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THE STRONG LAW UNDER RANDOM TRUNCATION1

By Shuyuan He and Grace L. Yang

Peking University and University of Maryland

The random truncation model is defined by the conditional probability
distribution H�x�y� = P�X ≤ x� Y ≤ y�X ≥ Y� where X and Y are
independent random variables. A problem of interest is the estimation of
the distribution function F of X with data from the distribution H. Under
random truncation, F need not be fully identifiable from H and only a part
of it, say F0, is. We show that the nonparametric MLE Fn of F0 obeys
the strong law of large numbers in the sense that for any nonnegative,
measurable function φ�x�, the integrals

∫
φ�x�dFn�x� → ∫

φ�x�dF0�x�
almost surely as n tends to infinity. Similar results were first obtained
by Stute and Wang for the right censoring model. The results are useful
in establishing the strong consistency of various estimates. Some of our
results are derived from the weak consistency of Fn obtained by Woodroofe.

1. Introduction. Consider an infinite sequence of independent random
vectors �Xm�Ym�� m = 1�2�    � where the Xm have a common distribution
function F and the Ym have a common distribution function G. The compo-
nents Xm and Ym are also independent for each m. Suppose both Xm and Ym

are observable only when Xm ≥ Ym. The observable pairs thus form a sub-
sequence 
j� of the original sequence 
m�. It is denoted by 
�Uj�Vj�� j =
1�2�   �. Here the subsequence is labeled consecutively for simplicity. The
limitation in observation induces dependence and the constraint Uj ≥ Vj

in each pair j. However, the vectors �Uj�Vj� remain iid. In describing the
distributional properties of any pair we shall use �X�Y� to refer to any pair
�Xm�Ym�, and �U�V� to �Uj�Vj�.

The random truncation model is defined by the joint distribution H�x�y�
of �U�V�. It is the conditional distribution of �X�Y� given �X ≥ Y�,

H�x�y� = P�U ≤ x� V ≤ y� = P�X ≤ x� Y ≤ y�X ≥ Y�(1)

A problem of interest is to estimate the distribution function F of X based
on a randomly truncated sample of n iid observations �Uj�Vj�� j = 1�    � n.
Truncated data occur in astronomy, economics [e.g., Woodroofe (1985), Feigel-
son and Babu (1992)], epidemiology, biometry [e.g., Wang, Jewell and Tsai
(1986), Tsai, Jewell and Wang (1987), He and Yang (1994)] and possibly in
other fields such as spike train data in neurophysiology.
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The truncation event �X ≥ Y�, among other things, affects the range of
observation of the X. Only F0 defined by

F0�x� = P�X ≤ x�X ≥ aG�(2)

is estimable from the truncated sample �Uj�Vj�� j = 1�    � n, where

aG = inf
y� G�y� > 0�
is the lower boundary of Y. We shall denote the upper boundary of Y by

bG = sup
y� G�y� < 1�(3)

Similar symbols, aF� bF, will be used for the boundaries of X.
Obviously, if aG ≤ aF, F0 = F. Analogously, define G0�y� = P�Y ≤ y�Y ≤

bF�. Thus if bF ≥ bG, G0 = G. Let I�A� denote the indicator function of the
event A. Let

F∗
n�s� = n−1

n∑
i=1

I�Ui ≤ s�� G∗
n�s� = n−1

n∑
i=1

I�Vi ≤ s��

Rn�s� = G∗
n�s� −F∗

n�s−� = n−1
n∑

i=1

I�Vi ≤ s ≤ Ui�� −∞ < s < ∞
(4)

be the empirical processes of the data.
Here and in what follows, for any real function g, the left limit limy↑s g�y�

is denoted by g�s−� and the difference g�s� − g�s−� by the curly brackets
g
s�.

The nonparametric maximum likelihood estimates of F0 and G0 are given,
respectively, by

Fn�x� = 1 − ∏
s≤x

[
1 − F∗

n
s�
Rn�s�

]
and Gn�x� =

∏
s>x

[
1 − G∗

n
s�
Rn�s�

]
�(5)

where x ∈ �−∞�∞� and an empty product is set equal to 1.
One of the results obtained by Woodroofe (1985) is that for any continuous

F and G,

sup
x

�Fn�x� −F0�x�� → 0 in probability as n → ∞

If F and G are not continuous, the limit has to be modified. For arbitrary F
and G, there are two kinds of limit, F0 and Fa, where Fa is defined by

Fa�x� = P�X ≤ x�X > aG�
Under Condition B1� aF = aG� G
aG� = 0 and F
aF� > 0, we show in
Theorem 5.6 and Corollary 5.8 that

sup
x

�Fn�x� −Fa�x�� → 0 a.s.

Otherwise,

sup
x

�Fn�x� −F0�x�� → 0 a.s.
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In Theorem 5.7, Corollaries 5.8 and 5.9, we show that for arbitrary F and
G the strong law of large number (SLLN) holds for the MLE estimate Fn, that
is, for any measurable nonnegative function ϕ,

∫
ϕ�x�dFn�x� →

∫
ϕ�x�dFa�x� as n → ∞�(6)

almost surely under Condition B1. If B1 does not hold, then the convergence
in (6) takes place with Fa replaced by F0.

The convergence in (6) implies immediately the a.s. convergence of the sam-
ple moments

∫
xk dFn�x� → E0X

k = ∫
xk dF0�x�� if ϕ�x� = xk and E0X

k are
finite. Similarly, if ϕ�x� = eitx or ϕ�x� = I�X ≤ x�, we have the a.s. conver-
gence of the empirical characteristic function and Fn. Stating the SLLN in
terms of a nonnegative ϕ is for convenience, since any measurable ϕ can be
decomposed into a positive and a negative parts.

