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LINEAR REGRESSION WITH INTERVAL CENSORED DATA

BY Gang L1 aND CuN-Hur ZHANG!
ACER /Excel Inc. and Rutgers University

This paper concerns linear regression with interval censored data.
M-estimators for the regression coefficients are derived. Asymptotic con-
sistency and normality of the M-estimators are obtained via an exponen-
tial inequality for U-statistics. Asymptotically efficient estimators are
provided under mild conditions.

1. Introduction. Consider the linear model
(1.1) Y,=B"Z,+¢, 1<i<n,

where Z; are known covariate vectors and B is an unknown parameter
vector. We are interested in estimating B from the current status data such
that

(1.2) X, =(6,T,,2), 1<i<n,

are observed instead of the usual (Y}, Z;), where §;, = I,y _p, for some censor-
ing times T;. This observation scheme is also called the binary choice model
[Coslett (1987)] and Case 1 interval censoring [Groeneboom and Wellner
(1992)]. We assume that the errors {¢g;} are independent of {Z;, T;} and are
ii.d. variables with a common distribution F(#).

Situations involving interval censoring arise commonly in engineering and
medicine. In some clinical settings (e.g., final follow-up after treatment), an
examination at time 7, determines whether or not an endpoint Y; has
occurred. In reliability studies, destructive tests are often used to find whether
an item (e.g., fire extinguisher) has failed. In rodent bioassay experiments,
the presence or absence of a tumor may only be detected through sacrifices.
For certain designs of experiments, 7, are ii.d. random variables with a
known probability density. In general, T; and Z,; are associated. In Case 2

14

interval censoring, two censoring variables T} < T/ are observed with the

12

knowledge that Y, is inside the interval [T, T]. In both cases of interval
censoring and with known B (= 0), the estimation of the common distribu-
tion F of &; in (1.1) has been considered by many authors under parametric
and nonparametric assumptions; see, for example, Ayer, Brunk, Ewing, Reid
and Silverman (1955), Brunk (1970), Groeneboom and Wellner (1992) and
Peto et al. (1980) among others. Linear and hazards regression models for

interval censored data have been considered by Finkelstein (1986), Finkel-
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stein and Wolfe (1986), Huang (1996), Huang and Wellner (1996), Jewell and
Shiboski (1990), Lin and Ying (1996), Rabinowitz, Tsiatis and Aragon (1995),
and Shiboski and Jewell (1992). The binary choice model has been considered
by Cosslett (1987), Han (1987), Klein and Spady (1993), Manski (1975, 1985)
and Sherman (1993) in the econometrics literature. In particular, Klein and
Spady (1993) considered an estimated likelihood function and obtained
asymptotic efficiency for their estimators under certain regularity conditions.

In this paper we provide some simple estimators for B8 as well as some
asymptotically efficient ones under (1.1) and (1.2). Recent results on U-statis-
tics [Arcones and Giné (1993)] are used to obtain expansions of estimating
functions. Consequently, the asymptotic normality and efficiency of our esti-
mators are obtained under much weaker conditions compared with previous
results (cf. Section 2.4).

2. Estimation of B. We shall provide our estimators and their asymp-
totic properties in this section. Three types of estimators are considered: (1)
simple M-estimators, (2) estimators with efficient asymptotic variance at a
given error distribution F = F, and (3) asymptotically efficient estimators.
The asymptotic expansions of estimating functions and proofs of the main
results are given in Sections 3 and 4.

2.1. A simple method. Let X = (5,T,Z) be a random vector related to
(&,T,Z) as in (1.1) and (1.2). Set T, = T — b"Z. Since E[S|T,Z] = F(TB) =
F(T, + (b — B)"Z) and F is an increasing function,

(b — B)" Cov(8, ZIT},)
— Cov(F(T, + (b= B)" Z),(b - B)" ZIT,) 2 0 as.

for all . This fact motivates the estimating equation &,( Bn) = 0 with the
U-statistics

£,(b) =
(2.2)

(2.1)

1
n(n—1)(n — 2)
X ) (T, ») (8, — 8,)(Z, — Z,)K,;;(b)K,;,(b),

G,j, kel
Where T.,=T —b"Z, () is a weight function and ij(b) =a, 'K(T; ,

. b)/a ) Wlth bandw1dth a, — 0. In this paper, K(¢) is always a tw1ce
continuously differentiable den51ty function with bounded support, and I* =
{i=0G,,...,ip:0;<n,i;#i, for j+#j}.

Let us take a brief look at E¢,(b) to explain the use of (2.2) based on (2.1).
Suppose iid observations (1.2) are taken and the conditional density P{T; €
dt|Z, = z} = g(t|z) dt exists. Let g(¢;b) = Eg(¢t + b Z|Z) be the density of
T,. Under certain smoothness conditions on g(-z), E[h(B Z. )ij(b)IX]
E[h(s;, Z)IT, b]g(Tl »; b)) as n — « (e, a, — 0) for all bounded Borel func-
tions A. Slnce £,(b) are U-statistics, thls and the SLLN imply

(2.3) £(b) = E§,(b) = £(b),  &(b) = E¢(T,)8*(T,;b)Cov(8, ZIT,).
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By (2.1) 5 = B is the only solution of £(b) = 0, provided that (#) > 0 for all
t and the inequality in (2.1) is strict with positive probability for & # 8. Thus,
the solution of £,(b) = 0 should be close to the regression coefficient g.

Asymptotic properties of &,(b) are relatively easy to find. Recently, Arcones
and Giné (1993) extended the Bernstein inequality to completely degenerate
U-statistics. These inequalities are used in Section 3, with the Hoeffding
decomposition, to obtain expansions of the estimating functions £,(b) and
their derivatives (d/db)§,(b), which in turn imply the asymptotic normality
of B,.

The solution £,(b) = 0 is in general not unique. For definiteness and to
rule out unbounded solution sequences, we define our estimator 8, by

(24)  &(B,) =0, B, —b,ll=min{ld - b,l: £(b) =0},

where b, = Op(1) are (possibly inconsistent; e.g., b, = 0) initial estimates of
B. Under mild conditions on {a,}, it will be shown in Theorem 2.1 below that

(2.5) P{ én is the unique solution of &,(b) = 0 for b € BM} -1

for all M > 0, where B,, = {b: |b — B|l < M}. Thus, 3, do not depend on the
choice of b, asymptotically.
Suppose for some finite M, and 0 < a < 1,

(2.6) 1ZI < M,, g(tlz) € Lip(M,, a) in ¢.

A function f(u, v) belongs to the Lipschitz class Lip(M, «) in u if | f(u,v)| < M
and |f(u,v) — f(u/,v) < M|lu — ||* for all (u,u',v), 0 < a < 1. Define

Ay = [w,(t)o(t; B)g(t; B)F(dt),

%, = Ew(Ty)F(T,)(1 = F(Tp))v(Ty: B),
where w,(¢) = y(t)g*(t; B) and v(t; b) = Cov(Z|T, = t).

