 80], for a discussion and a
counter-example of this benefit. Of course, now each updating step is usually
more expensive due to the higher dimension of the components to be updated
in each step. In an extreme case, if we group all the components together, then
the backfitting algorithm will “converge” in one iteration step. But, of course,
this just means that we will solve (17) directly. Obviously, a compromise is
needed between the cost of each updating step and the number of components
we want to group together.

In order to get any real benefits from grouping, we must be able to update
�fα1

� fα2
� efficiently. In the case of α1� α2 ≥ 1, we can rewrite the updating

equations for fα1
and fα2

as




(
Qα1

+ 1
θα1

I

)
Qα1

Qα2

(
Qα2

+ 1
θα2

I

)


(
fα1

fα2

)
=
(
Qα1

Qα2

)(
y− ∑

α �=α1� α2

fα

)
�

When Qα1
Qα2

= Qα2
Qα1

, multiplying both sides by



Qα2

+ 1
θα2

I −Qα1

−Qα2
Qα1

+ 1
θα1

I


 �
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we get explicit updating formulae for fα1
and fα2

,

fα1
= θα1

�Qα1+α2
+ I�−1Qα1

(
y− ∑

α �=α1� α2

fα

)
�

fα2
= θα2

�Qα1+α2
+ I�−1Qα2

(
y− ∑

α �=α1�α2

fα

)
�

(24)

whereQα1+α2
denotes θα1

Qα1
+θα2

Qα2
. IfQα1+α2

has a tensor-product structure
of the kind in (13), then each updating step can be done efficiently.

Another way to reduce the number of iterations is to use a technique that
we call “collapsing.” Suppose that we want to collapse fα1

and fα2
(where

α1� α2 ≥ 1) together. By manipulating

fβ =
(
Qβ +

1
θβ
I

)−1

Qβ

(
y− ∑

α �=β
fα

)
for β = α1� α2

of (17), we get

fα1
+ fα2

= �Qα1+α2
+ I�−1Qα1+α2

(
y− ∑

α �=α1� α2

fα

)
�(25)

This can also be derived from (15) with a restriction cα1
= cα2

. Now the col-
lapsed updating equations are

fα1
+ fα2

= �Qα1+α2
+ I�−1Qα1+α2

(
y− ∑

α �=α1� α2

fα

)
�

fβ = Sβ
(
y− ∑

α �=β
fα

)
for β �= α1� α2�

Note that (24) implies (25), but (25) does not need the condition that Qα1
and

Qα2
are commutable. Again, ifQα1+α2

has a tensor-product structure, updating
can be done efficiently. After fα1

+ fα2
and other fα’s are computed, c of (8)

can be computed using (12), and then fα1
and fα2

can be computed using (8).
Specifically, consider f1 and f4,

f1 + f4 = �Q1+4 + I�−1Q1+4�y− f0 − f2 − f3� = �Q1+4 + I�−1Q1+4y�

where the last equality is due to the orthogonality discussed in Section 4.1,
and Q1+4 	= θ1�11T ⊗Qt� + θ4�QP ⊗Qt� = �θ111T + θ4QP� ⊗Qt. Therefore,
f1 + f4 can be computed by decomposing �θ111T + θ4QP� and Qt, directly
without any iterations. In the case of f2 and f3,

f2 + f3 = �Q2+3 + I�−1Q2+3�y− f0 − f1 − f4� = �Q2+3 + I�−1Q2+3�y− f0��
where Q2+3 	= θ2�QP ⊗ 11T� + θ3�QP ⊗φφT� = QP ⊗ �θ211T + θ3φφ

T�. Since

f0 = S0�y− f2 − f3�
= S0

(
y− �Q2+3 + I�−1Q2+3�y− f0�

)
�



BACKFITTING IN SMOOTHING SPLINE ANOVA 1747

and f0 = Sd, some simple manipulations lead to

d = (ST�I+Q2+3�−1S
)−1
ST�I+Q2+3�−1y�

which can be computed directly using the eigen-decomposition ofQ2+3 = QP⊗
�θ211T + θ3φφ

T�. Then f2 and f3 can be computed using f2 = S2�y − f0� =
S2�y−Sd�, f3 = S3�y− f0� = S3�y−Sd�.

