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ASYMPTOTIC EXPANSIONS OF THE k NEAREST
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The finite-sample risk of the k nearest neighbor classifier that uses a
weighted L p-metric as a measure of class similarity is examined. For a
family of classification problems with smooth distributions in � n, an
asymptotic expansion for the risk is obtained in decreasing fractional
powers of the reference sample size. An analysis of the leading expansion
coefficients reveals that the optimal weighted L p-metric, that is, the
metric that minimizes the finite-sample risk, tends to a weighted Eu-

Ž 2 .clidean i.e., L metric as the sample size is increased. Numerical simula-
tions corroborate this finding for a pattern recognition problem with
normal class-conditional densities.

� �1. Introduction. In its original form 6 , the k nearest neighbor classi-
fier is perhaps the simplest pattern classification algorithm yet devised.
Given a classification problem, in which a pattern, represented as an n-
dimensional feature vector, is to be assigned to one of several pattern classes
Ž .e.g., states of nature , and any positive integer k, the k nearest neighbor

Ž . Žalgorithm requires two ingredients: i a finite reference sample of m with
. Ž .m � k feature vectors labeled or classified according to the pattern class of

Ž .origin, and ii a metric, or pattern similarity function, in the space of the
feature vectors. Given an input feature vector, the algorithm uses the given
metric to first identify the k feature vectors from the reference sample that
are closest to the input vector and then assigns the input feature vector to the
pattern class that appears most frequently amongst the k nearest neighbors.
ŽIf no single class appears with greatest frequency, then an auxiliary proce-

.dure can be invoked to handle ties. Despite its simplicity, this nonparametric
� �algorithm is asymptotically consistent with a Bayes classifier 18 , and is

� �competitive with other popular classifiers in practical settings 1 .
In the following, we consider the k nearest neighbor classifier in the

p Ž . � Ž .�context of weighted L -metrics of the form d x, y � A x � y , wherep

x, y � � n, A is a constant, nonsingular, linear transformation, and
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p
p p p� � � � � �x � x � ��� � x is the usual L -norm of x. For a family of smooth'p 1 n

classification problems, we seek a precise characterization of the finite-
sample performance of the classifier utilizing such weighted L p-metrics; in
particular, we seek to explicitly detail the effects of the finite-sample size m,
the dimensionality of the feature space n, and the choice of metric d on the
performance of the classifier.

Our main results may be summarized as follows: for classification prob-
Žlems endowed with smooth distributions the precise conditions are spelled

.out in Section 4 , the finite-sample risk of the classifier has an asymptotic
series expansion of the form

�
�j � n1 R � R � c m m � � .Ž . Ž .Ým � j

j�2

�The expansion holds in the sense of Poincare: truncating the series after N´
Ž �Ž N�1.� n. �terms leads to a residual error of order OO m in the estimate for R .m

The expansion coefficients c depend in general upon k, the metric parame-j
ters p and A and the chosen procedure for handling ties, in addition to the
probability distributions that describe the classification problem under con-
sideration, but are independent of the sample size m. The leading coefficient

� �R is just the infinite-sample risk derived by Cover and Hart 3 ; while R� �

depends on k and the underlying distributions, it is independent of the choice
of metric.

A further analysis of the leading coefficients in the asymptotic expansion
for the finite-sample risk allows us to adduce the effects of the choice of
metric on the finite-sample performance. Indeed, we show that for a large
enough sample size m, the finite-sample risk R is minimized for a choice ofm
weighted L p-metric for specific values of the metric parameters A � A andopt
p � p . The optimal value p depends on the sample size and lies in aopt opt
neighborhood of 2; as m increases, the diameter of this neighborhood de-
creases, and p � 2 as m � �. Numerical simulations confirm that theopt
L2-metric is superior to the L1- and L�-metrics for normally distributed
two-class problems in 12- and 25-dimensional feature spaces for practically
attainable sample sizes. The asymptotically optimal linear transformation
A within the metric depends upon the underlying distributions that de-opt
scribe the given pattern recognition problem. Given the analytic forms of
these distribution, this transformation can be obtained, in principle, as the
solution of a constrained optimization problem using the Euler�Lagrange
multiplier theorem.

To our knowledge, this is the first study to rigorously evaluate the finite-
sample risk of the k nearest neighbor classifier under different weighted

p � �L -metrics. In previous work, Fukunaga and Flick 9 obtained a heuristic
expression for the optimal quadratic weight matrix which differs somewhat,
however, from our rigorous estimates. Earlier studies of the finite-sample risk
of a nearest neighbor classifier include a rate of convergence result for a

� �one-dimensional, two-class problem 2 , a heuristic estimate of the bias of the
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� �classifier 8 and a previous study by the present authors of the risk of a
Ž . Ž 2 .nearest neighbor classifier k � 1 under the usual Euclidean L metric for

� �a two-class problem 13 .
The k nearest neighbor algorithm is formally described in Section 2, along

with different deterministic tie-breaking algorithms. Section 3 contains a
derivation of an exact integral representation of the finite-sample risk for the
k nearest neighbor classifier. In Section 4 we identify a family of smooth
classification problems for which the integral representation for the finite-
sample risk can be evaluated asymptotically using a generalization of
Laplace’s method and present the main results, including the existence of the

Ž . Žasymptotic expansion 1 and, more generally, truncated versions under
.weaker smoothness conditions , as well as the asymptotic optimality of the

weighted L2-metric. Section 5 describes the numerical simulations that vali-
date the asymptotic optimality of the L2-metric for a pattern recognition
problem with two normally distributed class-conditional densities. Section 6
concludes the main body of the paper with some remarks on the significance
of the Main Theorem. Technical lemmas are collected in Appendix A, and a
constructive proof of the Main Theorem is sketched in Appendix B. A more

� �detailed treatment appears in a technical report 16 .

2. The k nearest neighbor classifier. Let the elements of � �
� 41, 2, . . . , C denote labels for C states of nature, or pattern classes. Patterns
are represented by feature vectors X � � n. It is assumed that data is
available in the form of a finite labeled reference sample XX 	m
�Ž 1 1. Ž m m.4 i iX , L , . . . , X , L , where, for each i, L is a member of � and X is a

i Ž . nfeature vector representing class L . Given a metric d X, X� on � and a
positive integer k, the k nearest neighbor classifier generates a map from � n

into � as a function of the reference sample XX wherein each point X � � n ism
mapped into one of the C classes according to the majority of the labels of its
k nearest neighbors in the reference sample. More particularly, fix any
X � � n. We may suppose, without loss of generality, that the indices of the
labeled feature vectors in XX are permuted to satisfym

d X, X1 
 d X, X 2 
 ��� 
 d X, X k ,Ž . Ž . Ž .
2Ž .

d X, X j � d X, X k for j � k � 1, . . . , m.Ž . Ž .

The k nearest neighbors of X are identified as the labeled subset of feature
�Ž 1 1. Ž k k .4vectors X , L , . . . , X , L of the reference sample. The k nearest neigh-

bor classifier then assigns X to the class

3 L� � maj L1, . . . , Lk ,Ž . Ž .

namely, the most frequent class label exhibited by the k nearest neighbors
Ž .of X. Ties and equalities in 2 can be resolved by an arbitrary procedure.

We are interested in quantifying how the expected accuracy of the algo-
rithm is influenced by the chosen metric. In particular, we consider the family
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of weighted L p-metrics
� � n4 d x, x� 	 A x � x� , x, x� � � ,Ž . Ž . Ž . p

where
p� p p� � � �x � ��� � x , if 1 
 p � �,' 1 n�� �x 	p

� �max x , if p � �,
 i
1
i
n

is the usual L p-norm, and A is a nonsingular, linear transformation. Thus,
the weighted L p-metric is determined by specifying a nonsingular n-by-n

� �matrix, and a number p � 1, � . Without loss of generality, we assume that
A has been normalized so that it is measure preserving, that is, det A � 1.
Ž � ��1Scaling the metric d by det A �and, in general, by any positive quantity
�does not change the partition of � n engendered by the k nearest neighbor

.classifier, hence does not affect the risk.