(2.7)

THEOREM 2.1.  Suppose (2.6) holds, A, is of full rank, and (b — B £(b)
%0 for all b # B with the £(b) in (2.3). Let B, be given by (2.4) with the
£,(b) in (2.2) such that |¢|l. < and ' = (d¢/dt) € Lip(M,, a,) for some
ay > 0. Choose a, such that a,(n/logn)?? — =, al~*/n/logn - « and
al**n - 0. Then, Bn is asymptotically unique in the sense of (2.5) and

Vn (B, —B)=—An V2 ¥ p,(X;8) | +o0p(1)
(2.8) i=1
g N(O,A;12¢A;1),
where p,(X;b) = (T, X8 — F(T)NZ — E[Z|T, ) g*(Ty; b).

Theorem 2.1 is proved in Section 3. For small sample size, one may choose
Y(t) = 1 so that (2.2) is location invariant. The conditions on the bandwidth
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a, hold with @, = 7,/ Vn,0 < 7, < =, for 0 < < 1. By (2.1), (2.3) and (2.7),
A, is of full rank and (b — B)" £(b) > 0 for all b # B if () >0 V¢, F is
strictly increasing and E Var(n™ Z|T,) > 0 Vn,b.

2.2. Efficient estimation at F,. Suppose F(¢) has a bounded continuous
density f(¢) = F'(¢). Cosslett (1987) showed that the (semiparametric) mini-
mum Fisher information for the estimation of 8 with unknown F' is

(2.9) I, =ECov(p.(X;B)) =ECov(ZITy)f(Ts) ¥+ (T5)&*(Ts; B),

where ¢, (¢) = f(t)/[F(t){1 — F(t)}g?(¢; B)], and that the efficient score is
p«(X;0) = p, (X; b) via (2.8). See also Bickel, Klaassen, Ritov and Wellner
(1993). If ¢ = ¢, in (2.2), then A, 'S A ' =1, "' and B, in Theorem 2.1 is
nearly efficient, as I, = A, =3, .

Let F, be a distribution function with a density f,. By (2.9) the weight
function (¢) = f,(t) /{F,(t)1 — Fy(¢)g?(t; B)} should be used when the
error distribution F is known to be close to F,. Since g(¢; 8) is unknown, we
consider the estimating function

- 1 T, 6, — &2, —Z2,)K,;,,(b)K,; ; (b
(210) én(b) _ fO( Ll,b)( iy lz)( i L3) mlizz( ) mlts( )
(’31)3! iely ¢, + FO(Til,b){l FO(Til,b)}gn,i(Til,b)

2

with &2 (T, ) = Zjc 136 Kpi i, Knij,/1()2} and ¢, > 0, where I/G) = {j €

I {j} N {i} = &) with {i} being the set of the components of i. Define

(211)  &(B,) =0, B, —b,ll=min{lb - bl: £(b) = 0},
where b, are as in (2.4). Set w, = f,/{F,(1 — Fy)} and for v = v(¢; 8) and
g =8(t; B),

Ay = |wyvgdF, S, = |w2F(1 — F)vgdt,
(2.12) 0= Juws o = Juik( )

£(b) = Ew,(T,)Cov(35, ZIT,).

THEOREM 2.2. Suppose (2.6) holds, f; € Lip(ay, M,) for some ay > 0, A,
and 3, are finite and of full rank, and (b — ) E(b)# 0 forall b #+ B. Let
B, be given by (2.11) with the £(b) in (2.10). Choose a, and
¢, = 0 such that log n/{na?c?} - 0 and a**Vn /¢, — 0. Then, (2.5) and
(2.8) hold with A, = Ay and 3, = 3 in (2.12) and p, = w(T)(6 — F(T})) X
(Z - ELZIT,).

The proof of Theorem 2.2 is omitted as it is similar to but simpler than that
of Theorem 2.3 below. If F' = F,, then A, = 3, = I,.. The conditions on a,
and ¢, hold for a, = r,(logn)?/Vn and c, = 7,/logn for all 0 < a <1,
although this choice is somewhat conservative. Theorem 2.2 requires smooth-
ness conditions on the nominal distribution F,, but not on the true error
distribution F.
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2.3. Efficient estimation. Although the definition of I, and the choice of
is not clear without smoothness assumptions on F, (2.9) suggests the use of a
data-drive y when f is believed to exist and the sample size is adequate for
an estimation of .

We shall use the following notation throughout: for any Borel function K,
let K,(t)=K(t/d,)/a, and K, =K, (b)=K/(T,, —T,;,), where the
band-width @, is specified when K is given. For example, (9/9b)K =

— Z)K,,;/a, for the kernel in (2.2) with K'=(d/dt)K. Also, X; ;)=

nij
(X, X)) and X, = (X, X, q,..., X))
Among many methods of estimating the efficient weight function ..,
consider

ﬁn(i’ib){l - Fn(Ti,b)}gs(Ti,b; b)y=n""?) 8(1—8,)K,;;K,ix
ik

and the local least squares estimator
8Ty = Too ) KRS

AU i~
’ (T, — T, ,) KU
(2.13) AT o) K&
| £,,0(KUKD, - KUKD,)
@, %; (KR K, — KUK}
where T, , = ©,T; , K%, /¥, K% KU(¢) = (—t)'K1°U¢), K!% is a continuously

differentiable density with bounded support and bandwidth «',. Replacing
y(T,,) in (2.2) by a modification of £,(T; ,; b)/{F,(T; )1 —
E (T, NEXT, ,; b}, we arrive at

};’n,O(Xi;b)/a’n

£.(b) = —
icly (g)5l{cn +D, ;)

(2.14) 5

A A hn(XJ’TL byb)

Dn,ian,i(b) = Z = )

jelp® (n ; 5)4!
where
h, o(X, ;b
(2.15) (e 11 glo] 0] gl
= (61 - 62)(Z1 - Z3)Kn12Kn1384{Kn14Kn15 - Kn14Kn15}7

and

(2.16) ﬁn(x6,9’T1,b; b) = 8(1 — 67)Kn16Kn17{K7[121]8K£101]9 - KLII]SKSI]Q}'

Note that terms with ties are removed, sums renormalized, and the denomi-
nator is stabilized by adding 0 < ¢, — 0. The choice of (K"}, &) = (K, a,) is
possible. Define B, by