Note that if we collapse all four fα’s together, we will end up with (11),
where Qθ, unlike Q1+4 or Q2+3, does not have a tensor product structure.
Therefore, a compromise is also needed between the number of components
we want to collapse together and the cost of each updating step.

We note that both grouping and collapsing have been used in speeding
up the Gibbs sampler which is closely related to the backfitting algorithm.
See, for example, Liu (1994) and Roberts and Sahu (1997). In the latter, the
relationship between the Gibbs sampler and the Gauss–Seidel algorithm is
explicitly used to study the properties of the Gibbs sampler.

4.3. Successive overrelaxation. An important technique to speed up
the backfitting (Gauss–Seidel) algorithm is the method of successive over-
relaxation (SOR). See, for example, Golub and Van Loan (1989) or Young
(1971).

The (block) SOR scheme corresponding to the (block) Gauss–Seidel updating
scheme (18) is

f�k+1�
α = ω

{
Sα

(
y− ∑

β<α

f
�k+1�
β − ∑

β>α

f
�k�
β

)}
+ �1 −ω�f�k�α �(26)

where ω is a real number known as the relaxation factor. With ω = 1, we are
back to the Gauss–Seidel algorithm.

By Proposition 11 of Buja, Hastie and Tibshirani (1989), SOR converges
for any ω in �0�2�. The trick now is to find a good ω. In general a prescribed
optimal ω is available only for some special kinds of matrices. Fortunately our
case falls into one of such categories. A n×nmatrixA is said to be consistently
ordered if there exists a disjoint partition of �1�2� � � � � n� = ⋃Kk=1Wk such that
for any i ∈Wk, aij or aji �= 0 implies that j ∈Wk+1 if j > i and j ∈Wk−1 if
j < i. Basically, it means that after some permutations of rows and columns,
a consistently ordered matrix has a block tridiagonal form,



D1 H1 0 · · · 0 0

G1 D2 H2 · · · 0 0

0 G2 D3 · · · 0 0

���
���

���
���

���
���

0 0 0 · · · DK−1 HK−1

0 0 0 · · · GK−1 DK



�
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where the Di are square diagonal matrices. Let S�A� denote the spectral
radius of a matrix A, that is, the largest eigenvalue of A in absolute value.
The following theorem in Young (1971) shows the convergence of SOR and the
best choice of ω in the case described in the theorem.

Theorem [Theorem 2.2 and 2.3 of Young (1971), Chapter 6]. Let A be a
consistently ordered matrix with nonvanishing diagonal elements such that
B 	= I− �diag A�−1A has real eigenvalues and such that µ 	= S�B� < 1, then
S��ω� < 1 for any ω in �0�2�, and

S��ω� =



1
4

[
ωµ+

√
ω2µ2 − 4�ω− 1�

]2
� if 0 < ω ≤ ωb�

ω− 1� if ωb ≤ ω < 2�

where

ωb =
2

1 +
√

1 − µ2
�(27)

and �ω = �I−ωL�−1�ωU+�1−ω�I� is the iteration matrix of SOR for solving
linear system Ax = b, L and U are lower and upper triangular matrices of B�
respectively.

From this theorem, it is easy to verify that S��ω� is a decreasing function of
ω for 0 < ω ≤ ωb and an increasing function for ωb ≤ ω < 2; hence it reaches
its minimum at ωb. This means that ωb is the best choice of ω because the
convergence rate of SOR depends on S��ω�. It can also be shown that a small
decrease in ωb results in a much larger relative increase in S��ω� than a
corresponding increase in ωb. That is, an ω slightly larger than ωb is better
than an ω slightly smaller than ωb. See Young [(1971), page 202], for details.

In the case of (22),

A 	=



I S0 S0

S2 I 0

S3 0 I




is obviously consistently ordered with W1 	= �1�2� � � � � n� and W2 	= �n + 1�
n + 2m� � � � �3n�. In order to apply this theorem, we only need to show that
all the eigenvalues of B 	= I−�diag A�−1A are real and have absolute values
less than 1.

