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ON NONPARAMETRIC TESTS
OF POSITIVITY/MONOTONICITY/CONVEXITY

BY ANATOLI JUDITSKY AND ARKADI NEMIROVSKI

INRIA Rhone-Alpes and Technion—Israel Institute of Technology

We consider the problem of estimating the distance from an unknown
signal, observed in a white-noise model, to convex cones of positive/mono-
tone/convex functions. We show that, when the unknown function belongs
to a Hölder class, the risk of estimating the Lr -distance, 1 ≤ r <∞, from
the signal to a cone is essentially the same (up to a logarithmic factor) as
that of estimating the signal itself. The same risk bounds hold for the test of
positivity, monotonicity and convexity of the unknown signal.

We also provide an estimate for the distance to the cone of positive
functions for which risk is, by a logarithmic factor, smaller than that of the
“plug-in” estimate.

1. Introduction. Let a nonparametric signal f : [0,1] → R be observed
according to the standard “signal + white noise” model, so that the observation
is a realization of the Gaussian random process Xfn (·) on [0,1]:

dXfn = f (t) dt + n−1/2 dW(t), 0≤ t ≤ 1,Xfn (0)= 0;(1)

here W(·) is the standard Wiener process and the parameter n plays the role of
“volume of observations.” We know that f is regular (belongs to a given Hölder
ball �, see below) and are interested in doing either of the following:

(I) Estimate the distance

�r[f ] = inf{‖f − g‖r | g ∈M}
from f to a given cone M in the space of functions on [0,1]; here r , 1≤ r <∞,
is fixed, and ‖·‖r is the standard Lr -norm on the unit segment. To be more
specific, we consider the particular cases when M is the cone of (i) nonpositive,
(ii) monotone or (iii) concave functions.

(II) Decide whether or not the signal belongs to the cone M; more precisely,
distinguish between the hypotheses

H0: f ∈M

and

Hε: �r [f ] ≥ ε.
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We quantify our abilities to handle (I) and (II) by the minimax risks defined as
follows:

1. For (I), the minimax risk is

R∗
est(n)= inf

F̂
sup
f∈�

E{|F̂ [Xfn ] −�r[f ]|},

where the infimum is taken over all estimates [Borel, w.r.t. the uniform metric,
functionals of observation (1)] and E stands for expectation over the noise
affecting the observation.

2. For (II), the minimax risk (“resolution”) is

R∗(n)= inf{ε |H0 and Hε are p-testable via observation (1)},
where p-testability of the pair H0, Hε via observation (1) means that there
exists a test—a Borel functional T [·] taking values in {0,1}—such that

sup
f∈�

Pf meetsH0{T [Xfn ] = 1} + sup
f∈�

Pf meetsHε{T [Xfn ] = 0} ≤ p,(2)

for p small (say p ≤ 1/8). Here the probability is taken w.r.t. the distribution
of noise affecting the observation.

As usual, we are interested in the asymptotic behavior of the minimax risks as
n→∞.

We focus on the case when the set � of signals in question is the Hölder ball
�ρ(β,L) specified by the triple of parameters β > 0, L > 0 and ρ ≥ 2L. It is
defined as the set of all bounded continuous functions f : [0,1]→ [−ρ,ρ] which
are m = �β − 0� = max{m ∈ Z : m < β} times continuously differentiable and
such that the mth derivative is Hölder continuous, with exponent γ = β −m and
constant 2L:

|f (m)(t)− f (m)(t ′)| ≤ 2L|t − t ′|β−m ∀t, t ′ ∈ [0,1].
Note that the minimax risk of recovering�r[f ], f ∈�, cannot be worse than the
minimax risk

R(n)= inf
f̂

sup
f∈�

E{‖f̂ (Xfn )− f ‖r} =O
(
L1/(2β+1)n−β/(2β+1))(3)

of recovering signals f ∈�, the estimation error being measured in the ‖·‖r -norm.
This observation is an immediate consequence of the fact that �r[·] is Lipschitz
continuous with Lipschitz constant equal to 1 in the ‖·‖r -norm. So the worst-case
risk over f ∈� of estimating �r[f ] by the “plug-in” estimate

F̂ (Y )=�r[f̂ (Y )],
associated with an estimate f̂ (·) of f , is not worse than the worst-case ‖·‖r -risk
of f̂ itself:

sup
f∈�

E{|�r[f̂ (Xfn )] −�[f ]|} ≤ sup
f∈�

E{‖f̂ (Xfn )− f ‖r}.
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Taking the infimum over f̂ we come to

R∗
est(n)≤R(n),

as claimed.
Now, the minimax risk R∗(n) in the hypothesis testing problem (II) cannot be

“essentially worse” than R∗
est(n) and thus it cannot be essentially larger than R(n):

R∗(n)≤ 32R∗
est(n) [≤ 32R(n)].(4)