217)  £(B,) =0, 1B, — Bl =int{lb - B,I: £,(b) = 0},
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where the initial estimates satisfy || 8, — Bll = Op(n""/?) (i.e., those in Theo-
rem 2.1). For K in (2.13), define K(t) = [[(u — MI)K[O](u) du, K'=
(d/dt)K = K" + p, K1,

g = qu[O](u) du,
(2.18) o = [(t =) KONt) dt = [R(¢) dt,
= [IR (w)* du = [(t = w) (K1)} dt

THEOREM 2.3. (i) Let 0 < y,/a <y, <v,<1/3 and vy, <A + a)y, —
1/2. Suppose

' COV(Z|TB){f(TB +ua,) — f(TB)}2
2.19 lim sup E
(2.19) m ‘u‘jl ¢, + F(T;){1 - F(T,)}

(2.6) holds, I, in (2.9) is finite and positive definite, and for some finite

matrix o2,

=0 VO<M<o»,

la‘2//‘1’§E U(TB;B)DQ(Tﬁ;B)
n(d,)’ g(Ty; B){c + D(Ty; ,B)}2 ’

where D(t; B) = wogt(t; BF(t)(1 — F(¢)). Let B be given by (2.17) with
£ (b) in (2.14) such that n*a, — 7,, n"'d, — 7, and n'*c, > 7, for some
0 < 7; <. Then,

(2.21) Vn (B, — B) =5 N(0,I;(1, + o?)I;Y).
Furthermore, the set {b: £,(b) = 0, |lb — Bl < M/ Vn'} contains a single point

,én with probability tendmg to 1 as n — «© and then M — .
(ii) If in addition o2 = 0, then B are asymptotically efficient, and with p,

as in (2.9),

(2.20) g2- 0%, g2 =

n

n A _ _ _7-1 n71/2n . 0
2.22) Vn (B, - B) = I i;p*(Xl,ﬁ) +0p(1)

-4 N(0,I;1).

Theorem 2.3 is proved in Section 4. The last statement of Theorem 2. 33)
asserts that B in (2.17) does not depend on the choice of 3, asymptotically,
as long as B, is n~'/?-consistent.

2.4. Remarks. The (partial) likelihood function for the data X, , in (1.2)
is

L8 F) = THF(T )} {1 = (T )

i=1
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Since the nonparametric maximum likelihood estimator (MLE) FA’m p of F for
known B is well understood, one may consider the profile MLE of 8 which
maximizes the profile likelihood L,( 8, ﬁ' B) The profile MLE is asymptoti-
cally consistent, but its rate of convergence is unknown. Since F _p 1s given
by local average with a data-driven bandwidth of order n~!/3 the properties
of the profile MLE should be similar to (2.17) with bandw1dth a, =d, = (7,
+ o(1))n"1/3. By Theorem 2.3, (2.17) with such bandwidth is asymptotically
normal but inefficient, since o2 = f, [v(¢; B)Kg(¢; B) > 0} dt/(ui7d) # 0. In
general, a wider bandwidth «/, than those of order n~!/? is needed for
consistent estimation of f = F’, on which the efficient score p, depends.

In Theorem 2.3, we may choose 1/6 < y; < y,=1/3and 0 < y, < 2a —
1)/6, or more generally (a,,d,,c,) satisfying (4.2) and (4.3) below. This
allows the use of the bandwidth of optimal order for the estimation of F' and
f. For example Yo =71 =1/Qa, + 3) for f < Lip(a,, M,). Condition (2.20)
holds with o2 = 0 if n(a’,)%c, — «. The regularity condltlons on g(¢|z) and F
in Theorem 2.3(ii) are weaker than those of Klein and Spady (1993), who
assumed the fourth continuous differentiability of g(¢|z), the boundedness of
Ty, and ¢ < F(Tp) <1 — & for some & > 0. In Thoerems 2.1 and 2.2 the only
assumptions are (2.6) for any « > 0, the uniqueness conditions and the
finiteness of the matrices in the asymptotic variance.

As mentioned before, exponential inequalities for U-statistics are used in
the proofs. The advantage of this approach is that the entropy for the
estimating functions as U-statistics is of much smaller order than those of
typical classes of estimated density, regression or weight functions in semi-
parametric models.

3. Proof of Theorem 2.1. The basic idea is to treat (2.2) and (d/db) &
as U-statistics indexed by b and to obtain expressions in the following
theorem, which leads to the local asymptotic linearity of £,(b) [(3.1), (3.2) and
(3.5) below] and then the conclusions. The following notation is used in this
and next sections: X =X, (eg, T, =T, ,), M = 0(1), M is a random
sequence with (EIIM 1? )1/ » = M, M, is a uniformly bounded sequence of
random variables or funct1ons h, = h(b) = h(T,; b) for all Borel functions
h(t;0), g, ,(t) =gt +b" Z]|Z), F, ,(t) = F(t + (b — B)" Z,), the convolu-
tion is (h * K)X¢) = [h(t — u)K(u) du and (h+ K), = (h+ KXT,).

3.1. Asymptotic normality via expansions of £,(b) and (9/3b)EL(b).

THEOREM 3.1. Suppose conditions of Theorem 2.1 hold. Then,

J
limsupPr{ sup H—gtf(b)—%Efn“(b)

> 8} =0
llb—-Bll<M

(3.1)

n— o

VO<e<M < w,
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J

3.2 lim li =0,
(3.2) im lim sup sup b

e>0 50 ”b_BHSé‘a}fﬂ

Efntr(b) - A¢/

(3.3) lim Pr{ > g\/ﬁ} =0 Ve>0

£&(B) — i p,(X;5B)/n

and

B () - e(B) 1£(5) = Au(b = B)Il _
(3.4) Hm sup oo e — 0 im -0

REMARK. It follows from Theorem 3.1 that
1 n
(35) £(b) = — ¥ p(X;3B) + Ay(b = B) +&,(b)(Ib = Bll +n717?)
i=1

with P{Sup‘|b_3‘|s€r|8n(b)| > et —>0as (n, &) —>(x0+) for all &> 0. This
asymptotic linearity of the estimating functions is commonly used to derive
asymptotic properties of the resulting estimators, but it does not imply (2.5).
Theorem 3.1 provides the convergence of the derivative (9/3b)¢,(b), which
implies (2.5). The ball |6 — Bl < Mn~'/? is eventually inside the ball |5 —
Bl < eal™® for fixed 0 < e <M < %, as al */n/log n — «. By our proofs,
(3.5) remains valid if the conditions on {a,} and ¢ in Theorem 2.1 are
replaced by a,n®*/logn — =, al**/n — 0 and ¢ € Lip(M,, a,).