Since

∣∣B− λI∣∣ =
∣∣∣∣∣∣∣


−λI −S0 −S0

−S2 −λI 0

−S3 0 −λI



∣∣∣∣∣∣∣

= �−1�3nλ2n

∣∣∣∣∣λI− �S0 S0��λI�−1

(
S2

S3

)∣∣∣∣∣
= �−1�3nλn

∣∣λ2I−S0�S2 +S3�
∣∣
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(this is true for all nonzero λ, hence for all λ, because both sides are continu-
ous). Therefore all the eigenvalues of B are{

0�±√
µi� i = 1� � � � � n

}
�

where �µ1� � � � � µn� are eigenvalues of S0�S2 +S3� and 0 has a multiplicity n.
They are clearly real, since all S0� S2� S3 are nonnegative definite. Matrix
S0 has eigenvalues either 0 or 1 because it is a projection matrix. Because
the largest eigenvalue of S0�S2 + S3� is less than or equal to the product
of the largest eigenvalues of S0 and S2 + S3, we only need to show that all
the eigenvalues of S2 + S3 are less than 1. Let QP = 'P(P'TP, Qt = 't(t'Tt ,
(P = diag�λPj �nPj=1, (t = diag�λti�nti=1. Since Qt1 = Qtφ = 0 and φT1 = 0,
we can choose 't so that its first two columns are 1/

√
nt and φ/�φ�, where

�φ� =
√∑nt

t=1φ
2�t�. Considering (13), we have

S2 =
(
Q2 +

1
θ2
I

)−1

Q2

= �'P ⊗ 't�
((
(P ⊗ (2 +

1
θ2
I

)−1

�(P ⊗ (2�
)
�'P ⊗ 't�T�

S3 =
(
Q3 +

1
θ3
I

)−1

Q3

= �'P ⊗ 't�
((
(P ⊗ (3 +

1
θ3
I

)−1

�(P ⊗ (3�
)
�'P ⊗ 't�T�

where (2 is a n1 × n1 matrix with all its elements being zero except the first
diagonal one, which is n1, (3 is a n1 × n1 matrix with all its elements being
zero except the second diagonal one, which is �φ�2. Hence, it is clear that the
eigenvalues of �S2 +S3� are{

0�
λPj nt

λPj nt + 1/θ2

�
λPj �φ�2

λPj �φ�2 + 1/θ3

� j = 1�2� � � � � nP

}
�(28)

where 0 has a multiplicity �nt−2�×nP. Therefore, all �S2 +S3�’s eigenvalues
are in 
0�1�.

Note that the cited theorems of Young (1971) are only stated for the point
Gauss–Seidel or SOR algorithms. In our case, however, point and block ver-
sions are the same. Since the diagonal blocks in our linear systems are all
identity matrices, updating one element by one element is the same as updat-
ing all the elements in one block simultaneously.

In practice, however, we usually do not know µ. Therefore in order to apply
this theorem, we have to estimate it. The above analysis actually has given
us an upper bound on µ which is the maximum of (28). This may be used
in (27) to give an overestimated ωb. Note that a slightly overestimated ωb is
better than a slightly underestimated ωb. It can also be shown [Young (1971),
pages 144 and 147] that µ2 is the spectral radius of the Gauss–Seidel iteration
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matrix, which can be estimated by the power method after some Gauss–Seidel
iteration steps are taken. See Young [(1971), page 206], for an explanation.
This estimated µ can then be used in (27) to get an estimated ωb.

A similar argument can be used for applying this theorem to system (23).

5. The case of a near tensor product design. So far we have assumed
that our data are complete in the sense that there is one observation at every
tensor product grid point. But in practice, we will frequently have missing
data. The computational procedures discussed in Sections 3 and 4 are still
applicable with the help of an iterative imputation procedure.

For simplicity, suppose that we have reordered the data in such a way that
the complete data y can be written in the following form:

y =
(
y�1�

y�2�

)
�(29)

where y�1� is the observed part, and y�2� is the missing part. The iterative
imputation procedure starts with any initial values for the missing part, then
computes the SS-ANOVA estimate of f based on this “complete” data set using
the backfitting algorithm, then calculates the values of the estimated f at
the missing part, then imputes y�2� with these new values, then goes back
to compute the SS-ANOVA estimate of f again based on the new “complete”
data set and so on. It keeps going through this cycle until the estimated f
does not change anymore. We note that Yates (1933) used a similar idea to
fit an ordinary ANOVA model to the data with a few missing values without
solving a general linear model equation.