In Sections 3 and 4, we prove the SLLN for continuous F and G (in the
continuous case F0 = Fa). The proof of the general case of F and G is given
in Section 5.

This investigation is motivated by the work of Stute and Wang (1993) who
obtained the similar strong law for the Kaplan–Meier estimator under right
censoring. Although both Fn and the Kaplan–Meier estimator can be written
in product forms, the Rn�s� that appears in Fn is not a monotone function of
s, whereas a comparable term in the Kaplan–Meier estimate is. Without the
monotonicity, we cannot directly apply the martingale property of the Kaplan–
Meier integrals obtained by Stute and Wang (1993).

However, the monotone property of the cumulative hazard functions !n of
Fn and !0 of F0 can be utilized. Following the approach of Stute and Wang
(1993), particularly their Lemma 2.1, we show in Theorem 3.1 of Section 3
that the sequence of integrals

∫
ϕ�x�d!n�x� forms a reverse supermartingale.

Based on Theorem 3.1, we establish the uniform strong convergence of the
cumulative hazard function !n of Fn to the cumulative hazard function !0 of
F0. The strong limit !0 is identified by utilizing the existence of the weak limit
!0 as proved by Woodroofe (1985). It then follows that F̃n�x� = 1−exp�−!n�x��
converges uniformly and strongly to F0�x� = 1 − exp�−!�x��, which in turn
entails that the difference between F̃n�x� and the MLE, Fn, tends to zero as
n tends to infinity.

In Section 4, we show in Theorem 4.1 that supx �Fn�x�−F0�x�� → 0 almost
surely. The proof is nontrivial. It requires careful analysis of the empirical
process Rn�x� near the lower boundary aG of the observable X. Theorem
4.1 is needed for establishing the strong law stated in (6) for continuous F
and G. The proof is given in Theorem 4.3. The proof relies crucially on a
special representation of the estimate αn = ∫

Gn�x�dFn�x� of the truncation
probability α = P�X ≥ Y�; see He and Yang (1998).

The generalization to arbitrary F and G is presented in Section 5. In addi-
tion to being theoretically interesting, the results are useful for estimating F
from grouped data which we could treat then as from a discrete distribution F.
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We adopted the method of proof used in Major and Rejtö (1988) by showing
that the general case can be reduced to the continuous case via appropriate
transformations of the random variable Xi to X̂i and Yi to Ŷi. The rela-
tionship between Xi, Yi and their transformations are given in Lemma 5.1.
Lemma 5.1 facilitates the proof of almost sure convergence of (6) for arbitrary
F and G as given in Theorem 5.7. The proofs of Lemmas 5.1, 5.4 and 5.5 are
relegated to the Appendix.

The main result of this article is the strong law given in Theorem 5.7. The
L1 convergence proved by Stute and Wang (1993) for the right-censored data
remains an open problem for the random truncation data.

Finally, we note that the uniform strong consistency of Fn was proved by
Chen, Chao and Lo (1995), but only for continuous F and G. Our proof of the
continuous case given in Theorem 4.1 is different and, we believe, simpler.
The general case presented in Section 5 was not considered by Chen, Chao
and Lo (1995).

2. Assumptions and preliminaries. The following assumptions are
used in Sections 3 and 4. Assumption A1 is eliminated in Section 5.

A1. F and G are continuous.
A2. The supports of F and G are not disjoint, that is, aG < bF.

Assumption A2 is to avoid mathematical triviality. It guarantees a positive
probability α = P�X ≥ Y� of observing X and Y, which, in turn, implies by
the SLLN that infinitely many of the events �Xi ≥ Yi�� i = 1�2�    will occur.
Therefore, a sample of n iid random vectors �Ui�Vi� is (with probability 1)
always available from the original sequence and n corresponds to some mn in
the original sequence 
�Xm�Ym�� m = 1�2�   �. For further discussion, see
He and Yang (1998).

The marginal distributions of U and V are given by

F∗�x� = P�U ≤ x� = P�X ≤ x�X ≥ Y� = α−1
∫ x

−∞
G�s�dF�s��

G∗�x� = P�V ≤ x� = P�Y ≤ x�X ≥ Y� = α−1
∫ x

−∞
F̄�s−�dG�s��

(7)

where
∫ b
a stands for the Lebesque integral

∫
�a� b� and F̄�s� = 1 − F�s�. It can

be checked that aF0
= aF∗ ≥ aG and bF0

= bF∗ = bF.
Put

R�x� = G∗�x� −F∗�x−� = P�V ≤ x ≤ U�(8)

It is seen that

R�x� = α−1F̄�x−�G�x� > 0(9)

if and only if x ∈ �aG� bF�. Equation (9) holds for arbitrary F and G; see
Woodroofe (1985) for further discussion.

This relationship provides an estimating equation for the parameter α; see
He and Yang (1998) in this issue.
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We shall need the cumulative hazard functions of Fn and F0. They are
defined, respectively, by

!n�x� =
∫ x

−∞
dFn�s�

1 −Fn�s−� �(10)

and

!�x� =
∫ x

−∞
dF0�s�

1 −F0�s−� =
∫ x

aF0

dF�s�
1 −F�s−� � aF0

≤ x < ∞(11)

Applying (5), (7) and (8), it is easy to check that for x ∈ �aF∗� bF∗�, !n�x�
and !�x� can be written as

!n�x� =
∫ x

−∞
dF∗

n�s�
Rn�s�

� !�x� =
∫ x

−∞
dF∗�s�
R�s� (12)

Note that Fn
s� = F̄n�s−�F∗
n
s�/Rn�s�. The empirical hazard function !n�x�

is a finite sum and a step function in x. The cumulative hazard function !�x�
is finite for x ∈ �aF∗� bF∗� and !�x� → ∞ as x ↑ bF∗ .