2.1. Deterministic tie-breaking algorithms. If k is even, or if C � 3, it is
Ž . �necessary to define an auxiliary procedure to handle ties in 3 . Although the

Ž .equalities in 2 can also be problematic, they occur with zero probability if
the class-conditional distributions are absolutely continuous, as we assume

�subsequently. A simple method is to break the tie according to a determinis-
tic rule; for example, in the event that more than one class occurs with
greatest frequency in the subset of k nearest neighbors, then the input
pattern could be assigned to the most prolific class in the subset with the
smallest class label. A convenient way to describe deterministic tie-breaking
rules such as this is to construct an assignment partition LL , . . . , LL of the1 C
space �k that describes the action of the k nearest neighbor classifier for
every possible ordered k-tuple of class labels. Here, LL contains every orderedi

Ž 1 k . 1 kk-tuple, l � l , . . . , l , representing the respective class labels of X , . . . , X ,
for which an assignment to class i occurs. For example, if C � 2 and k � 2,

Ž .then 3 with the smallest-class-label tie-breaking algorithm induces the
�Ž . Ž . Ž .4 �Ž .4assignment partition, LL � 1, 1 , 1, 2 , 2, 1 and LL � 2, 2 . By introduc-1 2

ing an extra element LL into the partition, one can represent a k nearest0
� �neighbor classifier that rejects certain input patterns 11 . If the action of a k

nearest neighbor classifier can be described by an assignment partition, we
shall call it deterministic.

Random tie-breaking algorithms can be represented by a stochastic process
in which an assignment partition is selected from an ensemble of partitions,
according to a discrete probability distribution, prior to each assignment.

3. The finite-sample risk. The classifier’s expected accuracy can be
quantified in terms of the classification risk, which is determined by the
underlying statistical assumptions governing the data. We suppose that
� 4P , . . . , P is a discrete probability distribution representing the a priori1 C

� 4probabilities of the pattern classes � � 1, . . . , C and that, for each l � �,
feature vectors or patterns originating from class l are generated by the fixed
conditional distribution F on � n.l
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In this statistical framework, we suppose that labeled feature vectors
Ž .X, L are generated by a two-step process. First, a class L � � is chosen at

� 4random according to the distribution P , . . . , P on pattern classes; then a1 C
random feature vector X is drawn according to F from � n. We assume thatL

�Ž i i. 4the reference sample XX � X , L , 1 
 i 
 m is generated by m indepen-m
dent repetitions of this process.

Ž .To analyze the expected performance of the algorithm, let X, L represent
Ž .an independent, labeled feature vector a random ‘‘test point’’ that is ob-

tained by the same random process used to construct the m reference vectors.
The feature vector X is presented to a deterministic k nearest neighbor

Ž .classifier, which in turn assigns X to class L� � L� X, XX , an estimator of them
class with maximum a posteriori probability. We define the expected m-
sample risk of the classifier as

C C

� 4R 	 � � L� � i , L � j ,Ý Ým i , j
i�1 j�1

where � is the cost incurred in assigning a feature vector that originatesi, j
from class j to class i. Although, in practice, different errors may incur
different costs, we shall henceforth assume the zero�one cost matrix � �i, j

Ž1 � � , where � is the Kronecker delta function. For other cost matrices,i, j i, j
it is desirable to modify the original algorithm so that the resulting risk
function is minimized, e.g., let L� � arg min Ý � � , where � denotesi� � j i, j j j
the number of times class label j appears in the subsample of k nearest
neighbors. For these cases, the ensuing analysis should apply with only

.minor modifications. Using the zero�one cost matrix, the risk function
� 4reduces to R � � L� � L , the probability that the k nearest neighborm

algorithm assigns X to an incorrect class.
The finite-sample risk R can be written in integral form by taking them

expectation of the probability of the event L� � L conditioned on the refer-
ence sample and the test feature vector. More specifically, for each l � �,
suppose the class-conditional distributions F are absolutely continuous withl
corresponding densities f . Let f � ÝC P f denote the mixture density, andl l�1 l l

� n Ž . 4 nlet S � x � � : f x � 0 be its probability-one support in � . Then

� 4 � 45 R � � L� � L � � L� � L � x f x dx,Ž . Ž .Hm
S

� 4where � L� � L � x denotes the probability of error conditioned on the event
� 4 1 kX � x . With the reference sample permuted as necessary, let X , . . . , X be
the k nearest neighbors of X � x as per the indexing convention set out in
Ž . � 1 k42 . Write � L� � L � x, x , . . . , x for the probability of error conditioned

� 1 1 k k4 Ž 1 k .jointly on the events X � x, X � x , . . . , X � x and let f x , . . . , x � xm
denote the conditional probability density associated with the event that the
k nearest neighbors of x in a random m-sample take values X1 � x1, . . . ,

k k Ž . � n Ž . 4X � x . Introduce the notation B 	, x 	 x� � � : d x, x� 
 	 , where
Ž . p Ž .d x, x� is the weighted L -metric defined in 4 , for the closed ball of radius 	
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Ž j. Ž Ž j. . Ž .at x, and write S 	 B d x, x , x � S, 1 
 j 
 k for points in the proba-
Ž j.bility-one support of f at distance no more than d x, x from x. The

Ž . j Ž j�1.inequalities in 2 imply that x � S for j � 1, 2, . . . , k � 1. See Figure 1.
Taking expectation with respect to the values of the k nearest neighbors of x,
we hence obtain

� 4 � 1 k 4� L� � L � x � ��� � L� � L � x, x , . . . , xHH H
Žk . Ž2.S S S

�f x1, . . . , x k � x dx1 ��� dx k�1 dx k .Ž .m

Ž .After substituting the above into 5 , and assuming statistical independence,
the risk can be represented as

6 R � m � x, x k exp �m� d x, x k , x dx kdx,Ž . Ž . Ž . Ž .Ž .Ž .HHkm
S S

where

m 	 m m � 1 ��� m � k � 1 ,Ž . Ž . Ž .k

C k
kf x f xŽ . Ž .l lk

1 k� x, x 	 P P ��� PŽ . Ý Ý l l l kk1 � 
 d x, x , xŽ .l�1 l�LL Ž .Ž .l

� ��� f 1 x1 f 2 x 2Ž . Ž .H H H l l
Žk . Ž3. Ž2.S S S

7Ž .

��� f k� 1 x k�1 dx1 dx 2 ��� dx k�1,Ž .l

8 � 	 , x 	 �ln 1 � 
 	 , x ,Ž . Ž . Ž .Ž .

FIG. 1. A hypothetical input feature vector x, and reference feature vectors x1, . . . , x k that
represent the subset of k nearest neighbors. Note how these vectors induce a system of concentric
balls, SŽ2., . . . , SŽk ..
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and


 	 , x 	 f x� dx�.Ž . Ž .H
Ž .B 	 , x

Ž .The integral in 6 is difficult to evaluate for finite m even if the analytic
forms of the class-conditional densities are known. In the infinite-sample

� �limit, m � �, Cover and Hart 3 showed that under weak assumptions Rm
tends to the well-defined limit

C
ˆ ˆ ˆ1 k9 R � R k � P x P x ��� P x f x dx,Ž . Ž . Ž . Ž . Ž . Ž .Ý Ý H� � l l l

Sl�1 l�LLl

where

P f xŽ .l lˆ � 4P x 	 � L � l � x �Ž .l f xŽ .

denotes the posterior probability of class l, given feature vector x. Moreover,
they showed that R is related to the minimum achievable risk R of the� B
Bayes classifier through the two-sided inequalities

C
R 
 R k 
 R 1 
 2 R 1 � R .Ž . Ž .B � � B Bž /C � 1

When the Bayes risk is small, as is the case in several important pattern
classification problems such as character recognition, the nearest neighbor
classifier exhibits an asymptotically optimal character. The utility of this
nonparametric approach as a practical classifier is, however, tempered by
how rapidly the finite-sample risk R converges to R . The next two exam-m �

ples demonstrate indeed that the rate of convergence of R to R dependsm �

critically on the underlying classification problem, and, moreover, can vary
over a considerable range.