Assuming that ε’s in (1) are independent Gaussian random variables with a
common known variance, this iterative imputation procedure can be shown to
be equivalent to the EM algorithm applied to a maximum penalized likelihood
estimation problem. See Dempster, Laird and Rubin (1977) for general discus-
sions on the EM algorithm and Green (1990) for its application to maximum
penalized likelihood estimation.

Treating the missing data as parameters, this iterative imputation proce-
dure is also equivalent to the coordinate descent method for minimizing the
objective function (7) corresponding to a complete data set. Here two “coor-
dinates” are f and the vector of missing data. Since backfitting can also be
viewed as a coordinate descent method, the whole procedure is essentially a
big nested coordinate descent procedure.

Instead of verifying the conditions of the general results about the EM
algorithm as in Wu (1983), or the results about the coordinate descent method,
Wahba and Luo (1997) directly derived the convergence rate of this iterative
imputation procedure for the SS-ANOVA estimate. The results are described
briefly here for the convenience of the reader.

Representation (8) and system (11) show clearly that the SS-ANOVA esti-
mate fθ evaluated at data points can be expressed as some linear combinations
of data with coefficients independent of the data. Let A�θ� denote this linear
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transformation matrix from a data vector to the vector of fitted values in the
situation of a complete data set. Partition A�θ�, corresponding to (29), as

A�θ� =
(A11 A12

A21 A22

)
�

When A22’s spectral radius is less than 1, the estimated fθ based on the im-
puted data converges to the estimated fθ based on the observed data. The
smaller the spectral radius of A22 is, the faster this iterative imputation pro-
cedure converges.

Let '1 be a matrix of orthonormal columns that span the column space of
S, partitioned also corresponding to (29) as(

'11

'21

)
�

A necessary and sufficient condition forA22 to have a spectral radius less than
1 is that '21'

T
21 does not have 1 as an eigenvalue. This condition can be easily

checked for a given data set. Considering

S�STS�−1ST = '1'
T
1 =

(
'11'

T
11 '11'

T
21

'21'
T
11 '21'

T
21

)
�

we may interpret '21'
T
21 as a measure of influence similar to the diagonal ele-

ments of the hat matrix in an ordinary linear regression. Then '21'
T
21 having

an eigenvalue 1 means that the missing part has an infinite influence.
If we expand '1 into an orthonormal square matrix and partition it corre-

sponding to (29) as

' = �'1 '2� =
(
'11 '12

'21 '22

)
�

then A22 can be expressed as I−'22�'T2 �Qθ+ I�'2�−1'T22. It is clear from this
expression that the larger the smoothing parameters (θ’s) are, the larger the
spectral radius of A22 is. In other words, in the situation where the amount
of smoothing is smaller (larger θ’s), the iterative imputation procedure has a
slower convergence rate.

6. An application to a global temperature data set. In this section,
an application of SS-ANOVA to a historical global surface air temperature
data set is briefly described. For more details, readers are referred to Luo,
Wahba and Johnson (1998) or Luo (1996).

An accurate assessment of the climate history based on observations taken
in the past is clearly of interest to climatologists. It is more so in recent years
when scientists have started to model the global climate dynamics and use the
models to understand or predict the climate. One way to assess the accuracy
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of these complicated dynamic models is to compare their “predictions” of the
past climate with what was actually observed. Among the many variables of
interest to climatologists, temperature is probably the most important one and
certainly the most intensively recorded so far. For the most part of the period
after modern instruments were invented, the only available records are those
recorded by surface meteorological stations around the world. To facilitate the
comparison between dynamic model predictions and the historical records, we
would like to reconstruct the global temperature history using these available
records scattered in both time and space. In the process of reconstruction,
various factors such as relocation of a station, change of instrument and so
on may cause biases. One major source of bias is the incompleteness of time
and space coverage. Different approaches have been taken to correct this kind
of bias. See, for example, Hansen and Lebedeff (1987), Jones, Raper, Bradley
Diaz, Kelly and Wigley (1986) and Vinnikov, Groisman and Lugina (1990).
There are also some studies on the effect of incomplete sampling on the es-
timates of the climate history. See, for example, Madden, Shea, Branstator,
Tribbia and Weber (1993) and Karl, Knight and Christy (1994).