Proor oF THEOREM 2.1. It follows from Theorem 3.1 and the positive
definiteness of A, that £,(B,) = 0 for some B, = Op(n~'/?) and such solu-
tion is unique, as (4/9b)£(b) = A, +o(1) for [|b - Bl < Mn=12 and
EX(B) = Op(n™1/?). Since (b — B)" £(b) # 0, (2.5) follows from (3.1)
and (38.4). Finally, (3.5) implies (1 + o) B, — B) = —(1 +
oA, '} p,(X;; B)/n, which implies (2.8) as Cov( p,(X; B) =%,. O

3.2. The Arcones—QGiné inequality. The proof of Theorem 3.1 is based on
the Arcones and Giné (1993) extension of the Bernstein inequality to com-
pletely degenerate U-statistics. A combination of their inequality and the
Hoeffding decomposition is given here, providing a bound on the tail probabil-
ity of mean zero U-statistics to be conveniently used in our proofs. Let

E}  ; be the conditional expectation given X, ,..., X; .

LemmA 3.1. Let f,(xq,...,x,;b) be vector-valued Borel functions such
that
(3.6) lEY (X0l <e,,, ENE! (X ks b)”Z = 0'n2,l’

forall 1 <i; < - <i;<k,1<1<k. Suppose

(3.7) co 1 < (n/t)' V2 ol < (n/t,), 1<l<k.
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Then there exist finite positive constants c§ and ci depending on k only such
that

Zielg’{fn(xi; b) — Ef,(X;; b)}
(Z)k!

for all 0 < & < 1. Furthermore, if ||f,(x;b) — f,(x; b))l < Myn™e||b — b'|| for
some M, < »and t,/logn — «, then for all 0 < e <M < =,

(3.8) Pr > &) < cf exp(—cje’t,)

ien b)) — b
(39)  Prl sup Ticp{ (X3 b) — Ef,(X;; b))

&
lb-Bll<M )
(k)k.

- 0.

Proor. Assume Ef, = 0. We first prove (3.9) based on (3.8). Due to the
smoothness condition on f,(x;-), there exist sets of vectors {b,: |6, — Bl <
M,j <N,} with (log N,)/logn = O(1) such that min,_;_y IIf,(x;b) —
fulx; )l < /2 for all [|[b — BIl < M. Thus, by (3.8) the left-hand side of (3.9)
is bounded by

Yie (X5 b;
N, sup Pr ka( )

" > ¢g/2) < N,c¥t exp(—cg’< min{(8/2)2, 1}tn) - 0.
j=N, ( )k!

k

Let us prove (3.8). By the Hoeffding decomposition,

1 o k (];) .
(n—)wggmxi,b) - I‘Z‘)W T fu1(Xi3b),

1 iery

(3.10)

where f, ; are completely degenerate kernels. Furthermore, since Ef,, = 0,
f,; is a sum of 2/ — 1 terms of the form tE; L-jfn(Xl, X b)), 1<j< L
Thus, II£, Il < é,(n/t, )+ V/2 and ICov(f, DIl < é,(n/t,)! for some universal
constants ¢, and (3.8) follows from Proposition 2.3(c) of Arcones and Giné
(1993).

3.3. Proof of Theorem 3.1. It follows from (2.2) that

h (X;;b
(3.11) £(b) = ¥ —5=, g (b) = Bh,(b),
ie1y ( )3!
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with A,(b) = h, (X, 3;6) = Yk, o(b), ¥, = (T, ,) and h, (b) = (8 —
8, XZy — Z3)K,1, K13 and
RY (D) .

ab = _(81 05)(Zy = 2,)(Z, - Z )t K, 13 K,13

(3.12)

b T ’ ' T
+ a_(51 —8)(Zs—Z1)(Z, - Z?,)t K, 13K, 3—Z ' (T, )R (D)

=W, 1(8) + K, 5(b) + I, 5(b), say.

LEMMA 3.2. Let If'j(t) be Borel functions and G; > a. Let M, = maijIKjllp
with respect to the Lebesgue measure. Then for 1 <i, < -+ <i; <k and

[>1,
k11 _ (T _ _
Ef o TT =R 22| < (g5 0)llMy)* (M. ya)'
j=2]8; J
El1 (T ?
E\E;, I1|— ( = ")) < (Ig (5 0)ld,)™" (M. /a)"
Jj=2|%; J

LEmmA 3.3.  Let h,(b), £(b), p,(X;0) and A, be as in (3.11), (2.3), (2.8)
and (2.7), respectively. Set n=b — B and a, , = |9l + a,. Suppose (2.6)
holds, F € Lip(M,,, a;) and ¢ € Lip(M,, o) for some 0 < o, < min(a,1/2)
and 0 < a; < 1. Then, uniformly in b

(3.13) IER,(b) — &(b)Il < Mlyl.ata, ,,
1£(b) = Aynll < Mlnl***,
(3.14)  ElEfh,(b) = p,(Xy; B)I* < Maj?y,

E|Efh,(b)I° < M(a, , +a2*), i=2,3.
If in addition € Lip(M,, 1), then
(3.15) [IE(d/ab)h"(b) — Al < Mag 'a,, ,,

(3.16) supElEf(d9/ab)RT(b)I° = O(aX* "V +a27?), 1<i<3.
b

The proof of Lemma 3.2 is standard and omitted. The proof of Lemma 3.3 is
given after the proof of Theorem 3.1. Some parts of Lemma 3.3 are used in
Section 4.

ProorF oF THEOREM 3.1. By (3.11), (3.2) follows directly from (3.15). By
(3.12) and Lemma 3.2, (3.6) holds for ¢, , = O(a,"’) = o(1)(m /logn)**1/2 1
<1<3, and o}, = O(a =1y = o(1)(n/logn), 1 > 2, for f, = (3/3b)R"(b).
This and (3.16) 1mply (3. 6) and (3.7 for all 1 <! <k = 3 with ¢,/logn —
by aX* Y + a1 = o(n/log n), so that (3.1) holds via Lemma 3.1. Note that
the smoothness condition for (3.9) holds easily with crude bounds. Similarly,
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the 0,2, part of (3.6) is of the order o(n') for f, = Vn{h (b) — p,(X;; B)} and
all 0 <!/ < 3 by Lemma 3.2 and (3.14), so that (3.3) holds by (3.10). Finally
(3.4) follows from (3.13) as al**/n — 0. O

Proor oF LEMMA 3.3. We shall prove (3.13), (3.15), (3.16) and then (3.14).
Assume ||¢l.. < 1. Let EF _be the conditional expectation given (X;,Z), where
Z=(Z,,Z,,...). Forall K € L,(dx) and bandwidth a, > 0,

E;kKni': g‘,b*Kn (n,b)’
o K (~J ) ~ ~
EiSK,;; = EI*F]I)(T]IJ)K}’LLJ = ((F},bgj,b)* Kn)(Ti,b),

as g, , is the conditional density of 7} , given Z; and E[§,|T}, Z;,] = F; ,(T; ).
By (2.6),