Ž � �.EXAMPLE 1 Nonoverlapping distributions 3 . Consider a two-class prob-
lem in the n-dimensional feature space � n. For l � 1, 2, suppose f hasl
probability-one support in a compact set A in � n. Suppose further that thel
distance between the sets A and A is larger than the diameter of either1 2

Ž . � Ž . Ž .4set, that is, d A , A � max diam A , diam A . As the two classes have1 2 1 2
Ž .nonoverlapping probability-one supports, it is clear that R k � R � 0 for� B

every positive integer k. Moreover, the finite-sample risk R of the k nearestm
neighbor classifier approaches its infinite-sample limit R exponentially fast�

for fixed k as m increases. Indeed, for definiteness suppose that the two
classes have equal a priori probabilities, P � P � 1�2, and that k is an odd1 2
integer. The classifier will make a mistake on a given class if, and only if,
there are fewer than k�2 examples of that class in the reference sample,
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whence
Ž .k�1 �2

m�m Žk�1.�2 �mR � 2 � OO m 2 , m � �.Ž .Ým ž /i
i�0

Note that the exponentially fast rate of convergence of R to 0 is indepen-m
dent of the feature space dimension n.

Ž � �.EXAMPLE 2 Discrete distributions 2 . Let the feature space consist of the
positive integers 1, 2, 3, . . . , and assume that the integer i is selected with
probability p � c�i1�� with � � 0 andi

�1� 1
c � c � � .Ž . Ý 1��ž /ii�1

We now suppose that each integer i is assigned to one of two classes
according to the outcome of an independent toss of a fair coin. As each integer
corresponds to a unique class, the Bayes risk is zero. Suppose now that a
sample of m reference integers and a single test integer are drawn by

� 4independent sampling from the discrete distribution p and the test integeri
is labeled according to the class of the integer in the reference sample closest

Ž .to it resolve ties in any fashion, say, pick the class of the smaller integer . A
classification error can occur only if the test pattern does not appear in the
m-sample. Consequently, the risk of the nearest neighbor classifier is

�
m1R � p 1 � p .Ž .Ým i i2

i�1

Ž .mNote that the function x 1 � x is concave in the unit interval, and assumes
Ž .a maximum value at x � 1� m � 1 . Let j be an integer for which p �j

Ž . Ž Ž ..1�Ž1�� .1� m � 1 . Specifically, this requires that j � c m � 1 . Then,
m� �1 1 mm

R � p 1 � p � pŽ .Ý Ým i i iž /2 2 m � 1i�j i�j

�1 c c
��� dx � j .Hm 1�� 2 e�x2 1 � 1�mŽ . j

�� �Ž1�� . Ž .Thus, R � Km where K � K � is independent of m. The riskm
hence converges to 0 at an arbitrarily slow rate as m � � when � � 0 is
small enough.

The wide disparity in the convergence rates exhibited in these two exam-
Ž .ples suggests that it may be futile to seek a general evaluation of 6 without

the imposition of suitable regularity conditions. As we endeavor to describe
how the finite-sample risk R depends on the sample size m, it seemsm
appropriate to examine this risk integral under smoothness conditions that

Žmay more closely correspond to practical applications of this algorithm e.g.,
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� �.14 and in the sequel we shall assume that the class-conditional densities in
Ž .6 satisfy smoothness constraints, which preclude highly irregular situations
such as those exhibited in the second example.

Ž .The manner in which the integral in 6 is expressed suggests a method of
attack: if the class-conditional distributions, hence the functions � and �, are
smooth enough, then R may be representable as an asymptotic expansionm

Ž � �.in fractional powers of m by applying Laplace’s method of integration cf. 5
in a multidimensional setting. We begin the next section with a list of
sufficient conditions that facilitate the exploitation of the technique.

Ž .4. Main results. The integral representation 6 for the finite-sample
Ž .risk is valid when the class-conditional distributions F 1 
 l 
 C arel

Ž .absolutely continuous with corresponding densities f . We assume hereafterl
that the following additional properties are in force.

CONDITIONS. Let S � � n denote the probability-one support of the mix-
ture density f � ÝC P f :l�1 l l

C1. There exists a positive integer N � 2 such that, for each l � �, the
class-conditional densities f possess uniformly bounded partial deriva-l
tives up to order N � 1 on S.

ŽC2. The mixture density f is bounded away from zero over S. We can thus
.assume, without loss of generality, that S is compact.

C3. All but one of the class-conditional densities vanishes close to the bound-
Ž . Ž n .ary of S. More precisely, let �S � cl S � cl � � S denote the boundary

of S, and for t � 0 let S � S denote the set of points in S of distance not
Ž nmore than t from the boundary: For any set A � � and any point

n Ž . Ž . .x � � , we define the point-to-set distance by d x, A 	 inf d x, y .y � A

S � x � S : d x, �S 
 t .� 4Ž .t

Ž .Note, e.g., that S � �S. Then there exists t � 0 such that exactly0 0
� Ž . Ž .4one element of the set f x , . . . , f x is nonzero for all x � S .1 C t0

Ž . Ž . Ž� � .EXAMPLE 3 Radial distributions . Construct f x � N 
 x , for l � 1,pl l l
N�1� �and 2, such that for 0 � r � r , 
 � C 0, r satisfies1 2 1 2

� 0, if 0 
 	 
 r ,1

 	Ž .1 ½ � 0, if r � 	 
 r ,1 2

N�1� �while, for a positive quantity b, 
 � C 0, r satisfies2 2


 	 � b if 0 
 	 
 r ,Ž .2 2

and N and N are appropriately chosen normalization constants.1 2

We denote by FF the family of C-class problems in � n for which conditionsN
C1�C3 hold. Our main result, which is proved using Laplace’s method in the
Appendices, follows.
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MAIN THEOREM. For every N � 2 and every C-class problem in FF , theN
finite-sample risk of any deterministic k nearest neighbor classifier, using a

p Ž .weighted L -metric 4 to measure class similarity, admits the asymptotic
expansion

N
�j � n �ŽN�1.� n10 R � R � c m � OO m , m � �,Ž . Ž .Ým � j

j�2

where the coefficients R , c , . . . , c are determined by the choices of problem� 2 N
Ž .and classifier but are independent of m. Moreover, the expansion 10 is

uniform with respect to the metric parameter p when the choice of metric is
varied with the nonsingular linear transformation A fixed and p varying in
the range 1 
 p 
 �.

Ž .REMARK 1. If c � 0, the rate of convergence of R to R in 10 is2 m �

Ž �2� n. Ž � � Ž . Ž Ž ..� m . Following 12 , an expression g m is said to be � f m if there
Ž .exist positive constants � , K, and an integer M, such that 0 � � f m �

� Ž . � Ž . .g m � Kf m , for all m � M. Thus, the coefficient c encapsulates the2
features of a smooth classification problem that are hardest to learn. For
example, c is large if the class-conditional densities are small and vary2
rapidly around the Bayes decision boundary. While this is the general case,

Žfor particular choices of distributions c and perhaps other coefficients as2
.well can be identically zero resulting in faster rates of convergence. An

extreme instance is illustrated in Example 1 wherein all coefficients c arej
identically zero. In this case the theorem yields the estimate R �m
Ž �Ž N�1.� n.OO m which is true, but trite�as shown in Example 1, the true rate

Ž �Ž k�1.�2 �m.of convergence is � m 2 which decays faster than any polynomial
in m�1.

Ž .REMARK 2. Note that 10 provides an analytical validation of the curse of
� �dimensionality. In order to maintain R � R � � for some � � 0, them �

Ž .leading terms of 10 suggests that the sample size m should scale exponen-
tially with the feature-space dimension n. Note that the curse of dimensional-
ity persists in this algorithm for all fixed values of k. Conversely, if n is fixed,
then the requisite sample size scales with � according to m � ��n �2.

REMARK 3. It is also worth noting two direct consequences of the Main
Theorem�one in the direction of increasing smoothness, the other in the
direction of decreasing smoothness. Let FF denote the family of C-class�

problems in � n for which, for each l � �, the class-conditional densities fl
possess uniformly bounded partial derivatives of all orders, and, in addition,
satisfy Conditions C2 and C3. Problems in this class have a complete asymp-

Ž .totic series expansion of the form 1 alluded to in the Introduction. Then, for
every C-class problem in FF , the finite-sample risk of any deterministic k�

nearest neighbor classifier endowed with a weighted L p-metric has a com-
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plete asymptotic series expansion

�
�j � nR � R � c m , m � �,Ým � j

j�2

where the coefficients R , c , c , . . . , are determined by the choices of prob-� 2 3
lem and classifier but are independent of m.