We use the convention 0/0 = 0 throughout.

3. Reverse supermartingales. Assumptions A1 and A2 are imposed
throughout Sections 3 and 4. Let U1 �n ≤ U2 �n ≤ · · · ≤ Un �n be the ordered
values of Uj’s among the first n observations, and Vj �n� the concomitant of
Uj �n for j = 1�    � n. Let

�n = σ
{
Uj �n� Vj �n� 1 ≤ j ≤ n� �Uk�Vk�� k ≥ n+ 1

}
� n = 1�2�   (13)

be a sequence of σ-fields generated by the first n ordered Uj �n, their concomi-
tants Vj �n and the rest of the unordered �Uk�Vk� of the infinite sequence. This
is a decreasing sequence, �n ⊃ �n+1 ∀ n ≥ 1, and, by definition, !n�t� ∈ �n for
every n. Therefore, for any nonnegative measurable function ϕ�x� the integral

Sn ≡
∫

ϕ�x�d!n�x� ∈ �n ∀ n ≥ 1

Unless specified otherwise, the integral sign means integrating from −∞ to ∞.
For simplicity, we shall suppress the statement “as n → ∞” if the conver-

gence is clearly understood to be with respect to n tending to infinity.

Theorem 3.1. The sequence 
Sn��n� n ≥ 1� is a reverse supermartingale,
that is,

E�Sn��n+1� ≤ Sn+1 ∀ n ≥ 1

Proof. The cumulative hazard function !n�x� is a step function and has
jumps only at each Uj �n� j = 1�    � n. Evaluating !n, we obtain by (12),

!n�Uj �n� =
j∑

i=1

F∗
n
Ui �n�

Rn�Ui �n�
∈ �n�(14)
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and !n�u� = !n�Uj �n� for all u ∈ �Uj �n�Uj+1 �n�. Its mass at Uj �n, !n�Uj�n�−
!n�Uj �n−� is

!n
Uj �n� = F∗
n
Uj �n�

Rn�Uj �n�
= 1

nRn�Uj �n�
a.s. 1 ≤ j ≤ n

Evaluating the mass of !n at the next order statistic u = Uj �n+1 yields

!n
Uj �n+1� = F∗
n
Uj �n+1�

Rn�Uj �n+1�
� 1 ≤ j ≤ n+ 1

One sees that the integral Sn can be written as the sum

Sn =
n+1∑
j=1

ϕ�Uj �n+1�!n
Uj �n+1�(15)

Thus the theorem will be proved if we show

E�!n
Uj �n+1���n+1� ≤ !n+1
Uj �n+1��(16)

for each fixed j, j = 1�2�    � n + 1. Put Ik = I�Un+1 = Uk �n+1�. If Ik occurs,
then

Uj �n+1 = Uj �n�

Vj �n+1 = Vj �n if j ≤ k− 1

and

Uj �n+1 = Uj−1 �n�

Vj �n+1 = Vj−1 �n if j ≥ k+ 1

It follows by Lemma 2.1 of Stute and Wang (1993) that E�Ik��n+1� = 1/�n+ 1�
Now we have

E�!n
Uj �n+1���n+1�

= ∑
k �=j

E

((
1∑k−1

i=1 I�Vi �n ≤Uj �n+1 ≤Ui �n�+
∑n

i=k I�Vi �n ≤Uj �n+1 ≤Ui �n�

)

×Ik��n+1

)

= ∑
k �=j

1
�n+ 1�Rn+1�Uj �n+1� − I�Vk �n+1 ≤ Uj �n+1 ≤ Uk �n+1�

1
n+ 1



On the set 
�n + 1�Rn+1�Uj �n+1� = m�, m = 1�2�    � n + 1, we have∑
k �=j I�Vk �n+1 ≤ Uj �n+1 ≤ Uk �n+1� = m− 1 Therefore, for m > 1,

E�!n
Uj �n+1���n+1� =
1

n+ 1

(
m− 1
m− 1

+ n−m+ 1
m

)
= !n+1
Uj �n+1�
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For m = 1,

E�!n
Uj �n+1���n+1� =
1

n+ 1
n

�n+ 1�Rn+1�Uj �n+1�
≤ !n+1
Uj �n+1�

This proves (16) and hence the theorem. ✷

It follows by Proposition 5-3-11 of Neveu (1975) that Sn converges almost
surely to a limit, say S, which is measurable with respect to the σ-field �∞ =⋂

n≥1 �n. If we take ϕ�x� = I�−∞� x�, then Sn = !n�x�. Since according to
Woodroofe (1985) for every x < bF∗ ,

!n�x� → !�x� in probability as n → ∞�

it must be true that �!n�x�−!�x�� → 0 a.s. By noting that !n�x� is monotone
in x for each fixed n and !�x� is continuous by assumption A1, we arrive at
the following result of uniform a.s. convergence on semiclosed intervals, that
is, ∀ b < bF∗ ,

sup
x≤b

�!n�x� − !�x�� → 0 a.s.(17)

Corollary 3.2. Define F̃n�x� = 1 − exp�−!n�x��, then as n → ∞,

sup
x

�F̃n�x� −F0�x�� → 0 a.s.

Proof. Applying (17), we obtain for x < bF∗ , F̃n�x� → 1 − exp�−!�x�� =
F0�x� a.s.