(318) {g(£;b), (g1)(t:b), (%0)(£;6)) € Lin(M, @) in (t,b)
with w(t; b) = EZg(t + b"Z|Z)/g(t; b) = E[ZIT, = t] and v(¢; b) as in (2.7),
so that

gj,b * Kﬂ = I‘L(K)gj,b + de§7
(Fj085.5)% K, = gj,b(Fj,b * Kn) + M.a¢,
where w(K) = [K(u) du (uw(K) = 1). Since F is a distribution, by (2.6),
E[F(T—t+A) — F(T - t)|Z]

(3.19)

(3.20) < IIgIijF(u +A) — F(u) du = |Igll.A

for all A > 0 and ¢ [i.e., F € Lip(M,, 1) in L,(g(ulz) du) uniformly in z]. For
example,

(|{F(TB) - Fz,b}{gz,b _gz,b(Tb)}|*|I€n|)b
(3.21) < Mag(IF(Ty) — F, |+ 1K, ]),
< afmin(|M,la, ,,|M.la%,) < ag|M,lal 72

by (3.19) and (3.20). The last inequality above follows from EIU|? <
lU.E|U| for all random vectors U. Since w(K) =1, it follows from
(3.17)—(3.21) that

Eh,(b)

= EE*h,(b)

= By (Z - Z,)(({F(Ty) — F,.,)85,0) < K, ), (85 K.,

= Ey(Z ~ Z)((F(T3) = Fo0)* K, ), (82,485,0)(Ty) + Maja, ,
= By, g,(Z — w,)((F(Ty) - F, ,)* K, ),85 4(T,) + Mata, ,

= £(b) + Maja, 4,

(3.22)
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as El(Z — p)(Fy * K, )Ty, Zy] = E((Fy 4, = K,),|Ty, Z,1E[Z — T, ] = 0
and by (2.3) £(b) = Ey,g2(Z — wp)F(Ty) = Eg, g3(Z — wyXF(T) — F(T,)}.
This gives the first part of (3.13). The second part of (3.13) follows from

£(b) = Ef/“*”"zdmn¢(u>g£(u)(z — w(u; b)) g(u + bYZ/Z)du

_Eff z,l/(u)gb u)(Z — w(u; b)) g(u + b"Z|Z) dudF(t)
= Aym+ M||n||““°

by (3.18). The rest of the proof is similar and we omit some details.

For (3.15) consider A/, (b) in (3.12). As in (3.22), ER), 3(b) = Ma;, ,[|¢'|L..
Since w(K') = 0, EW,,(b) = Ma, ,lgs ,*K,ll./a, = MaZ 'a, ,. Since
F,,*K,/a,=(dFy )+ K, = [K,(-+ 0" Z, — u) dF(u) and F(Ty)* K, = 0,

El, ((b) = —Ey,h(Z) g5 ,85 »((F(T;) — Fy,)* K}), /a,

T a—1
+ Ma; (i

/E¢bh(z)g2,bg3,bKn(Tb + 0" Z, - u) dF(u)
(3.23) )
+Ma: 'a, ,

= [w(w)v(us; b)g*(us b) dF(u) + Mag,

+ Ma,”;_lanyb,

where h(Z) = (Z — Z,(Z — Z,)™. Thus (3.15) holds by (2.7) and (3.18) as
al, <al 'a, )

By Lemma 3 2 E¥h, 5(b) = M,||y'|l. for all i. Since w(K') = 0, gy K, =
M_a? by (3.19), which implies IIE'i*h’n,j(b)H <M, a® '+ M, A|M,a%""|, for
all i and J =1,2 by (3.12) and (3.20). For example, by (3.19) and (3.20) and
with K'(¢) = K'(—1),

Eih, (b)) = M E*({(Fl,b — 8)) 81,583 b} * Kr;)(TQ,b)/an + M.ag!
= MwEik(FLb * Kr:)(TZ,b)/an + M.ag?
= Mza(n“l_l)/z + Mwa;"_l.

In general we compute first the convolution without F and then the one with
F.For E3, we split F(T, ) — F(T, z) into the difference of F(T; ;) — F(T; ).
Thus (3.16) holds. ;

Finally, Efh,(B8) = Mya® " **)/2 by (3.19) and (3.20),

E3h,(B) = E5Yp8,(Z — 1) (F(Ty) — 85)K,12( B) + Moag = M.ag
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as E;[(Z - IJ’B)Kn12(B)|T/3] = 0, and

Bih,(B) - elEL(Z - my)((5 - By p)+K,), + Mo
implies Efh,(B) = p,(Xy; B) + Myal @+ *0/? Hence, the proof of (3.14) is
complete. O

4. Proof of Theorem 2.3. The methods in Section 3 are to be used
again.

4.1. Asymptotic local linearity and normality. Define

5 — F(T,))(6, — F(Ty ,)/(Z — ny)2*(Ty; B) K,

(A1) p(Xy ) = (5= F(Z;)}{5 ( 2.0))( .I’“B)g (755 B) K2 (B)
an{cn + D(Ty; [3)}

where D(¢; B) is as in (2.20) and K '(¢) is as in (2.18) with bandwidth o/,.

b

THEOREM 4.1. Let £, be as in (2.14) with (a,, d,, c,) such that

n»>n

2
n na,

ko+1
a ogn
(42) n1/3an — 1-6 = (O,oo], a_/n < MO,CnQ(kO+2){—} -0

for some integer k, > 6 and that
log n ( log n )
- b

na’c? na?
(4.3)
ag ()" Vnale
— + + -0, c, = 0.

Suppose (2.6), (2.19) and (2.20) hold and I, is finite and positive definite.
Then,

(4.4) sup [(3/2b)£¥ () — Ll = op(1)
Inll<M/yn

with n = b — B, and for p, and p, as in (2.9) and (4.1),

N n 1
(4.5) &(B)=n"t __le*(Xi;,B) + W Y 0u(X;) +op(n”1?).

o icly

PROOF OF THEOREM 2.3. Clearly, (4.2) and (4.3) hold. Let z®* = zz". Since
F(T, ;) — F(T,) = M.d, for K}1,(B) # 0, by (4.1) and (2.20),
Eﬁfz(xl,z)/n
.2 s
=E {F(TB)(l B F(TB)) + Mwa/n} v(Tp; B)8°(Ty; B){Kém( '3)}2
n(d,)*{c, + D(Ty; B))°
~ T. - D2 T. - T. - 2
:E:U’QU( 55 B) : ( B’B)/{g( B;B)“Z} +0(1)
n(a,)*(c, + D(Ty; B))

=g+ o0(l) » o2,

(4.6)
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as d E*(I{'m) = ggity + M(d,)* by (3.17), (3.19) and (2.18). Since
Ep2%(X,; B) =1, (4.6) implies \/_g (B) = Op(1) by (4.5). The conclusions of
Theorem 2.3(i) follow from (4.4) and the asymptotic normality of Vn & £,(B) as
Ep,.(X;; B)p,(X;) = 0.