� 4At the other extreme, observe that the sequence FF describes an increas-N
ingly smooth family of classification and problems with FF � FF for everyN N�1

� Ž � .N � 1. In particular, FF � � FF while FF � lim FF � � FF .2 N�2 N � N �� N N�2 N
Keeping only the metric parameter p and the sample size m as variable

Ž .parameters, the uniformity of the expansion 10 with respect to p hence
directly yields

R � R � c m�2� n � OO m�3� n , m � �.Ž .m � 2

REMARK 4. We have not attempted to put down the weakest conditions
Ž .under which an asymptotic expansion of the form 10 will hold for the

Ž .finite-sample risk. Indeed, only Condition C1 or something akin to it may be
absolutely necessary in the ensuing development. Example 2 shows, for
instance, that without some degree of smoothness arbitrarily slow conver-

Ž � �.gence rates are possible also see 4 .
Condition C2 is applied at two points in the proof of the theorem in the

guise of a uniformity argument. Neither the boundedness of the densities, nor
indeed the compactness of their supports, may be strictly necessary, however,

Ž . �for an expansion of the form 10 to hold. The numerical risk analyses using
Ž .multivariate normal mixtures in Section 5 suggest that 10 may be valid in a

�broader context.
Condition C3 allows us to finesse technical difficulties in the estimation of

the risk integral close to the boundary of the support of the mixture density f
and, in particular, yields relatively compact expressions for the various
expansion coefficients c . The following example suggests that Condition C3 isj

Ž .not necessary for an expansion of the form 10 to hold.

Ž � �.EXAMPLE 4 Triangular distributions 3 . For a two-class problem, con-
sider the one-dimensional triangular distributions

f x � 2 1 � x and f x � 2 xŽ . Ž . Ž .1 2

over the unit interval 0 
 x 
 1. The finite-sample risk when the classes are
equiprobable for k � 1 evaluates to

1 3m � 5
R � � .m 3 2 m � 1 m � 2 m � 3Ž . Ž . Ž .
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More generally, the estimate
2 P P 2 P P P 3 1 � 3P PŽ .1 2 1 2 1 1 2 �2 �3R � 1 � log � m � OO m ,Ž .m 2 2 2ž /P � P P 8 P PP � PŽ . 2 1 2 1 22 1

m � �
holds provided P � 0, P � 0 and P � P .1 2 1 2

In general, contributions to the risk integral close to the boundary of the
support of the mixture density f pose delicate problems in estimation. The

Ž .form of the expansion 10 is still valid, however, for a rather large class of
problems for which the boundary �S of the support of the mixture density is
smooth: it suffices if, for instance, for each point x � �S, near x the boundary
is the graph of a smooth function. Informally, the finite-sample risk admits

Ž .an asymptotic expansion of the form 10 if the mixture density f is smooth
and has a compact probability-one support S whose boundary is smooth.

Ž .From the leading terms in 10 derived under Conditions C1�C3 we demon-
strate below how the choice of metric effects the finite-sampling risk. How-
ever, it is not clear what role the choice of metric plays in the general case.

REMARK 5. The Main Theorem can be generalized to k nearest neighbor
classifiers that use random tie-breaking algorithms. This is a direct conse-
quence of the fact that the linear combination of two asymptotic expansions
in common fractional powers can be represented as a single asymptotic
expansion. In this case, the coefficients in the sum are commensurate linear
combinations of the corresponding coefficients in the original expansions.

Ž .We now examine how the leading terms in 10 depend upon the metric
Ž .parameters p and A in 4 . First, observe that the leading term, R defined�

Ž .in 9 , does not depend upon the choice of metric. Thus the entire asymptotic
influence of the metric parameters A and p is revealed in the coefficient c .2
To facilitate this analysis, let a� denote the element in the sth row and tthst

�1 Ž .column of the matrix A , the inverse of the weight matrix A in 4 , and
introduce the ‘‘Laplacian-style’’ differential operator

n n n 2�
2 � �� 	 a a .Ý Ý Ý2 r t st � x � xr sr�1 s�1 t�1

The operator � 2 is actually a special case of a more general differential2
operator, � 2 r, to be defined in the sequel. If A � I, the identity matrix, thenp
� 2 reduces to �2, the Laplacian differential operator. In the proof of the2
Main Theorem, we explicitly evaluate c and show it to be of the form2

11 c � D p � k , A ,Ž . Ž . Ž .2 n n

Ž . � x�1 �twhere, with the usual notation � x 	 H t e dt for Euler’s gamma func-0
tion,

1�2�n
� 3�p � 1 � n�p � 1Ž . Ž .

D p 	 ,Ž .n 3
� n � 2 �p � 1 � 1�p � 1Ž . Ž .Ž .
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ˆ Ž . Ž . Ž .and, with the convention that P x �f x is to be identified as P �f x for alll l l
Žx � S, this is merely a notational convenience extending the Bayes identity

ˆ Ž . Ž . Ž .P x �f x � P �f x which is well defined for all points x � S for whichl l l
ˆŽ . Ž . Ž . .f x � 0 to points x � S for which P x � f x � 0l l l

C� k � 1 � 2�nŽ . 1�2�nˆ ˆ ˆ1 k� k , A � P x P x ��� P x f xŽ . Ž . Ž . Ž . Ž .Ý Ý Hn l l l24� kŽ . Sl�1 l�LLl

1 1
2 2

k� � f x � � f x dx.Ž . Ž .2 l 2ž /kf x f xŽ . Ž .l

Ž .Observe that � k, A is independent of p and m and determined solelyn
by k, the weight matrix A, the dimension n, the distributions engendered by
the problem class and the assignment partition of the classifier.

Note that the entire dependence of c on the metric parameter p is2
Ž . Ž .confined to the factor D p . Graphs of D p for n � 1, 2, 5, 12 and 25, andn n

� 3�p � 1Ž . �2� pD p 	 lim D p � e ,Ž . Ž .� n 3n�� � 1�p � 1Ž .

appear on a semilog scale in Figure 2. As all one-dimensional L p-metrics are
Ž .equivalent, we obtain D p � 1 for all values of p. It is not difficult to show1

that for all values of n,

2�n12� n�2 � 1Ž .
D 2 � 
 D p 
 lim D p � 1.Ž . Ž . Ž .n n n� n � 2 p��Ž .

Ž . pFIG. 2. The variation of the metric factor D p for different L -metrics. For each dimensionn
n � 1, a global minimum occurs at p � 2, corresponding to a Euclidean metric.
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Ž .Thus, as Figure 2 indicates, D p has a global minimum at p � 2 if n � 1.n
Ž . Ž .The minimum of D p is most pronounced in high dimensions as D 2 �n �

Ž . Ž . Ž . Ž .D 2 
 D 2 � 1, where D 2 � 6� � e � 0.702598.n 1 �

For any fixed weight matrix A and sufficiently large m, the term c m�2� n
2

Ž .will uniformly dominate the sum of the remaining terms in 10 for all
p Ž .admissible L -metrics 1 
 p 
 � . In this case the finite-sample risk is

practically minimized by selecting the Euclidean metric, since R is indepen-�

dent of the choice of metric. The benefits of optimal metric selection wane,
however, if the reference sample is extremely large: although the optimal
value p� of p tends to 2 as m � �, this limit is extremely degenerate asm
lim R � R for all metrics; maximal benefits accrue for a finite inter-m�� m �

mediate range of m, the benefits being most pronounced in high dimensions.
Ž .The graph of D p also demonstrates that with A fixed, the weightedn

Ž �. pmaximum-component i.e., L metric is the least efficient weighted L -
metric, especially in high-dimensional feature spaces. This result should
complement other studies that demonstrate the computational efficiency of

� Ž � �.the L -metric for nearest neighbor algorithms cf. 7 .
Using the Euler�Lagrange multiplier theorem, it is also possible to deter-

mine the weight matrix A that minimizes the value of the coefficient c . For2
example, to find the optimal A for a given two-class problem, one can
minimize

n n n
� �c � c A � a a H ,Ž . Ý Ý Ý2 2 r s t s r t

r�1 s�1 t�1
where

Ž .� k � 1 � 2�nŽ . k�1 �2ˆ ˆ ˆ ˆH � D p P P P � PŽ . H ž / ž /r t n 1 2 2 12
S24� k � 1 �2Ž .Ž .