To get a series of global averages for a very crude assessment of the climate
history, one will have to deal with two types of incomplete sampling. One
is the nonuniform distribution of meteorological stations around the world.
The other is the existence of missing data for many stations. For one thing,
not every station was established in the same year or ended its operation in
the same year. The first type of incomplete sampling can be taken care of
more or less by estimating the temperature field as a function over the sphere
and then averaging the estimated field instead of raw data. In this way, the
unbalanced influence of more densely sampled regions can be avoided. The
second type of incomplete sampling means that the stations included in the
data set change from time to time. If in one year cold regions are covered
by the data set more extensively than the year after, then we do not know
whether an increase in the average temperature is due to a real global change
or just the fact that less cold areas are included in the calculation of the
average for the year after. A commonly adopted strategy in climate studies
including all those cited above is to use anomalies instead of raw temperature
data. An anomaly of a temperature record is defined as the difference between
the temperature record and the average temperature at the same location
over a prespecified reference period. In the notations of (2), the corresponding
anomaly of yi is the difference between yi and d1 +g2�Pi�, that is, d2φ�ti� +
g1�ti� + gφ�2�Pi�φ�ti� + g12�ti�Pi� + εi if the prespecified reference period is
chosen as the same period covered by the data. In this way, the bias resulting
from the spatial variation of g2 is avoided. But the spatial variations of gφ�2
and g12 may still cause biases. Put in another way, the anomaly approach
basically assumes an additive model, that is, there are no gφ�2φ and g12 terms
in (2). With all those terms included in the model, SS-ANOVA estimates have
at least the potential ability to correct the biases related to all three spatial
terms. To get any real benefits from the SS-ANOVA approach, the smoothing
parameters (θ’s) have to be chosen appropriately. Actually, if θ3 and θ4 in (7)
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are chosen to be very small, gφ�2 and g12 will be essentially wiped out and an
additive model will be obtained.

Figure 1 shows three series of global average “winter” temperature es-
timates based on three methods. Here “winter” temperature is defined as
the average of monthly temperatures of December, January and February.
The first series (dotted lines) is obtained by averaging each year’s raw data.
Strictly speaking, it is obtained by averaging the temperature field estimated
by a smoothing spline method based on each year’s raw data. The smoothing
spline method is defined in a similar way as in (7) except that there is only one
penalty term needed here since we consider each year separately in this ap-
proach. The years 1989 and 1990 have outstanding high values in this series.
But it is clearly due to the estimation method used because the records for the
Antarctic region in our data end in 1988. The data set we have used in this
article is a subset of the so-called Jones–Wigley data set [see Jones, Raper,
Cherry, Godess, Wigley, Santer, Kelly, Bradley and Diaz (1991)]. We obtained
this data set from http://cdiac.ESD.ORNL.GOV/ftp/. It is a combination of
four files: ndp020r1/jonesnh.dat, ndp020r1/jonessh.dat, ndp032/ndp032.tm1
and ndp032/ndp032.tm2. In the subset we have used, there are 1000 stations,
that is, nP = 1000, 30 years, that is, nt = 30, and 20910 observations, that is,
n = 20910.