Let us prove the asymptotlc normality of \/— £,(B). Let £ > 0. Let M, be
large enough such that K/, = ;=0for |T;, , — T; ;| = M,d,. Let the real line be
divided into disjoint intervals B, Al, B,,..., A,, B, from left to right such
that the length of A,,..., A, is M 1a It can be easily seen that
Ep2*(Xy )T, ;€ A} = 0(1) i = 1,2, as in (4.6), so that by (4.5) Vn £,(B) =
Th 08, + oP(l), where S, ; Sn’],1 +8, 5 with

nop (Xi;B) \/—
Sn,j,l = .Z *Tliw Sn,j,z ( ) Z Pu(X5) T, i1J m’

oy iery

Iij = I(Ti,B € Bj}*

Since B; are separated by intervals of length M,a;, S, ; are conditionally

n,J
independent given (N, ..., N;), where N; = ¥, I, .. For fixed k, the strong law
holds for N and

it

2
Elng Sn,j,2|4 -3(1+ 0(1))(E|77(t)r Sn,j,2|2)

4
Vn
=\ Y Elné p,(X)I'L 1
(2)21 iell

~ ~ —4
< Mn *lp,llz = M(n(d,)’c,) =o(1)  Vlnl=1.

Furthermore, we may choose B, such that E|S,. j||2 <M /k. Hence, the
Lindeberg condition holds as n — « and then k£ — «, and the asymptotic
normality of ngn, ; and then Vn £,(B) follows. Finally, (2.22) follows directly
from (4.4), (4.5) and (4.6). O

4.2. Proof of Theorem 4.1. Our plan is to prove (4.5) and the following
statements: for all 0 < e < M < oo,

(4.7) lim P{ su iy iy =
p —&7(b) —E—¢, e}y =0,
n—>w Hb_B”SMan (?b (3’b
(4.8)  sup §"(b) -1,
b Bll<M/ i Eoo

Throughout the proof, the convergence (to zero) of many functions of
(a,,da,,c,) are derived from (4.2) and (4.3), but they are not necessarily
reforred to when used. Let £ K, (b) = {(KULKW, — K% KIY). Since

nLJk nij nijtnik
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Km et K, ; =0, we may center §, in (2.15) without changing the value of
§ (b) in (2.14). In the sequel, let

};’n,O(b) = iln,o(xl,5§ b)
= (81 —8)(Z, - Z3)Kn12Kn13{84 - F(Tl,ﬁ)}Kn145‘

We need a lemma. Let ¢,(¢) = 1/(c,, + ¢). Define

(4.9)

ﬁn(X. T, »;b)

— jo

En,i =Dn(71i1,b;b) =E:k Z
(4 10) jelj@ (n - 5)4'
. 4

= Eh,(X, 4,t;0)li=1,,-

Decompose (8, — 8,)(8, — F(T, z)) into the following three terms with dif-
ferent orders of degeneracy:

fo.o = {F(T1,5) = F(Ty )}{F(T4 )~ F(Ty )},
i1l fo = {8 _F(T p) = 82 + F(Ty g ){F(Ty ) — F(T, )}
e H(rer, F(Tw)}{54 F(T, )

fo,2 = {51_F(T1 p) = 8y + F(Ty, B)}{ —F(T, ;) }

LEMMA 4.1. Let h, o(b), D,, I, and f, , be as in (4.9), (4.10), (2.9) and
(4.11), respectively. Set ¢,(b) = d) (D (Ty; b)),

= ‘Z’n( B)(Zl - ZS)KnIZ( IB)KnIS( B)Kn145( B)

and f, o s = \/;foyshj‘l/a’n. Suppose conditions of Theorem 4.1 hold. Then

o B(b) TRE(B)
a db

n

(4.12) lim sup
= b-Bll<M/yn

_I* =07

(413)  lim VB B2 {02 = V05 (Xas)} /n —0  Y(iy,i,) €15,
(4.14) lim E|E#{f, 01 — Vn p«(Xy; B)}| /n =0, 1<i<5
and lim

n HwEfn,O,O = 0(1)

The proof of Lemma 4.1 is deferred to the end. We prove (4.7), (4.8) and
(4.5) in three steps.
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STEP 1. Proof of (4.7). Let ¢¥(¢) = (d/dt)*p,(t). By (2.14)

e 5 Sl 45
(4.15) 5 s )
+ % 9D, ()~ 0 MLoXiib)
iely a’n(5)5!

Let £,(b) be the first sum above. We shall prove

(4.16) P{ sup ||§~n(b) — Eén(b)Il > 8} -0 Ve>0.
b -Bll<Ma,

The rest of the proofs are similar, so that most details are provided here.
Taking the Taylor expansion of ¢{"(D, ;) at D, ;, we find that (4.16) follows

n,i’

from
sup ||é§n,k(b) - Eégn,k(b)” =o0p(1),
(4 17) [Imll<Ma,,
sup [IR,(b) — ER,(b)ll = 0p(1),
Imll<Ma,

1 <k < k,, where k, is as in (4.2), R, (b) = £,(b) — ko, &, ,(b) and

. J . — k-1 P ht (X D)
(4.18) fn,k(b) = Z {a_bDn,i(b)}(Dn,i _Dn,i) ( ) 0( .
a’n(5)5!(k - 1)!

iely
Consider (4.18) for a fixed k. By (2.14), (D, ; — D, )"~ (9/4b)D, ; is

k=1

ho(X;, Ty 50) — D, ; J h,(X;, T, ;b
(419) Z (J 1,0 ) (J 1,0 )

Y =,
i1z (” . 5)4! jerpm 90 (” . 5)4!

which can be written as a sum of products such that the number of indepen-
dent X-vectors in these products depends on the ties in the labels j in the
sums in (4.19). Thus, (4.18), (4.10), (4.9) and (2.14)-(2.16) imply that, with
fnkj(x) fnkj(x b)

B 4k +5 n . J(X )
gn,k(b) Z Z )
(4.20) J=9 i<ly (J)J'

fn,k,j(Xl,j) = (51 - 52)(54 - F(TI,B))En,kJ'
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where ﬁn = h, . (X, _j>b) is a finite sum of functions of the form

n,k,j
¢r(zk)(1_)n(T1,b§ b)) Z, -7, n
Un,j ) Eik,il ,,,,, i h(aﬁ,m) nKLlllz
an(k + 1)' a, ; i=6
(4.21) X
5
X(Zl - Zs)tr l_lfﬂfﬂi,
i=2
for smooth kernels K!"! with bounded support, finite ||K [‘]II as 1n Lemma

3.2 and bandwidth a,; =a, or a,. For example, {E} h (X6 0, T b,b)} X
0 T103 ) is written as . oh(X10.13: T1 b3 b)(&/&b)h X o,
T, b, b), while KZ.(b)(9/db)K,,,5(b) is written as (Zg — ZXd,a?) 'K(T, ,

Ts p)/a,), with the extra a, being part of 7, Where K(t) = K©! ><
(tan/a Xd/dt)K(¢). The dependence of K on a,/d, is omitted as we only
need ||K||p < || K®. /K" ||p Here in (4.21), 6 <i, <9 is the index of the
differentiated kernel of h in (2.16) and (4.19), h(5; ,,) is a {0, 1}-valued
function of §,..., 8, and 0< 0, ;< M/(na,)** > due to the reduction of
the dimens1onahty by the ties in J and a,/d, < M.