1 � 2 f 1 � 2 f1 2 1�2� n� � f dx,ž /f � x � x f � x � x1 r t 2 r t

�1 �1 Ž .subject to the constraint det A � det A � 1. Write A for the n � 1 �r s
Ž . �1n � 1 matrix obtained by removing the r th row and sth column from A ,
and observe that we can write the constraint in the form

n
r�s�1 �1 �1det A � �1 a det A � 1,Ž .Ý r s r s

s�1

for any 1 
 r 
 n. Introducing the Lagrange multiplier �, we find that the
optimal choice of weight matrix A satisfies

n
r�s� �12 H a � � �1 det A � �a ,Ž .Ý r t t s r s sr

t�1

for every 1 
 r, s 
 n, or equivalently, in matrix form, 2 HA�1 � � AT. Since,
n

T 'det A � det A � 1, we find that � � 2 det H , whence,
H

T ˆA A � 	 H .n'det H
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This equation is simple under the additional assumption that A is symmet-
ˆ ˆ Tric, whence A and H are diagonalized simultaneously. Thus, if H � R � R,

where R is an orthogonal matrix, and � is diagonal, then the optimal
transformation is A � RT�1�2R.

5. Numerical simulations. As the results of the previous sections are
asymptotic in nature, it is important to ascertain if they describe k nearest
neighbor classifiers with practically realizable reference sample sizes. Thus,
we shall empirically examine the finite-sample risk of the nearest neighbor

1 2 � Žclassifier under the L , L and L metrics. Other experiments using only the
2 � � � � .L metric have been described in 15 and 17 . In this investigation we

consider the recognition problem, consisting of two equiprobable, normally
distributed classes. Thus, we assume the class-conditional densities

n1 1 2j 2f x � exp � x � �1 � x ,Ž . Ž .Ž . Ýj 1 in�2 ž /ž /22�Ž . i�2

for j � 1 and 2, with P � P � 1�2. Observe this two-class problem violates1 2
Conditions C2 and C3, so the theorems in Section 4 may not apply. Neverthe-
less, the following empirical study suggests that the expected finite-sample

Ž .risk converges to its infinite-sample limit in a fashion consistent with 10 .
As Figure 2 suggests that the asymptotic optimality of the L2-norm is most

pronounced in high-dimensional spaces, we shall consider experiments with
n � 12 and n � 25. In each experiment, values for R are estimated empiri-m
cally for a nearest neighbor classifier using a large number of pseudorandom
Bernoulli trials with values of m ranging from 20 through 10,000. In each
trial a random test pattern is generated by a simulation of the process
described in Section 2. Then, this pattern is classified with a similarly

Ž . �generated independent reference m-sample, using the metric d x, y � x �
ˆ�y . The empirical risk, R , is then computed as the relative frequency ofp m

misclassified patterns. For each estimate, 95% confidence intervals are con-
Ž .structed. A numerical integration of the infinite-sample risk 9 with C � 2

ˆ 2� nŽ .and k � 1 yields R � 0.224800. Then after plotting R � R m against� m �

log m, we obtain the results shown in Figure 3.10
By scaling the ordinate with the factor m2� n, the value of c is revealed2

Žfrom the apparent horizontal asymptotes for each metric. Note that these
.plots appear on a semilog scale. Finally, we note that in both series of plots,

the horizontal asymptotes corresponding to the L�, L1 and L2 metrics appear
in decreasing order in agreement with Figure 2.

6. Conclusion. Although much is known about the classification risk of
Žthe k nearest neighbor classifier in the infinite-sample limit, m � � the

� �.classic paper is 3 , analytical results concerning its finite-sample behavior
� �are rare and, except for Cover’s early paper 2 on the one-dimensional case,

Ž � � � �.are recent cf. 8 and 13 . In part, this is because of the wide range of
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ˆ 2� nŽ .FIG. 3. Empirical estimates of the function R � R m , as a function of m, for a nearestm �
12 Ž . 25 Ž .neighbor classifier with two normally distributed classes in � left and � right , using the

L1- ‘‘�,’’ L2- ‘‘�,’’ and L�- ‘‘�’’ metrics as measures of pattern similarity. Unless shown, the 95%
confidence bars for each estimate are smaller than the size of each marker.

possible dependencies of the misclassification rate on the reference sample
size, as seen in Examples 1 and 2 in Section 3.

In this paper, we have derived an asymptotic representation of the finite-
sample risk of a k nearest neighbor classifier for a smooth family of classifi-
cation problems. Simple analytical studies of, for example, the two-class

� �problem with triangular distributions in 3 , and multivariate normal mix-
tures, indicate that these smoothness conditions may be weakened further. In
addition to clarifying the finite-sample risk, this asymptotic expansion can be
put to practical use by serving as a parameterized model of the finite-sample

Ž .risk. Thus, the coefficients in 10 can be estimated empirically by construct-
ing ensembles of k nearest neighbor classifiers for a variety of sample sizes.
The finite-sample risk of each classifier can then be estimated by resubstitu-
tion. Estimates for R , c , . . . can then be obtained by a least-squares algo-� 2

� �rithm 17 . Finally, the preceding analysis clarifies how the choice of a
weighted L p-metric determines the finite-sample risk and suggests that the
Euclidean metric may be the most accurate metric for smooth problems.

It is not at all clear that the most accurate weighted L metric isp
Euclidean for all sample sizes. For problems in FF with n � 1, c � 0 and cN 3 4

� �appears to depend on p in a complicated manner 16 . Thus for small sample
sizes, the optimality of p � 2 may depend on the given probability distribu-

Ž .tions. Analysis of the higher order coefficients in 10 may reveal the extent of
these dependencies. Other interesting problems include generalizing the
Main Theorem to pattern recognition problems that violate Conditions C2
and C3, and describing the optimal value of k in terms of the reference
sample size and the feature space dimension. The latter problem is compli-

Ž .cated by the fact that the truncation error of 10 may not be uniform in k.
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APPENDIX A

Lemmas. We begin with a collection of technical results that will be
needed subsequently in the proof of the Main Theorem. The first result is due

� �to Fulks and Sather 10 .

LEMMA 1. Let h be a measurable function on a set RR in � M taking values
� 4in the possibly infinite interval a � s � b . Let g be defined and integrable
Ž .over RR, and define the function G z by

G z � g dx.Ž . H
� 4h
z

Ž . � 4 Ž .If F s is a continuous function defined on a � s � b , and such that F h g is
integrable over RR, then

b
F h g dx � F s dG s .Ž . Ž . Ž .H H

RR a

The following classical result is frequently referred to in the literature as
� �Watson’s lemma 19

Ž .LEMMA 2. Let G s be a function of the positive real variable s, such that
�

Ž j���� .� �G s � � s , s � 0,Ž . Ý j
j�0

where � and � are positive constants. Then
�� j � � �j�m se G s ds � � , m � �,Ž . ÝH Ž j�� .� �ž /� m0 j�0

provided that the integral converges throughout its range for all sufficiently
large m.

Proofs of Lemmas 1 and 2 may be found in the cited references.
Ž . nFor the next two lemmas, let 0 and 1 denote column vectors in � all of

Ž .T nwhose components are 0 and 1, respectively. Also, write � � � , . . . , � � �1 n
for a generic lattice vector with integral coordinates. For vectors u �
Ž .T Ž .T nu , . . . , u and v � v , . . . , v in � , interpret the vector inequality1 n 1 n
u � v to mean that the component-wise inequalities u � v , . . . , u � v1 1 n n
hold simultaneously; likewise, formally define the vector power uv 	 Łn uvi.i�1 i

Ž . � � � 4Finally, introduce the nonce notation Q R 	 v: v 
 R, v � 0 for thepp
intersection of the L p-ball of radius R at the origin with the first orthant.