Since F0 is continuous and F̃n�x� is a distribution function, it must be true
that

sup
x≤bF∗

�F̃n�x� −F0�x�� → 0 a.s. ✷

Corollary 3.3. For any nonnegative measurable ϕ�x�:
(a) S = limn→∞ ESn exists (possibly infinite);
(b) Sn → S a.s.;
(c) if S < ∞, then 
Sn� is uniformly integrable and E�Sn −S� → 0.

Proof. According to the Hewitt–Savage zero–one law, �∞ is trivial. Hence
the results follow directly by Theorem 3.1 and Proposition 5-3-11 of Neveu
(1975). ✷

Lemma 3.4. For measurable ϕ�x� ≥ 0,

S =
∫

ϕ�x�d!�x�
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Proof. By (14) and the definition of Rn given by (4),

ESn = E
n∑

j=1

ϕ�Uj�
1

nRn�Uj�
= Eϕ�Un�

1
Rn�Un�

= Eϕ�Un�
n∑n−1

i=1 I�Vi ≤ Un ≤ Ui� + 1

=
∫

ϕ�x�Eζn−1�x�dF∗�x� ∀ n ≥ 1�

where

ζn−1�x� =
n

�n− 1�Rn−1�x� + 1


Note that ζn�x� ∈ �n.
We shall prove 
ζn�x���n� n ≥ 1� is a reverse supermartingale. As before,

put Ik = I�Un+1 = Uk �n+1�. For m = 1�2�    � n + 1, if 
�n + 1�Rn+1�x� = m�
occurs, then

E�ζn�x���n+1� =
n+1∑
k=1

E�ζn�x�Ik��n+1� =
n+ 2
m+ 1

= ζn+1�x�

If 
�n+ 1�Rn+1�x� = 0� occurs, then

E�ζn�x���n+1� = n+ 1 ≤ n+ 2 = ζn+1�x��
so that E�ζn�x���n+1� ≤ ζn+1�x�. Since Rn�x� → R�x� a.s., we have Eζn�x� ↑
1/R�x�

Now, by (12),

S = lim
n→∞ESn =

∫
ϕ�x� 1

R�x� dF∗�x� =
∫

ϕ�x�d!�x� ✷

4. The strong law for Fn. Assumptions A1 and A2 are imposed through-
out the section.

Theorem 4.1. Let Fn�Gn and F0 be defined by (5) and (2), then as n → ∞,

sup
x

�Fn�x� −F0�x�� → 0 and sup
x

�Gn�x� −G0�x�� → 0 a.s.

Proof. We prove convergence only for Fn. The proof for Gn is similar
and is omitted. Put ϕn = �log n/n�1/2 and βn = inf
x� G�x� ≥ ϕn�. By the
definitions of ! and !n [see (10) and (11)], Fn�x� ≤ !n�x� and F0�x� ≤ !�x� for
every x ∈ �aF∗� bF∗�. Thus the almost sure convergence of Fn�βn� and F0�βn�
follows from that of !n�βn� and !�βn� [see (17)]. But then supx≤βn

�Fn�x� −
F0�x�� ≤ Fn�βn� +F0�βn� → 0. It remains to consider the case x > βn.

Split the product form of F0 and F̄n = 1−Fn defined by (5) as follows. Let

Mn�x� =
∏

βn<Ui≤x

[
1 − 1

nRn�Ui�
]
� M̃n�x� = exp

{
−
∫ x

βn

d!�s�
}
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Then

F̄n�x� = �1 −Fn�βn��Mn�x�� F̄0�x� = �1 −F0�βn��M̃n�x�
Hence �Fn�x� − F0�x�� ≤ �Fn�βn� − F0�βn�� + �Mn�x� − M̃n�x��. It suffices to
prove that

sup
x

�Mn�x� − M̃n�x�� → 0 a.s.(18)

Note that for every a ∈ �aF∗� bF∗� and for R�x� given by (9),

inf
βn<s≤a

R�s� ≥ α−1F̄�a�G�βn� = α−1F̄�a�ϕn > 0

Applying Theorem 2.1.4B in Serfling (1980), we have

lim
n→∞ sup

βn<x≤a

∣∣∣∣Rn�x�
R�x� − 1

∣∣∣∣
≤ lim

n→∞
α

F̄�a�ϕn

sup
x

�G∗
n�x� −F∗

n�x−� −G∗�x� +F∗�x−�� = 0 a.s.

So, ∀ x ∈ �aF∗� bF∗�, with probability 1 for large n�

inf
βn<s≤x

nRn�s� ≥ 1
2n inf

βn<s≤x
R�s� ≥ M0

√
n log n�

where M0 is a positive constant. By Taylor’s expansion,

Mn�x� = exp
(
−
∫ x

βn

dF∗
n

Rn�s�
+O

(
n

n log n

))

= exp�−!n�x� + !n�βn� +O�1/ log n��
→ 1 −F0�x� a.s.

and

M̃n�x� = exp�−!�x� + !�βn�� → 1 −F0�x�
Consequently, ∀ x ∈ �aF∗� bF∗�,

�Mn�x� − M̃n�x�� ≤ �Mn�x� − F̄0�x�� + �M̃n�x� − F̄0�x�� → 0 a.s.

The convergence must be uniform in x, since Mn�x� and M̃n�x� are monotone
in x and bounded above by 1. ✷

Lemma 4.2. Suppose ϕ�x� is a nonnegative measurable function satisfying∫
ϕ�x� 1

1 −F0�x�
dF0�x� < ∞

Then limn→∞
∫
ϕ�x�dFn�x� =

∫
ϕ�x�dF0�x� a.s.
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Proof. By Corollary 3.3, Lemma 3.4 and Theorem 4.1,

lim
n→∞

∫
ϕ�x�dFn�x� = lim

n→∞

∫
ϕ�x��F̄n�x−� − F̄0�x��d!n�x�

+ lim
n→∞

∫
ϕ�x�F̄0�x�d!n�x�

=
∫

ϕ�x�F̄0�x�d!�x� =
∫

ϕ�x�dF0�x� a.s. ✷

The next theorem relaxes the condition of finiteness of the integral of
Lemma 4.2.