Since the smoothness condition for (3.9) holds, the first part of (4.17) holds
if (3.6) and (3.7) hold for ¢,/logn — « and f, = fo,sﬁn,k,j for all s =0,1,2
and k,j, where f,  are given by (4.11). The decomposition f, , ;=

2 ofo.s —n r,; allows us to consider components of different orders of degen-
eracy [cf. the index r — 1 in (4.22) below]. Let fo="10shnr ; for a fixed
(s, k,j) and consider ||b — Bl < Ma,. Since f=F' is bounded and K'! in
(4.21) have bounded support, I(F(TLB) F(T, ;)K'%,\/a, < MIKZ,(a, ,
= a,) and [(F(T, ;) — F(T, ,)K,|/a, < MIKY,|, so that |f, |/(d)a,) <
M/afl on the set f, # 0 by (4.11). Thus, by (4.20) and (4.21), ||, |l is bounded
by a sum of Mo, ¢ l-a, By, TTiLs| KLl Since [l¢fVll. < Mc,* ™ and

0, ;< M /(na,)?, this and Lemma 3.2 imply (3.6) with

n

Mc " 'I{l > r} Mc;2** D[] > r)
gl = a >0
)d s+(I-1F "’ n,l (nan)Qda35+(l_1)+ ’ = Y,

(4.22) ¢

! (na,

where d = 4k + 5 — j and r is the (largest) integer such that E|E} , f,ll
=0 for all [ <r(r=0if Ef, #0 and r > 1 if Ef, =0). FOI‘J—4k+5
r=s+k—1 due to the centering of 4, at D7 in (4.19) and §; at
E[S T, Z,]1 = F(T, ﬁ) in (4.11). For j < 4k + 5, ties temper some centering of

. sothat r=s 4 (k— 1 —2d)". Thus, by 4.22) for 1> 1and k > 1,

(4.23) c2

n,l

logn\'*!  Mc;2**D(logn) ! . [logn \**?
= 2d _o(s+r—1),r+1 SM 2.2 -0,
n (nan) a;, n na,c,
as l=r,d=0(Ge, r=k+s—1) and s =2 are the worst cases due to

log n/(na?) - 0, a,/log n — 0 and log n/(na?) — «, respectively. Similarly,
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forall [ > 1,

logn\' logn \* *flogn)’(logn\' "
(4.24) O-nQ,Z( ) < Mc;“aﬁ( — 5 ,
n na?c? na na

n n

as d = 0 is the worst case. For & = 1 and 7, = (3/3b),Xq o, T} 4; b), (4.19)
is a single sum and (4.21) can be replaced by ¢."(D, (T, ,; b)) a, )" W (Z, —
Z )“l_[5,2K[‘] Since 7/, has differentiated kernels (with [K 0)(¢) dt = 0),

nli*

|EF 5hn||w < Mag 1 (1nstead of M/an) as in the proof of (3.16), so that for

k ~ 1 and [ = r (consequently d = 0 and r = s) we can modify (4.22) and
(4.24), with an extra factor a2¢, into

l S
(4.25) 2l(10gn) SMan;a%aJrsm(lOgn) -0

(4

3
n na;

for k=1 and 0 <l=r=s<2, as (411) implies E} , f, # 0 only if
{i,..., i € {1,...,5}. The bounds in (4.24) are o(1) for £ > 2 and [ > 1 and
for £ = 1 and [ > r. Thus, (4.23)-(4.25) imply (3.7) with ¢,/log n — © and by
Lemma 3.1 the first part of (4.17) holds for all &£ > 1.

The proof of the second part of (4.17) is simpler. By (4.18), (4.9) and

(2.14)—(2.16),

~ ~ A — k
IRo)l<M Y (D,;,-D,,)"
G,j)ely

(4.26) ko Vllallle, o(Xs; 0) H
X

a’n(g)91

for the even integer & in (4.2). By Lemma 3.2 and the same upper bounds for
£, ll, (4.22) holds with k=%, +1 and r=(k, — 2d)" in the worst case
s = 2. Thus, ¢2 (log n/n)"*! < Mc 2o +2){logn/(na2)}k ot — 0 by (4.2) for
[>1and

0

(4.27) o2

n,l

log n\' - logn \*°
( g ) SMa,Zl”’\lc;“(%) -0, [>0
n

na,c;

as l=r,d=0 (e, [ =ky), s=2 and k, =6 are the worst cases. This
proves the second part of (4.17) by Lemma 3.1. Thus, (4.16) holds.

The proof for the second sum in (4.15)A is almost identical. For the terms in
the Taylor expansion with ¢{*(D, ;XD, ; — D, ;)*, 0 <k <5, (4.22) holds
with 7 = s + (k — 2d)", so that ¢2 ,(log n/n)'*! < Me, ?(log n)*/(na?)® - 0
for 1>1 and o.2,(logn/n) < Ma,c,?(logn/(na®)* -0, I>1, as =r,

—0(Ge,r="Fk+s)and £ = 0, and then s = 2 for cZ (log n/n)'**, are the
Worst cases. The calculation for the remainder is straightforward with £ = 6
and r = (6 — 2d)", easier than & = k, + 1 for (4.27).
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STEP 2. Proof of (4.8). We first compute o,’, > (Ef,)* as in 4.1 to remove
terms of smaller order. Since Ef, =0 for r > 0, we only need to consider
I =r=0.For E¢, k(b)1n(417)r—s +(k—1-2d)"= 0 implies s = 0 and
2d >k — 1, sothat ol = o(l)1n(422)for k > 2(.e.d = 1) and in (4.25) for
k = 1. For ER,(b) in (4 17), 0,2 = 0(1) in (4.27). Thus, E£(b) = o(1) in
(4.16). For the second sum in (4 15), o2 °o = 0(1) in (4.22) for the terms with
l<k<b5Wwithl=r=s+(k— 2d)Jr 0) and the remainder (with % = 6,
l=r=(6-2d)"=0, s = 2). Thus, for [|b — 8|l < Ma, the mean converges
to zero for all terms other than those with & = 0 for the second sum in (4.15).
This and (4.12) imply E 9£,(b)/3b = E($,(b)/a, X dh% ((b)/3b) + o(1) =
I, + o(1).