Ž .LEMMA 3. Let F p denote any univariate function defined and integrable
over the domain 0 
 	 
 R. Then for every choice of p � 1, and every lattice
vector � � 1 with positive, integral coordinates,

Łn � � �pŽ . Rj�1 j��1 � � � �11� �F v v dv � F 	 	 d	 .Ž .Ž .H p Hn�1 � �p � � �pŽ .Ž .Q R 01p
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PROOF. The integral is readily evaluated in spherical coordinates in L p-
� � p � �norm. Set v � 	� where 	 	 v � 0 is the L -norm of v and � 	 v� vp p

p � n � � 4is a point on the surface of the unit L -ball S 	 � � � : � � 1 .pn�1, p
Ž .TThe orientation � � � , . . . , � of v is readily represented by a transfor-1 n

mation into spherical coordinates in L p-norm,

� � cos2� p 
 cos2� p 
 ��� cos2� p 
 cos2� p 
 ,Ž . Ž . Ž . Ž .1 1 2 n�2 n�1

� � cos2� p 
 cos2� p 
 ��� cos2� p 
 sin2� p 
 ,Ž . Ž . Ž . Ž .2 1 2 n�2 n�1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� � cos2� p 
 sin2� p 
 ,Ž . Ž .n�1 1 2

� � sin2� p 
 ,Ž .n 1

where the angles take values in the ranges ���2 
 
 , . . . , 
 
 ��2 and1 n�2
�� 
 
 
 � as � ranges over S . It is simple to verify that undern�1 n�1, p
this transformation, the Lebesgue element of measure in � n can be written
in the form dv � 	 n�1 d	 d�, where

n�1 2
Ž2� p.Žn�j.�1 2� p�1d� � cos 
 sin 
 d
 .Ž . Ž .Ł j j jž /pj�1

� � n � � nAs � � Ý � � Ý � when � � 0, we obtain1 j�1 j j�1 j

� � ��1F v v dvŽ .H p
Ž .Q Rp

n�1 n�12 R ��2� � � �1 Ž2� p.Ž� � � � � �� .�11 1 n� j� F 	 	 d	 cos 
Ž . Ž .ŁH H jn�1 žp 0 0j�1

�sinŽ2� p.� n� j�1�1 
 d
Ž .j j /
2 n�1

R � � � �11� F 	 	 d	Ž .Hn�1 ž /p 0

n�1 � � � ��� �� �p � � �pŽ . Ž .Ž .1 n�j n�j�1
� Ł 2� � � ��� �� �pŽ .Ž .j�1 1 n�j�1

Observe that the last product telescopes to complete the proof. �

Ž .Setting F 	 � 1, R � 1 and � � 1, the above integral yields the volume
of the unit L p-ball in one orthant. We hence have the following corollary.

COROLLARY 1. The volume of the unit L p-ball is given by
nn2 � 1�pŽ .

nV 	 dv � 2 dv � .H Hn , p np � n�p � 1Ž .� � Ž .v 
1 Q 1p p
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Now, let A be any measure preserving linear transformation on � n and let
Ž . � n � Ž .� 4p � 1 be any real scalar. Write B R, x 	 y � � : A y � x 
 R forpA, p

p Žthe weighted L -ball of radius R at x. In earlier usages of this notation we
.had suppressed A and p for simplicity. Let r be any nonnegative integer.

Ž .TFor lattice vectors � � � , . . . , � with integral coordinates, write1 n

r !�
� �, if � � 0 and � � r ,1r �	 � ! ��� � !1 nž /� 


0, otherwise,

for the multinomial coefficient, and define the differential operator

2 � jn n� 1�2 � 2� � 1 �p �Ž . Ž .Ž .jr2 r �12 � 	 a ,Ž . Ý Ł Ýp i jž /� ž /� x� 1�p � 2� � 1 �2Ž . Ž .j�1 Ž . ij��0 i�1

where the sum is over lattice vectors � with integral coordinates. Note that
the multinomial coefficients force the summands to be nonzero only over a
finite range of lattice points. Finally, for nonnegative integers 1 
 l 
 m and
0 
 r 
 N�2 and x ranging over the support S of the mixture density f,
define the function

nV � n�pŽ .n , p 2 r13 � x 	 � f x ,Ž . Ž . Ž .l , 2 r p l2 r2 r ! � 2r � n �pŽ .Ž .

where we suppose that the class-conditional densities f satisfy Condition C1,l
and V denotes, as before, the volume of the unit L p-ball. From then, p
derivation sketched in the Appendix, we then obtain the following lemma.

LEMMA 4. Let x be any interior point of S and suppose that R � 0 is such
p Ž .that the weighted L -ball B R, x of radius R at x is contained within S.A, p

Ž .Let F 	 be any univariate function defined and integrable over the domain
� 40 
 	 
 R . Then

� �F A y � x f y dyŽ . Ž .Ž .H p l
Ž .B R , xA , p

� �N�2
R 2 r�n�1� � x F 	 	 d	 � � x ,Ž . Ž . Ž .Ý Hl , 2 r

0r�0

Ž .where the remainder term � x may be bounded uniformly with respect to p
and x by

R N�n� � � �� x 
 K F 	 	 d	Ž . Ž .H
0

for a choice of constant K independent of p and x.

Ž . �As a special case of the lemma, select F 	 � 	 to obtain the corollary.
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Ž .COROLLARY 2. Suppose B R, x � S. Then, for every � � �n,A, p

	 
 ��n�2 rN�2 R
�� �A y � x f y dy � � x � � x ,Ž . Ž . Ž . Ž .ÝH p l l , 2 r� � n � 2rŽ .B R , xA , p r�0

� Ž . � ��n�N�1where � x 
 K R and K is a constant independent of p and x.

ŽPROOF OF LEMMA 4. The linear map A is measure preserving whence
. Ž .det A � 1 so that with the change of variables v � A y � x , we obtain

� � � � �1I 	 F A y � x f y dy � F v f x � A v dv.Ž . Ž . Ž .Ž .Ž .H p H pl l
Ž . � �B R , x v 
RpA , p

Since f has uniformly bounded derivatives up to order N � 1, the integrandl
can be expanded to order N using Taylor’s theorem, whence

� jN n n1 �r � �� �I � a f x F v v dv � � x .Ž . Ž .Ž .Ý Ý Ł Ý H pi j lž /� ½ 5ž /r ! � x � �v 
Rj�1 pir�0 ��0 i�1

Note that if � contains an odd integral component, then by symmetry the
Ž .corresponding integral above vanishes. Here � x represents the remainder

term. After invoking Lemma 3, we obtain
	 
N�2

R 2 r�n�1I � � x F 	 	 d	 � � xŽ . Ž . Ž .Ý Hl , 2 r
0r�0

Ž . Ž .with � x as defined in 13 .l, 2 r
To complete the proof, we need to construct an upper bound for the

absolute value of the remainder,

� �� x � F v RR v, x dv,Ž . Ž .Ž .H p
� �v 
Rp

where
� jn n1 �1N � 1 � � �1 NRR v, x � v a f x � � A v � d� ,Ž . Ž .Ý Ł ÝH i j lž /� ½ 5ž /N ! � x0 j�1 j��0 i�1

that is uniform in p and x. As f has uniformly bounded partial derivativesl
up through order N � 1, there exists � such that

N�1� f xŽ .l 
 �
� x ��� � xj j1 N�1

for all x � S and all admissible values of j , . . . , j . Then1 N�1

� �1N� 1 N�1�1 N �1� � � � � �RR v, x 
 A v � d� � A v .Ž . 1 H 1N ! N � 1 !Ž .0

Ž �.T Ž � � .For i � 1, . . . , n, let a � a , . . . , a denote the ith row of the matrixi i1 in
�1 � � � �1A and let � � max a . Let p and q be conjugate exponents, p �i, j i j
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q�1 � 1. Applying Holder’s inequality, we obtain¨
n n n

�1 � � � 2� � � � � � � � � � � � � �A v � a , v 
 a v 
 a v 
 � n v ,Ž .Ý Ý Ý1 q p 1 p pi i i
i�1 i�1 i�1

so that

� � N� 1n2 N�2
N�1� � � �RR v, x 
 v .Ž . pN � 1 !Ž .

Consequently,

� � � �� x � F v RR v, x dvŽ . Ž .Ž .H p
� �v 
Rp

� � � � � �
 F v RR v, x dvŽ .Ž .H p
� �v 
Rp

� � N� 1n2 N�2
N�1� � � � � �
 F v v dvŽ .H p pN � 1 !Ž . � �v 
Rp

R N� n� �
 K F 	 	 d	 ,Ž .H
0

Ž N�1 2 N�3 n. Ž .where K � � � n 2 � N � 1 !. The last step follow from Lemma 3
and the inequality V 
 V � 2 n. Since K does not depend on p or x, then, p n, �

bound is uniform. �

APPENDIX B

Ž .Proof of the Main Theorem. The representation 6 of the finite-
sample risk in the form R � H� e�m � suggests that, as in typical Laplacem
integrals, most of the contribution to the risk arises from a small neighbor-

Ž .hood of the point s where � attains its minimum value. Technical complica-
tions arise in the multidimensional setting considered here in part because

Ž Ž k . . Ž .the function � d x, x , x defined in 8 attains its minimum value of zero on
a continuum of points in a linear manifold, and in part because of technical
difficulties in evaluating contributions to the risk near the boundary of the
support S of the mixture density f. The former difficulty is handled by

� �adapting a technique of Fulks and Sather 10 to carry out an integration
over a suitably chosen ‘‘skew cylindrical’’ neighborhood; the latter difficulty is

Žobviated for the family considered here see Remark 4 following the Main
.Theorem, however .