Theorem 4.3. For any nonnegative measurable ϕ�x�,

lim
n→∞

∫
ϕ�x�dFn�x� =

∫
ϕ�x�dF0�x� a.s.

Proof. If
∫
ϕ�x�dF0�x� = ∞, then using

lim
n→∞ inf

x≤a

F̄n�x−�
F̄0�x�

= 1 for any a < bF∗�

we obtain

lim inf
n→∞

∫
ϕ�x�dFn�x� ≥ 1

2 lim inf
n→∞

∫ a

−∞
ϕ�x�F̄0�x�d!n�x� = 1

2

∫ a

−∞
ϕ�x�dF0�x�

Letting a → ∞, we obtain

lim
n→∞

∫
ϕ�x�dFn�x� = ∞

Suppose
∫
ϕ�x�dF0�x� < ∞. Then for any a ∈ �aF∗� bF∗�,

∫ a

−∞
ϕ�x� 1

1 −F0�x�
dF0�x� < ∞

By Lemma 4.2 and Theorem 4.1 we have

lim inf
n→∞

∫
ϕ�x�dFn�x� ≥ lim

n→∞

∫ a

−∞
ϕ�x�dFn�x� =

∫ a

−∞
ϕ�x�dF0�x� a.s.

So the theorem will be proved if we show

lim sup
n→∞

∫
ϕ�x�dFn�x� ≤

∫
ϕ�x�dF0�x� a.s.(19)

Now, according to Theorem 2.2 and Corollary 2.4 of He and Yang (1998),

α̂n = Gn�x�F̄n�x−�
Rn�x�

→ α0 =
∫

G0�x�dF0�x� > 0 a.s.
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and α̂n is a constant in x. See also (9). This in conjunction with (10) and (12)
yields ∫ ∞

a
ϕ�x�dFn�x� = α̂n

∫ ∞

a
ϕ�x��Gn�x��−1 dF∗

n�x�

≤ �α̂n/Gn�a��
∫ ∞

a
ϕ�x�dF∗

n�x�

→ 1
G0�a�

∫ ∞

a
ϕ�x�G0�x�dF0�x�

Hence,

lim sup
n→∞

∫
ϕ�x�dFn�x� = lim sup

n→∞

[∫ a

−∞
ϕ�x�dFn�x� +

∫ ∞

a
ϕ�x�dFn�x�

]

≤
∫ a

−∞
ϕ�x�dF0�x� +

1
G0�a�

∫ ∞

a
ϕ�x�dF0�x�

Letting a ↑ ∞, we obtain (19). ✷

5. Arbitrary distribution functions F and G. The results of Sections 3
and 4 are derived under the continuity assumption of F and G and A2. We
shall prove in this section that these results remain true if the continuity
assumption A1 is removed.

It is convenient to partition the real line R into A and its complement Ac

where A = 
xj� j = 1�2�   � is the set of discontinuity points of either F
or G or both. For our purpose, we may assume, without loss of generality,
F0 = F and G0 = G. This is because the random truncation model H�x�y�
is the same regardless of whether the underlying distributions are (F�G)
or �F0�G0� as shown by Woodroofe (1985). This assumption simplifies the
discussion considerably. Let 
εi� ηj� i� j = 1�2�   � be a set of iid uniform
random variables on the interval [0,1]. Assume that they are independent of
the X’s and Y’s. Following Major and Rejtö (1988), we use the function

h�x� = x+ ∑
k �xk<x

k−2� x ∈ R = �−∞�∞�(20)

to transform Xi to X̂i and Yi to Ŷi as follows:

X̂i =




h�Xi�� if Xi ∈ Ac�

h�xj� +
1

2j2
�1 + εi�� if Xi = xj ∈ A�

i = 1�2�    �

Ŷi =




h�Yi�� if Yi ∈ Ac�

h�xj� +
1

2j2
ηi� if Yi = xj ∈ A�

i = 1�2�    

By construction, h is strictly increasing and continuous on Ac. Adding inde-
pendent uniform random variables on A makes the transformed random vari-
ables X̂i and Ŷi having continuous distribution functions F̂�x� = P�X̂i ≤ x�
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and Ĝ�x� = P�Ŷi ≤ x�. Although the continuity of F̂ and Ĝ is conceptually
clear, to establish the strong law with respect to the product-limit estimate Fn

in Theorem 5.7 it is necessary to explicitly express the relationship between
the events determined by Xi, Yi and those by the transformed variables X̂i,
Ŷi. This is given in Lemma 5.1.