STEP 3. Proof of (4.5). As in the proof of (4.7), it suffices to show
(4.28)  Vnl& (B)ll=0p(1), 1<k<5,VnEIR,|=o0(1),

n

1
(4.29) &, 4(B) = nt Y p(X;;B) + W Y p.(X5) +op(n™1/?),

21 icly

where R, = £,(B) — X2_, .. x(B), and
. N _ h, o(X;;b)
gn,k(b) = Z (Dn,i _Dn,i) d)i(zk)(Dn,i)’O—‘
iery a, (”)5!k!
"\ 5
We shall first prove (4.28). Let £ > 1. As in (4.20) and (4.21),

TNOES T s &)
T (2]

2
fn.k,j(xl,j) = Z fO,s( B)hn,k,j’ k>1,
s=0

where h is a sum of terms of the form of the modified (4.21) with

n,k,j
(Z;,, — Z)/Na, ;(k — D!} replaced by Vn /E!. This means an extra factor of
a,Vn in the computation. Let (s, &, j) be fixed and £, = f, ,(B)k, , ;. As in

(4.22) and (4.24), (3.6) holds with
02, Mnalc,*** VIl > r}

<
= 2d _2s+(I-1)* 1
(na,)**a? n

n
n

(4.30)

Mc;“ak”“l{l >S} —2\ k-1
= a-rt ( 2 ) = 0(1)’
(nan) (na,) na,
forall /[>1and 2>1and for ] =0 and % > 2, where r =s + (k£ — 2d)".
For k = 1 there is no tie, so that r =k + s > 1 and ¢, = 0. For E|IR, |, we
use the upper bound as in (4.26) and thentakel = 0,2 = 6, r = (k — 2d)*=
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and s = 2 in the first inequality of (4.30) to yield .2, < Mc;*/(n%%) =
(a,/c?)?/(na®)® - 0. This proves (4.28).

For (4.29), we have k =d = 0, r = s and Vn &, o(B) = YXicipfno X/
{(2)5!} where £, o, = f,.0.,X; 5) is as in Lemma 4.1. By (4.30) ¢,,/n' = o(1)

for f, =f,.0.s 1f l > r = s. The computation for [ = r = s is given in Lemma
4.1. These imply (4.29) by the Hoeffding decomposition (3.10). Hence, (4.5)
holds.

4.3. Proof of Lemma 4.1. Consider |In||=1b6 — Bl <M/ Vn = o(a,). By
4.9),

E(,(b)/d,)(0h% o(b)/db)
= Ey,(b)(0h% o(b) /3b) + Ei;,(b)h% o(b),

where h, , is the factor of A, in (3.11), ¢,(b) = b, (OET{F(T, p) —
F(T, )}Kn145(b)/a and ,(b) = ¢, (b)E*{F(T4 p) — F(T )}(a/&b)Kn145(b)/a
Cons1der (b). The argument of (3.23) can be modlﬁed to show

ET{F(TAL,B) - F(TB)}Kn145(b)/a,n

= g}Ef({F,, — F(T,)}+ K}, /d, +

:gl%(F*Kr;)B/aln _|_ cee

=g3(f*K,) s+ M{(,)" + Imll/,}.
Let D, = D(T}; B) as in (2.20). By (4.10), (2.16), (2.6) and || f|l.. < =, [ID,(T}; b)
—Dyll. < Ma;; as in (3.17)—(3.19). This and (4.32) imply
M.(d,)" /e,
¢, + Dy ’

(4.31)

(4.32)

: 1+ - ~
(4.33) ¢,(b) = 1,(0) = (D) g5 (f* K,) gl = 0(1)

as (a,)%/c, + 1/(Yna,c,) — 0. Thus, in view of the proof of (3.15) [especially
(3.23)],

Ey, (b)_htr o(b) = a,"E¢,(b)v,g;(Fy , +K,), + o(1)

=Evggg(f*Kn)B(f*Kn)B 1+ Mf(a,n)a
¢, + Dy

} + o(1)

=1, +0(1)

by (2.19) and (4.33). Simpler computation provides I ll.. < M/(a,c,) and
Ey, (DAY ((b) = O(al**/(d,c,)) = o(1) by (3.13). These give (4.12) via (4.31).

For (4.13), it suffices to consider (i;,i5) =(1,4) and (2,4), due to the
centering of §, in (4.11) and (4.1), and E},f, ;o= (-D"**Wn fa, X8, —
F(T;, N6, — F(T, pIE} h;; for i =1,2. By (3.17), (8.19) and Lemma 3.2,
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Ef h% = o (BNZ — ug)giK 1y + My(d,)* /% /c,. Let ||-Il; = trace(-). With
(4.33), (2.20) and (4.1), these imply

B Bt {f,.0 — V0 5o, )| /22
< M((,)"/e,) Mol + Me, ()" /n - 0

as in (4.6). Also, since |E(Z, — Zy)K,15( BT, = Ma?, E(E} ,f, o5)*/n’
is of the order c,?a2*/{n(a,,)®} = o(1). Therefore (4.13) holds due to
E§,4 ﬁn(X(1,4)) =0.

For (4.14), we only need to consider i = 1,2,4. As in the proof of (3.14),
(4.33) and (3.17)-(3.21) imply E}f, o1/ Vn = ¢, (BIEh, o = $,(B)py (X, B)
+M.al/c, with Efllp(X;, BI? = M.llvglliDs in view of (2.8). This and
(4.33) and (2.19) imply

nE|E{f, o1 — Vi pi (X0 8))|

7 2 DB
< MEIy,(B) — ¢ (Tp)l ||Uﬁ||1M— +o0(1)
2

2
~ (f*Kn)ﬁ_MZf(TB) 9 MZf(TB)ggcn DB
< ME c, T DB gﬁ - {Cn +DB}DB ||UB||1M_2

+o(1) I ll; + o(1) = 0o(1)
as py =Yy p, Yu = ,u2f(Tﬁ)g§/DB and I, <x. For i=2,4, |E(Z, -

Z)K 15 BT ]ll. = Ma; implies

- - 2
E||E?<fn,o,1||2/n = Mc;2a3“|lf||wE(E;"|Kn12Kn145|) =o(1),

so that (4.14) follows. Finally, by (3.13), (4.31), (4.32) and (4.33), we find
Ef,00=EVnh, (B) =vVnal**/c, = o(1). O
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