Ž � . � Ž � .�Introduce the notation 	 	 d x, x � A x � x , for � � 1, . . . , k, andp�

�Ž k . 4for t � 0 define the family of ‘‘cylinder’’ sets C 	 x, x � S � S: 	 
 t .t k
Ž . kObserve that � 	 , x attains its minimum value of zero when x � x so thatk

Ž .one would expect the dominant contribution to the risk integral 6 to arise
from the set C .t
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Partitioning the domain of integration of the risk integral we obtain

R � m � x, x k exp �m� 	 , x dx k dxŽ . Ž . Ž .Ž .HHkm k
Ct

� m � x, x k exp �m� 	 , x dx k dx.Ž . Ž . Ž .Ž .HHk k
Ž .S�S �Ct

Because of Condition C2, which asserts that the mixture density is uniformly
bounded away from zero over its probability-one support S, the function
Ž . Ž .� 	 , x defined by 8 is an increasing function of 	 . In particular, for everyk k

Ž .t � 0, there exists an a � 0 such that � 	 , x � a whenever 	 � t. Ask k
Ž . Ž . Ž k . Ž .m� � m � k � � k� � m � k a � k�, for x, x � S � S � C , the con-t

tribution to the risk from the second integral satisfies

0 
 m � x, x k exp �m� 	 , x dx k dxŽ . Ž . Ž .Ž .HHk k
Ž .S�S �Ct


 m exp � m � k a � x, x k exp �k� 	 , x dx k dxŽ . Ž . Ž . Ž .Ž . Ž .HHk k
Ž .S�S �Ct

� OO mk exp �ma ,Ž .Ž .
which will turn out to be exponentially subdominant as m � �.

We now distinguish between the boundary and interior contributions to
� Ž . 4the first integral. For t � 0, let S 	 S � S � x � S: d x, �S � t , and par-t t

Ž . Ž .tition C into the two sets Q 	 C � S � S , and Q 	 C � S � S . Definet t t t t t t
the interior integral

I 	 m � x, x k exp �m� 	 , x dx k dxŽ . Ž . Ž .Ž .HHkm k
Qt

and the boundary integral

J 	 m � x, x k exp �m� 	 , x dx k dx.Ž . Ž . Ž .Ž .HHkm k
Qt

Separating the interior and boundary contributions to the risk integral we
then obtain

R � I � J � OO mk exp �ma , m � �.Ž .Ž .m m m

We dispose of the boundary contribution first. Condition C3 asserts that
there exists a t such that for all x � S exactly one class-conditional density0 t0 kŽ .is nonzero. Now select t so that t � t �2. If x, x � Q , then x � S � S .0 t t t0

Ž k . Ž k .Moreover, x, x � C implies that d x , x 
 t. By the triangle inequality,t
k k nŽ . Ž . Ž .d x , y 
 d x , x � d x, y , for all y � � . Since x � S , we may chooset

Ž . Ž k . ky � �S such that d x, y � t, whence d x , y 
 t � t 
 t . Thus, both x0
1 kand x lie within S . By the discussion pertaining to Figure 1, x, x , . . . , x �t0 k� Ž . 4S . It thus follows that � L� � L � x, x � Q � 0. Thus, � � 0, and thet t0

boundary contribution, J , vanishes.m
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FIG. 4. A schematic of the support set S, indicating the boundary �S, the interior set S , and thet
boundary set S .t

The contribution I to the risk from the interior of the support set S canm
� �be evaluated asymptotically by adapting the method of 10 . Note that for any

Ž k . Ž p .pair of interior points x, x � Q , for every � � 1, . . . , k, the weighted L -t
balls

n � �B 	 , x � y � � : A y � x 
 	� 4Ž . Ž . pA , p � �

Ž .are contained in S as 0 
 	 
 ��� 
 	 
 t so that1 k

SŽ� . � B 	 , x � S � B 	 , x , 1 
 � 
 k .Ž . Ž .A , p � A , p �

Applying Corollary 2, for 1 
 � 
 k � 1, we obtain

	 � f � x� dx�Ž .H � l
Ž��1.S

	 
 ��n�2 rN�2 	��1 ��n�N
�� � x � � 	 , 	 � 0,Ž . Ž .Ý l , 2 r ��1 k� � n � 2rr�0

14Ž .

where the asymptotically small order term is uniform with respect to p.
It will be convenient to represent x k in spherical coordinates centered at x:

k � Ž k .�accordingly, set x � x � 	 � , where, as before, 	 � A x � x is thepk k k
p k Ž k .weighted L -distance between x and x , and � 	 x � x �	 is a point onk k

the surface of the unit weighted L p-ball at x which describes the orientation
k Ž .T Ž .of the point x vis a vis x. Let � � � , . . . , � denote a generic k � 1 -` 1 k�1

dimensional lattice vector with integral coordinates. Recursively applying
Ž . Ž .14 to the nested integrals in 7 we then obtain

C k k�1 j jP � xŽ .k kP P f x f xŽ . Ž . l l , 2 �l l l l jk� x, x � �Ž . Ý Ý Ý Łk ½ 5jn � 2 � � ��� ��Ž .j�11 � 
 	 , xŽ . 1 jŽ .l�1 ��0l�LL kl
� �� 
N�21

�	 Žk�1.n�2 � � �1 � � 	 Žk�1.n�NŽ .k k

which, on collection of common powers of 	 , can be put in the formk
N

Žk�1.n i Žk�1.n�N	 	 � � , x 	 � � 	 , 	 � 0.Ž . Ž .Ýk i k k k k
i�0

Observe that the asymptotically small order term is uniform in p.
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A corresponding asymptotic expansion can be obtained for the function
Ž . Ž .� 	 , x . Observe first that setting � � 0 in 14 , we obtain the asymptotick

expansion
	 
N�2

n 2 r N�n
 	 , x � f x dx � 	 
 x 	 � � 	 , 	 � 0,Ž . Ž . Ž . Ž .ÝHk k 2 r k k k
Ž .B 	 , xA , p k r�0

where, with V , the volume of the unit L p-ball, given by the corollary ton, p
2 r Ž .Lemma 3, and the differential operator � given by 12 ,p

V � n�p � 1Ž .n , p 2 r
 x 	 � f x .Ž . Ž .2 r p2 r2 r !� 2r � n �p � 1Ž .Ž .
Ž .Starting from 8 , the Taylor expansion of the logarithm results in the

asymptotic expansion
� N1 i n i N�n� 	 , x � 
 	 , x � 	 h x 	 � � 	 , 	 � 0,Ž . Ž . Ž . Ž .Ý Ýk k k i k k kii�1 i�0

Ž .where the functional forms of the coefficients h x are determined by thei
Ž .functions 
 x and depend, in general, upon n, the dimension of the feature2 r

space. Again, note that the asymptotically small order term is uniform in p.
Ž .Table 1 lists expressions for h x up to third order.i

Thus, for sufficiently small 	 , we can construct upper and lower boundsk
Ž . Ž .� 	 , x for � 	 , x in the form� k k

N
n i N�n� 	 , x � 	 h x 	 � �	 ,Ž . Ž .Ý� k k i k k

i�0

where � is an arbitrary positive constant. We may now choose t from
the interval 0 � t 
 t �2 sufficiently small, so that, for every x � S and0
0 � 	 
 t, the following three conditions are simultaneously satisfied:k

N
n i N�n� 	 , x � 	 h x 	 � �	 ;Ž . Ž .Ýk k i k k

i�0
15Ž .