Applying Lemma 5.1, it is easy to prove that F̂�x� and Ĝ�x� are continuous
in x. Moreover, we show that

F�x� = F̂�h�x+���G�x� = Ĝ�h�x+�� ∀ x ∈ R(21)

Suppose we have randomly truncated data of �X̂� Ŷ�. Denote by F̂n and Ĝn the
nonparametric MLE of F̂ and Ĝ calculated from the observed pairs �Ûi� V̂i�,
i = 1�2�    � n; see (24), (25). The generalization of the strong law in Theorem
4.3 for possibly discontinuous F and G will make use of the fact that

Fn�x� = F̂n�h�x+�� ∀ x ∈ R(22)

as will be shown in Lemma 5.4.
By definition, h�x� is left continuous and has a jump of size j−2 at xj for

j = 1�2�     Let 0 = ⋃
j�h�xj�� h�xj+��. The function h is a 1–1 map from

Ac onto 0c = R− 0
Split 0j = �h�xj�� h�xj+�� = 0j�1 ∪ 0j�2 where the intervals 0j�1 = �h�xj��

h�xj� + 1/2j2�� 0j�2 = �h�xj� + 1/2j2� h�xj+��. Then 0 = ⋃
j 0j and the 0j

are disjoint. Define the inverse

h−1�u� = sup
{
x� h�x� ≤ u

}
� u ∈ R(23)

Then for u ∈ 0j, h−1�u� = xj

The next lemma expresses the events �X̂i ≤ u� and �Ŷi ≤ u� in terms of
the original variables Xi and Yi.

Lemma 5.1.

�a� �X̂i ≤ u� =



�Xi ≤ h−1�u��� if u ∈ 0c�

�Xi < xj� ∪ �εi ≤ 2j2�u− h�xj�� − 1�
∩ �Xi = xj�� if u ∈ 0j�

�b� �Ŷi ≤ u� =



�Yi ≤ h−1�u��� if u ∈ 0c

�Yi < xj� ∪ 
�ηi ≤ 2j2�u− h�xj���
∩ �Yi = xj��� if u ∈ 0j

(c) (a) and (b) remain valid if all the inequalities less than or equal to are
replaced by the strict inequalities.

For the proof, see the Appendix.
A direct consequence of Lemma 5.1 is the corollary.



1004 S. HE AND G. L. YANG

Corollary 5.2. Set cj = u− h�xj�.

�a� F̂�u� = P�X̂i ≤ u� =




F�h−1�u��� if u ∈ 0c�

F�xj−�� if u ∈ 0j�1�

F�xj−� + �2j2cj − 1�F
xj�� if u ∈ 0j�2�

�b� Ĝ�u� = P�Ŷi ≤ u� =




G�h−1�u��� if u ∈ 0c�

G�xj−� + 2j2cjG
xj�� if u ∈ 0j�1�

G�xj�� if u ∈ 0j�2

�c� F̂�u−�=P�X̂i <u�= F̂�u�� Ĝ�u−�=P�Ŷi <u�= F̂�u� ∀ u∈R

To facilitate the computation, the next corollary expresses, in reverse direc-
tion, X�Y�F�G in terms of the transformed variables X̂� Ŷ and their distri-
butions F̂� Ĝ

Corollary 5.3.

(a) For u ∈ Ac, �Xi ≤ u� = �X̂i ≤ h�u��, �Xi < u� = �X̂i < h�u��,
�Yi ≤ u� = �Ŷi ≤ h�u��� �Xi = u� = �X̂i = h�u��

(b) For xj ∈ A,

�Xi < xj� = �X̂i < h�xj�� =
[
X̂i < h�xj� +

1
2j2

]
�

�Yi ≤ xj� =
[
Ŷi ≤ h�xj� +

1
2j2

]
= �Ŷi < h�xj+���

�Xi = xj� = �X̂i ∈ 0j� = �X̂i ∈ 0j�2�

�c� h−1�X̂j� = Xj� h−1�Ŷj� = Yj� j = 1�2�    �

�d� F�u� = F̂�h�u+��� G�u� = Ĝ�h�u+��� ∀ u ∈ R�

F�u−� = F̂�h�u��� G�u−� = Ĝ�h�u��� ∀ u ∈ R�

�e� �X̂i ≥ Ŷi� = �Xi ≥ Yi�� i = 1�2�    

Proof. Except for (e), the proof can be deduced directly from Lemma 5.1.
For (e) we apply (a) and (b). It follows that

�Xi ≥ Yi� = �Xi ≥ Yi� Xi /∈ A� ⋃
j

�xj ≥ Yi� Xi = xj�

= �h�Xi� ≥ Ŷi� Xi /∈ A� ⋃
j

[
h�xj� +

1
2j2

≥ Ŷi� Xi = xj

]

= �X̂i ≥ Ŷi� Xi /∈ A� ⋃
j

�X̂i ≥ Ŷi� Xi = xj� = �X̂i ≥ Ŷi� ✷
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The product limit estimates of F̂n and Ĝn are defined by

F̂n�x� = 1 − ∏
s≤x

(
1 − #
i� Ûi = s�

#
i� V̂i ≤ s ≤ Ûi�

)
(24)

and

Ĝn�x� =
∏
s>x

(
1 − #
i� V̂i = s�

#
i� V̂i ≤ s ≤ Ûi�

)
�(25)

where #
·� denotes the number of i satisfying the stated condition.

Lemma 5.4. For any x ∈ R�Fn�x� = F̂n�h�x+��� Gn�x� = Ĝn�h�x+��.

For the proof, see the Appendix.
The behavior of the distributions at the lower boundaries requires special

attention. It will be shown in Theorem 5.6 that the MLE Fn given by (5)
converges to either Fa or F, depending on whether F and G have jumps at
the lower boundaries aF and aG. The following lemma provides a detailed
analysis of the boundaries.

Lemma 5.5.

(a) h�aF� ≤ aF̂ ≤ h�aF+�� h�aG� ≤ aĜ ≤ h�aG+�;
(b) aG < aF implies aĜ < aF̂;
(c) if aG = aF, a necessary and sufficient condition for aĜ > aF̂ is

G
aG� = 0 and F
aF� > 0�

and in this case aĜ = h�aG+�.