The second series (dashed lines) is obtained by averaging each year’s
anomalies. In Figure 1, this series is shifted up by an (estimated) grand aver-
age, that is, d1 in (2), to match other two series. The third series (solid lines)
is obtained by the SS-ANOVA approach. In this approach, we first choose
log10�θ1� = −0�1 and log10�θ2� = 4�5, which correspond to the case where
little smoothing is done to g1 and g2. Then we choose θ3 and θ4 by a crude
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Fig. 1. Global average “winter” temperature (◦C) series by three estimation methods. Solid lines:
SS-ANOVA estimates, that is, d1+d2φ�t�+g1�t� in (2); dotted lines: annual averages of raw data;
dashed lines: annual averages of anomalies. The series by the anomaly approach is shifted up by
an (estimated) grand average, that is, d1 in (2), to match other two series.
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grid search according to a randomized GCV criterion [see Girard (1989)],
which results in log10�θ3� = 1�25 and log10�θ4� = 4�1. Both the anomaly and
SS-ANOVA approaches have corrected the bias in the last two years of the
first series. There is not much difference between the anomaly and SS-ANOVA
series. One reason for this is that the magnitude of spatial variation in g2,
which has a range roughly �−40◦�40◦�, is much larger than the magnitude
of those in gφ�2 and g12. Another reason, probably a more important one,
is that there is not much correlation found between winter temperatures in
consecutive years. The advantages of the SS-ANOVA approach are manifest
only when there is information that can be borrowed across years. Otherwise,
considering each year separately or simultaneously should not make much
difference. However, when the correlation over time is stronger, for example,
in the case of monthly or daily temperatures, more significant differences
between these two approaches will be expected. See Luo, Wahba and Johnson
(1998) for more discussions.

From the SS-ANOVA estimate fθ, the 30-year average “winter” tempera-
ture field over the sphere, that is, d1+g2�P�, can be obtained and is plotted in
Figure 2 for illustration. The 30-year linear trend coefficient as a function of
location, that is, d2 +gφ�2�P�, can also be obtained and is plotted in Figure 3.
This plot shows where the cooling regions are and where the warming regions
are over the 30-year (1961–1990) period. In Section 3.4 of Luo (1996), some
bootstrap estimates of the variation in the SS-ANOVA estimates in Figures 1
and 3 are given. They are particularly useful when the temperature history
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perature based on the SS-ANOVA estimate defined by (7), that is, d2 + gφ�2�P� in (2).

reconstructed using the method of this paper is compared with dynamic model
predictions.

The computational time needed for fitting the SS-ANOVA model to this data
set with fixed smoothing parameters is about 2 hours and 17 minutes on a Sun
Ultra 1 machine of model 140. To select smoothing parameters according to a
data-driven criterion such as GCV, multiple fittings are required. Therefore,
for a data set of this size, a few days of computational time are needed.

7. Timing. It is clear that the memory requirement of the backfitting
algorithms described in the previous sections is O�max�nt� nP�2�, while the
memory requirement of direct matrix decomposition methods such as the one
implemented in Rkpack [Gu (1989)] is O�n2�. This means a significant saving
in memory when the data have a tensor product design or a near one because
in that case n is roughly ntnP� which is much larger than max�nt� nP�. For
the application described in Section 6, n is 20910 and max�nt� nP� is 1000.
On a machine with 128 MB memory, 2000 is about the largest sample size
that Rkpack can handle. In contrast, when the data have a (near) tensor
product design, the backfitting algorithm can handle a much larger sample
size depending on the ratio of nt and nP. The largest size is about 4e+6 when
nt = nP = 2000.

Comparing the computational time required for Rkpack and backfitting is
more complicated. While Rkpack, specifically the procedure dsidr with pre-
specified smoothing parameters, requires O�n3� computational time, depend-
ing largely on the sample size alone, the time needed for the backfitting al-
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gorithm depends also on the design of the data and the choice of smoothing
parameters.

For iterative procedures such as backfitting, a terminating criterion has to
be chosen first before making any comparison of timing. One reasonable choice
is to terminate the iteration when the values of (7) in two consecutive itera-
tions have a difference or relative difference smaller than a prespecified small
number. To make the comparison of timing more meaningful across different
sample sizes or smoothing parameters, however, we decide to terminate the
iteration when the absolute difference between the values of every component
function in two consecutive iterations is smaller than a fraction, say 1/10,000,
of its range. For example, the range of f2 is roughly 80, which we may obtain
from our general knowledge about the problem; therefore an (average) abso-
lute difference less than 0�008 between the values of f2 in two consecutive
iterations will be acceptable for terminating the iteration. For all the calcula-
tions made in this article, 1�e− 5, 1�e− 5, 1�e− 3, 1�e− 4 and 1�e− 3 are used
for f0, f1, f2, f3 and f4� respectively.