N
k Žk�1.n i Žk�1.n�N� x, x � 	 � � , x 	 � �	 ;Ž . Ž .Ýk i k k k

i�0

Ž .the functions � 	 , x are bounded away from zero and� k16Ž . strictly increasing in 	 .k

TABLE 1
Ž . Ž .The low order coefficients h x in the expansion of � 	 , x expressedi k

Ž .in terms of the functions 
 x2 r

Term n � 1 n � 2 n � 3

h 
 
 
0 0 0 0
1 2h 
 0 01 02

1 13 2h 
 � 
 
 � 
 
2 2 0 2 0 23 2
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Ž . Ž .The last condition is made possible as h x � V f x is uniformly bounded0 n, p
Ž .away from zero on S by Condition C2, and the other coefficients h x , i � 1,i

are bounded. Now define I� and I� bym m

I � � m � x, x k exp �m� 	 , x dx k dx.Ž . Ž . Ž .Ž .HHkm � k
Qt

Note that I� 
 I 
 I� as � � 0.m m m
Let us first estimate I�. For � � 0 chosen suitably small, define the subsetm

�Ž k . Ž . 4of interior points R � Q by R 	 x, x � S � S: � 	 , x 
 � . We then� t � t � k
have

I� � m � exp �m� � m � exp �m�Ž . Ž . Ž . Ž .HH HHk km � �
R Q �R� t �

� m � exp �m� � OO mk exp �ma�Ž . Ž . Ž .Ž .HHk �
R�

for a choice of a� � 0; the second integral is again exponentially subdominant
by an argument similar to that invoked earlier. Now define the function

17 G s 	 � x, x k dx k dx.Ž . Ž . Ž .HH
� 4� 
s �R� �

Ž .Observe that 0 � exp �m� � 1 is bounded in R as � is bounded there,� � �
Ž .so that � exp �m� is integrable over R . Invoking Lemma 1 and integrat-� �

ing by parts, we hence have

�� �m s k�1 �m a�I � m e dG s � OO m eŽ . Ž . Ž .Hkm
0

18Ž .
� �m s k�1 �m a�� m m e G s ds � OO m e , m � �,Ž . Ž . Ž .Hk

0

� 4for a positive constant a� � min � , a� .
Ž . Ž .We now estimate G s . For 0 
 s 
 � , first solve the equation s � h 	 , x� k

Ž .for 	 � 	 s, x . Note that a unique solution exists which is continuous in xk k
as h is increasing in 	. We hence need to solve the equation�

1�nN
1� n i Ns � 	 h x 	 � �	Ž .Ýk k k kž /

i�0

Ž . 1� nfor 	 . Deploying Condition 16 above, observe that s is a real analytick
Ž . Ž .function of 	 0 
 	 
 t for each x. We may hence expand 	 s, x in ak k k

Taylor series with remainder, thus obtaining
N

�Žk�1.� n ŽN�1.� n ŽN�2.� n19 	 s, x � Y x s �� Y x s �Y x, � , s s ,Ž . Ž . Ž . Ž . Ž .Ýk k N N�1
k�0

Ž � . Ž � .where each Y and Y depends only on the h ’s for j 
 k, Y and Y isk N j k N
independent of � for k 
 N and Y is uniformly bounded for x � S ,N�1 t

�1� n Ž 1�2� n.0 
 � 
 1 and 0 
 s 
 � . In particular, Y � h , Y � �h � nh ,0 0 1 1 0



ASYMPTOTIC EXPANSIONS OF THE k-NN RISK 875

ŽŽ . 2 . Ž 2 2�2� n.and Y � n � 3 h � 2nh h � 2n h . Now recall that by choice of2 1 0 2 0
Ž .� � 0 small enough, within R we can use Condition 15 to write�

N
�k Žk�1.n i k Žk�1.n�N� x, x � 	 � � , x 	 � � � x, x 	 ,Ž . Ž . Ž .Ýk i k k N k

i�0

� � Ž k . � Ž .where � x, x � 1. We now substitute 19 into the above, and then theN
Ž .resultant into 17 . Using Lemma 4 and Corollary 2, the inner integral of

Ž .G s is evaluated. Whence,

G s � � x, x k dx k dx,Ž . Ž .H H
Ž Ž . .S B 	 s , x , xt A , p k

N
�k�Ž j� n. k�ŽN� n. k�ŽN� n.� � x s � �� s, x s dx � � s ,Ž . Ž . Ž .ÝH j Nž /St j�0

where, for instance,

� � g � knhk ,Ž .0 0 0

� � nh g � kn � 1 g h � n kn � 1 hk�1�Ž1� n. ,Ž . Ž .Ž . Ž .1 0 1 0 1 0

� � 2� k � 2�n h2 g � 2� k � 1 � 2�n h h g � h gŽ . Ž . Ž .� Ž . Ž .2 0 2 0 1 1 2 0

�� k � 2 � 2�n h2 g � 2n� k � 1 � 2�n hk�2�Ž2� n. ,Ž . Ž .4 � 4Ž . Ž .1 0 0

� Ž . Ž � � .and where � s, x is uniformly bounded. See 16 for details. The coeffi-N
Ž .cients g x depend upon the dimensionality n, as shown in Table 2, and inj

turn upon

Cn
k k�1 ˆ ˆ ˆ1 k� � V f P P ��� P ,Ý Ý0 n , p l l lk � 1 !Ž . l�1 l�LLl

kn � 2Ž .
k k�1� � V f2 n , p4 k � 1 !Ž .

2C k� n�p � 1 � fŽ . p lˆ ˆ ˆ1 k� P P ��� P .Ý Ý l l l ž /k� n � 2 �p � 1 fŽ .Ž . ll�1 l�LLl

TABLE 2
Ž .A tabulation of the functions g x for j � 0, 1, and 2j

Term n � 1 n � 2 n � 3

g � � �0 0 0 0
g k� 
 0 01 0 0

k � 1 2g � � � 
 � � k� 
 �2 2 0 0 2 0 0 2ž /2
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Ž .As a consequence of Condition C3 and the choice t 
 t �2, each g x , and0 j
Ž .hence each � x , is identically zero for all x in S . Consequently, the domainj t

of the x integral in the above can be extended from S to S � S � S .t t t
Letting,

� � � x dx, 0 
 j 
 N , �� s � �� s, x dx,Ž . Ž . Ž .H Hj j N N
S S

Ž . Ž .we insert the asymptotic expansion for G s into 18 to obtain

N�
�� �m s k�Ž j� n. k�ŽN� n. k�ŽN� n.I � m m e � s � �� s s � � s dsŽ . Ž . Ž .ÝHkm j Nž /0 j�0

N�
��m s k�Ž j� n. k�ŽN� n. k�ŽN� n.� m m e � s � �� s s � � s dsŽ . Ž . Ž .ÝHk j Nž /� j�0

� OO mk�1e�m a� .Ž .

As the integral H� e�m ss� ds is exponentially subdominant for � � 0 and�

finite � we may neglect the integrals confined to this domain. From Lemma 2
and the identity

k
k� ik im � m m � 1 ��� m � k � 1 � �1 m ,Ž . Ž . Ž . Ž .Ýk i

i�0

k� � Žwhere denotes a Stirling number of the first kind i.e., the number of cyclici

.arrangements of k objects into i cycles , we obtain

N
�� �j� n �N� n �N� nI � c m � �c m � � m , m � �,Ž .Ým j N

j�0

where the asymptotically small order term is uniform in p and where
Ž . Ž . Žc � R as defined by 9 , c � 0, and c is defined by 11 . Higher order0 � 1 2

� � .coefficients appear in 16 . An identical procedure yields

N

� �j� n �N� n �N� nI � c m � �c m � � m , m � �,Ž .Ým j N

j�0

as h differs from h only in the sign of � . Thus,� �

N N N
� �k � n �k � n � �k � nI � c m 
 I � c m 
 I � c m ,Ý Ý Ým k m k m k

k�0 k�0 k�0
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while, collecting all the subdominant terms that we had dropped by the
wayside, we have

R � I � OO mk�1e�m a� , m � �Ž .m m

for some fixed, positive a�. Thus, by letting m � �, we get

N
� �k � n N� n��c 
 lim inf R � c m mÝN m k½ 5ž /

k�0

N

�k � n N� n
 lim sup R � c m m 
 � c ,Ým k N½ 5ž /

k�0

Ž .the inequalities holding for every � � 0. Letting � � 0 we obtain 10 , the
expansion uniform in p. �
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