For the proof, see the Appendix.
As defined in the Introduction,

Fa�x� = P�X ≤ x�X > aG�(26)

Theorem 5.6. Suppose aG ≤ aF.

(a) If aF̂ ≥ aĜ we have

sup
x

�Fn�x� −F�x�� → 0 a.s.

(b) If aF̂ < aĜ, we have

sup
x

�Fn�x� −Fa�x�� → 0 a.s.

Proof. To avoid triviality, we assume that F
aF� < 1. Since F̂ and Ĝ are
continuous, by Theorem 4.1,

sup
x

�F̂n�x� − F̂0�x�� → 0 a.s.�(27)

where

F̂0�x� = P�X̂i ≤ x�X̂i ≥ aĜ�(28)
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Note that aF̂ ≥ aĜ implies F̂�h�x+�� = F̂0�h�x+�� for all x. For (a), using
(d) of Corollary 5.3 and Lemma 5.4, we have

sup
x

�Fn�x�−F�x��= sup
x

�F̂n�h�x+��− F̂0�h�x+���= sup
t

�F̂n�t�− F̂0�t��→0

(b) If aF̂ < aĜ, we show that Fa�x� = F̂0�h�x+�� for all x ∈ R. Consider
first the case x < aG. Then by Lemma 5.5, h�x+� ≤ h�aG+� = aĜ. Thus

F̂0�h�x+�� ≤ P�X̂i ≤ h�aG+��X̂i ≥ aĜ� = P�X̂i ≤ aĜ�X̂i ≥ aĜ� = 0

Consequently, Fa�x� = F̂0�h�x+�� = 0.
For x ≥ aG, we have

Fa�x� =
F�x� −F�aG�

1 −F�aG�
= F̂�h�x+�� − F̂�aĜ�

1 − F̂�aĜ�
= P�X̂i ≤ h�x+��X̂i ≥ aĜ� = F̂0�h�x+��

Then (b) follows from (27) and a similar proof used in (a) with F replaced by
Fa. ✷

We now prove the strong law for arbitrary F and G.

Theorem 5.7. Suppose aF ≥ aG and ϕ�x� is any nonnegative measurable
function.

(a) If aF̂ ≥ aĜ, we have

lim
∫

ϕdFn =
∫

ϕdF a.s.

(b) If aF̂ < aĜ, then

lim
∫

ϕdFn =
∫

ϕdFa a.s.

Proof. Assume that F
aF� < 1 to avoid triviality. Let X�1��X�2��    �X�ν�
be the distinct values of X1�X2�    �Xmn

and Y�1��Y�2��    �Y�ν� be their con-
comitants. By Lemma 5.4 and Corollary 5.3 we have∫

ϕ�x�dFn�x� =
∫

ϕ�x�dF̂n�h�x+��

=
ν∑

j=1

ϕ�X�j��
F̂n�h�X�j�+�� − F̂n�h�X�j��−��I�X�j� ≥ Y�j��

= ∑
j � X̂�j�∈0c

ϕ�h−1�X̂�j���
F̂n�X̂�j�� − F̂n�X̂�j�−��I�X̂�j� ≥ Ŷ�j��

+
ν∑

j=1

∑
k

∫
0k

ϕ�h−1�u��dF̂n�u�I�X�j� = xk ≥ Y�j��(29)
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=
∫
0c

ϕ�h−1�u��dF̂n�u� +
∫
0
ϕ�h−1�u��dF̂n�u�

=
∫

ϕ�h−1�u��dF̂n�u�

Here we have used the fact that h−1�u� = xj for xj ∈ 0j and �X�j� = xk ≥
Y�j�� = �X̂�j� ∈ 0k� X̂�j� ≥ Ŷ�j��

Finally, we are ready to complete the proof of the theorem.

(a) Using Theorem 4.3 and Corollary 5.3, we have

lim
n→∞

∫
ϕdFn =

∫
ϕ�h−1�u��dF̂�u� = Eϕ�h−1�X̂j�� = Eϕ�Xj� =

∫
ϕdF

(b) Using Theorem 4.3 and aĜ = h�aG+�, we have from (29) that

lim
n→∞

∫
ϕdFn =

∫
ϕ�h−1�u��dF̂0�u� =

∫ ∞

aĜ

ϕ�h−1�u�� dF̂�u�
1 − F̂�aĜ�



Note that

�u > aĜ� = �u > h�aG+�� = �h−1�u� > aG�
Therefore,∫ ∞

aĜ

ϕ�h−1�u�� dF̂�u�
1 − F̂�aĜ�

=
∫

ϕ�h−1�u��I�h−1�u� > aG�dF̂�u�/�1 − F̂�aĜ��

= Eϕ�h−1�X̂i��I�h−1�X̂i� > aG�/�1 −F�aG��
= Eϕ�Xi�I�Xi > aG�/�1 −F�aG��

=
∫

ϕ�u�dFa�u� ✷

Recall Condition B1: aF = aG, G
aG� = 0 and F
aF� > 0 in the Introduc-
tion. The case where B1 does not hold will be called Condition B2. Note that
in what follows we do not suppose aG ≤ aF and bG ≤ bF, as is customarily
assumed in the literature.

Corollary 5.8. Let ϕ be any nonnegative measurable function. If Condi-
tion B2 holds,

lim
n→∞ sup

x
�Fn�x� −F0�x�� = 0 and lim

n→∞

∫
ϕdFn =

∫
ϕdF0 a.s.

If Condition B1 holds,

lim
n→∞ sup

x
�Fn�x� −Fa�x�� = 0 and lim

n→∞

∫
ϕdFn =

∫
ϕdFa a.s.