Due to the limitation set by the memory requirement of Rkpack, we selected
only 100 stations from the data set used in Section 6 and ended up with a data
set containing 2046 observations. Then we fit the SS-ANOVA model, using
three sets of smoothing parameters corresponding to a less and less amount of
smoothing. For each set, we fit the model using Rkpack and three versions
of backfitting. The first version, denoted by Bkfit0, is a direct implementa-
tion of the backfitting algorithm. The second one, denoted by Bkfit1, imple-
ments the backfitting algorithm with the aid of SOR. The last one, denoted
by Bkfit2, implements the backfitting algorithm with the aid of collapsing.
For simplicity, f1 and f4 are collapsed in all three versions. Therefore, the
comparison among these three versions is about backfitting f0, f2 and f3. For
SOR, the ω is calculated by (27) with an µ estimated through some initial
iterations of the Gauss–Seidel scheme. In Bkfit2, after collapsing f2 and f3,
no iterations are needed for backfitting and the iterations there belong to the
iterative imputation procedure alone. The three sets of smoothing parameters
are given in Table 2, together with their tr�Sα�θα��. These traces may be inter-
preted as the “degrees of freedom” of their corresponding component functions,
as done in Buja, Hastie and Tibshirani (1989). The bigger they are, the closer
the estimated function is to the observations, that is, to an interpolation.

Table 2
Three choices of smoothing parameters and their associated “degrees of freedom”, tr�Sα�θα��

Case I Case II Case III

� log10(��) tr(S�) log10(��) tr(S�) log10(��) tr(S�)

1 0.5 27.5 0.5 27.5 0.5 27.5
2 3.0 98.4 5.0 99.98 6.0 99.998
3 0.0 83.2 0.0 83.2 0.0 83.2
4 1.5 574.2 1.5 574.2 3.0 1498.8
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Table 3

The timing (in seconds) of Rkpack and three versions
of backfitting

Rkpack Bkfit0 Bkfit1 Bkfit2

Case I 291.5 19.3 18.4 18.3
Case II 295.2 133.7 77.5 22.3
Case III 289.4 *685.2 344.1 94.8

∗Means that after 10,000 iterations still not converged.

The timing of these four procedures is listed in Table 3. All computations
are carried out on a Sun Ultra 1 machine of Model 140 with a 128 MB mem-
ory. It is apparent from this table that Rkpack needs about the same amount
of time, no matter what choice of smoothing parameters. In contrast, back-
fitting in general needs more time for the cases of larger θ’s, or less amount
of smoothing. Since in Bkfit2, no iterations are actually done for backfitting,
the differences between the three cases are due to the different numbers of
iterations needed for the iterative imputation to converge. Therefore it is clear
that the iterative imputation procedure converges more slowly for the cases
of larger θ’s. This is also clear from the discussion at the end of Section 5. In
general, backfitting will save computational time (compared with Rkpack) if
the smoothing parameters (θ’s) are not too large. Note that Case III is an ex-
treme case because the “degrees of freedom” of f2 is 99�998 (see Table 2) while
its maximum “degrees of freedom” is 100. Hence this is a case very close to an
interpolation. As a matter of fact, it is not difficult to see that if the smoothing
parameters are chosen to be infinities, that is, to force the estimated function
to interpolate the data, then the iterative imputation will not work at all.

In Case I, the differences between the three versions of backfitting are very
small. The reason for this is that backfitting converges very quickly in this
case; therefore the major part of the time is spent on the iterations for the
imputation. In Case II where θ2 is increased from its value in Case I, the
differences between the three versions are much greater, since now backfit-
ting converges more slowly and the benefits of speeding-up techniques become
evident. The differences are even greater in Case III where θ’s are increased
further. In this case, after 10,000 iterations, Bkfit0 still has yet to converge.

In conclusion, the saving of computational memory by backfitting is appar-
ent. It is also clear from the experiment described above that if the smoothing
parameters are not too large, or in other words, if the estimates are not ex-
pected to be too close to an interpolation, then backfitting can also save com-
putational time. The amount of savings in time by backfitting depends on the
choice of smoothing parameters, and on the amount of missing data, or strictly
speaking, the information contained in the missing data. The effectiveness of
speeding up techniques discussed in Section 4 also depends on these factors.
When there is a significant amount of missing information, speeding up the
iterative imputation will be more important. Effective ways to do that with a
limited memory requirement is a topic that merits future research.
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