Similarly, let Gb�x� = P�Y ≤ x�Y < bF0
�. We say Condition C1 holds if

bF0
= bG0

, G0
bG0
� > 0, F0
bF0

� = 0. The complement of Condition C1 is
called Condition C2.
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Corollary 5.9. Let ϕ�x� be any nonnegative measurable function. Then
under Condition C2,

lim
n→∞ sup

x
�Gn�x� −G0�x�� = 0 and lim

n→∞

∫
ϕdGn =

∫
ϕdG0 a.s.

Under Condition C1,

lim
n→∞ sup

x
�Gn�x� −Gb�x�� = 0 and lim

n→∞

∫
ϕdGn =

∫
ϕdGb a.s. ✷

APPENDIX

Proofs.

Proof of Lemma 5.1. Let 00
j and 00

j�2 be the interior of 0j and 0j�2. Let
0̄j�1 be the closure of 0j�1. To ease the notation, put cj = u−h�xj�, 2j = �εi ≤
2j2cj − 1� ∩ �Xi = xj� and let A−B denote A ∩Bc for any sets A and B. We
have

�X̂i ≤u� = �X̂i ≤u� Xi /∈A� ⋃
j

�h�xj�+ �1+ εi�/2j2 ≤u� Xi =xj�

= �X̂i ≤u� Xi /∈A� ⋃
j � cj≥j−2

�Xi =xj�
⋃

j �0<cj<j−2

�εi ≤2j2cj −1� Xi =xj�

= �h�Xi�≤u� Xi /∈A�
( ⋃

j �h�xj�≤u

�Xi =xj�−
⋃

j �u−j−2<h�xj�≤u

�Xi =xj�
)

+ ⋃
j �u∈00

j

2j

=
{
�h�Xi�≤u�−

( ⋃
j �u∈0̄j�1

�Xi =xj�+
⋃

j �u∈00
j�2

�Xi =xj�
)}

+ ⋃
j �u∈00

j

2j

=
{
�Xi ≤ h−1�u��� if u ∈ 0c�

�Xi < xj� ∪ 
�εi ≤ 2j2cj − 1� ∩ �Xi = xj��� if u ∈ 0j

The proofs for (b) and (c) are similar. ✷

Proof of Lemma 5.4. Write Fn [defined by (5)] in terms of X and Y,

1 −Fn�x� =
∏
s≤x

(
1 − #
i�Xi = s� Xi ≥ Yi� 1 ≤ i ≤ mn�

#
i�Yi ≤ s ≤ Xi� 1 ≤ i ≤ mn�
)
= ∏

s≤x

[
1 − ns

Ds

]
�

where mn is defined at the beginning of Section 2. Note that the above formula
is self-adjusting for tied observations. We now apply Corollary 5.3. We shall,
subject to s ≤ x, treat the cases s /∈ A and s ∈ A separately. The numerator

ns =
{

#
i� X̂i = h�s�� X̂i ≥ Ŷi� 1 ≤ i ≤ mn�� if s /∈ A�

#
i� X̂i ∈ 0j�2� X̂i ≥ Ŷi� 1 ≤ i ≤ mn�� if s = xj ∈ A
(30)
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The denominator

Ds =
{

#
i� Ŷi ≤ h�s� ≤ X̂i� 1 ≤ i ≤ mn�� if s /∈ A�

#
i� Ŷi ≤ h�sj� + j−2/2 ≤ X̂i� 1 ≤ i ≤ mn�� if s = xj ∈ A
(31)

Note that

1 − #
i� X̂i ∈ 0j�2� X̂i ≥ Ŷi� 1 ≤ i ≤ mn�
#
i� Ŷi ≤ h�xj� + �1/2j2� ≤ X̂i� 1 ≤ i ≤ mn�

= ∏
u∈0j�2

(
1 − #
i� X̂i = u� X̂i ≥ Ŷi� 1 ≤ i ≤ mn�

#
i� Ŷi ≤ u ≤ X̂i� 1 ≤ i ≤ mn�

)


(32)

It follows from (32) that

1 −Fn�x� =
∏

u≤h�x�
u∈0c

(
1 − #
i� Ûi = u�

#
i� V̂i ≤ u ≤ Ûi�

) ∏
u≤h�x+�

u∈0

(
1 − #
i� Ûi = u�

#
i� V̂i ≤ u ≤ Ûi�

)

= 1 − F̂n�h�x+��

The proof of Gn�x� = Ĝn�h�x+�� is similar. ✷

Proof of Lemma 5.5. (a) By definition of X̂i, we have h�Xi� ≤ X̂i ≤
h�Xi+�. This implies that h�aF� ≤ aF̂ ≤ h�aF+�. Similarly, we can prove
h�aG� ≤ aĜ ≤ h�aG+�.

(b) It follows from (a) that aĜ ≤ h�aG+� < h�aF� ≤ aF̂ Hence (b) is true.
(c) If G
aG� = 0, F
aF� > 0, then aF ∈ A. This implies that aF̂ = h�aF� +

1/2k2 Now

P�Ŷi ≥ h�aG+�� ≥ P�Yi > aG� Ŷi ≥ h�aG+�� = P�Yi > aG� = 1

Hence aĜ ≥ h�aG+�, and it follows that aĜ > aF̂ On the other hand, suppose
G
aG� > 0. Then, ∀ λ > 0 we have

P�Ŷi <h�aG�+λ� ≥P�Yi =aG� Ŷi <h�aG�+λ�=G
aG�P�ηi <2k2λ�>0�

so that, aĜ = h�aG� ≤ aF̂
If F
aF� = 0, we can suppose G
aF� = 0. So, aĜ = h�aF� ≤ aF̂ ✷
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