Indeed, given an estimate F̂ of �r[f ] with certain worst-case (w.r.t. f ∈ �) risk
R, we can convert it into the following test of H0 against H32R: given Xfn , set
T = {F̂ (Xfn )≤ 16R} and claim that the true hypothesis is H0 if T = 1 or H32R if
T = 0. It follows immediately from the Chebyshev inequality that the resulting test
satisfies (2) with p = 1/8, ε = 32R; thus R∗(n) ≤ 32R. Since R can be chosen
arbitrarily close to R∗

est(n) it implies the inequality (4).
Our results can be summarized as follows: suppose that the “degree of

regularity” β of our signals “is coherent” with the hypothesis H0 (namely, β ≥ 1
when M is the cone of nonincreasing functions and β ≥ 2 when M is the cone of
concave functions). The latter assumption, roughly speaking, says that the degree
of regularity of functions from M is not better than the a priori known degree of
regularity of our signals. Then the main result of the present paper (Theorem 1
below) states that the “plug-in” estimate of �r[·] and the associated test for
distinguishing betweenH0 andHε are “nearly optimal.” That is, their performance
cannot be improved by more than logarithmic factors. Specifically, we prove that
for any sufficiently large observation sample length n one has

R∗(n)≥ C(β, r)R(n)(ln R(n)
)−θ(β)

, C(β, r) > 0.(5)

Note that (5) combines with (4) to imply that all three quantities R∗(n), R∗
est(n),

R(n) are “nearly” (up to factors logarithmic in these quantities) the same:

O

(
L1/(2β+1)n−β/(2β+1)

lnθ (n)

)
≤R∗(n)≤O(1)R∗

est(n)

(6)
≤O(L1/(2β+1)n−β/(2β+1)).

The outlined result deserves some comments. From the sizeable literature on
estimating functionals of nonparametric signals and nonparametric hypothesis
testing (see, e.g., [1–27, 30, 37] and references therein) the following are known:

1. Typically, the minimax risk associated with a nonparametric hypothesis testing
problem used to “decide whether the signal underlying observations belongs
to a given set X or is at a ‘large’ ‖·‖r -distance from the set” is essentially
less than the risk at which one can estimate the ‖·‖r -distance from the signal
to the set X. For example, when X = {0} (“decide whether the signal f
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underlying the observations is nontrivial”), the minimax risk, on �ρ(β,L), in
the testing problem is O(n−2β/(4β+1)) for 1 ≤ r ≤ 2 and O(n−β/(2β+1−1/r))

for r > 2 [20], [37]. However, the minimax risk, on the same set �ρ(β,L),
of recovering ‖f ‖r is, up to factors logarithmic in n, the plug-in risk
O(n−β/(2β+1)), except for the case when r is an even integer [29]. To the best of
our knowledge, the phenomenon observed in the current paper, which we refer
to as the “near optimality” of the simplest plug-in schemes, both in hypothesis
testing and estimating the distance from f to X is new.

2. The minimax risk, w.r.t. �ρ(β,L), of recovering a “good” functional F [f ]
is essentially better than the risk R(n) = O(n−β/(2β+1)) of recovering the
signal f itself. For example, when F is smooth (Frechet differentiable on
L2 with Hölder continuous, with exponent γ , gradient), F can be recovered
(cf. [11], [12], [16]) on �ρ(β,L) with “parametric” worst-case risk O(n−1/2).
Even a nonsmooth (although otherwise “simple”) functional F [f ] = ‖f ‖2 can
be recovered on �ρ(β,L) with risk O(n−4β/(4β+1)) [17], which still is much
better than the risk R(n) of a nonparametric estimate f̂ of f ∈ �ρ(β,L) in
the ‖·‖2-norm. Relation (6) says that this nice phenomenon disappears when
instead of estimating the ‖·‖2-distance from f to 0 (or from f to a linear
subspace in L2—the latter problem turns out to be essentially as good as the
one of estimating ‖f ‖2) we want to estimate the ‖·‖2-distance from f to a
less trivial (although quite natural) convex cone, say, the one of nonpositive
functions.

The outlined “near optimality” result states that the plug-in estimate or test
related to ‖·‖r -distances from the cones of nonpositive, nonincreasing or concave
functions is optimal up to logarithmic-in-n factors. A natural question is whether
one can replace “logarithmic-in-n” by “constant” here, that is, whether there is
a possibility of measuring the distances from nonparametric signals to the cones
in question asymptotically better than we can recover the signals themselves. We
demonstrate that such a possibility does exist in the case of (i), that is, when the
associated cone is the cone of nonpositive functions. However, we do not know
whether such a possibility exists in cases (ii) and (iii). Furthermore, the answer to
the following question would be of major interest:

(?) Let F [f ] be a convex functional on the space C[0,1] of real-valued
continuous functions on [0,1] such that F is Lipschitz continuous, with constant 1
w.r.t. the norm ‖·‖r (variant: let F [f ] be the ‖·‖r -distance from f to a given convex
closed, in the uniform norm, subset X of C[0,1]). Can F [f ] be estimated via the
observation (1) with the worst-case risk over �ρ(β,L) which is “better in order
than the plug-in risk.” In other words, is o(R(n)) as n→∞?

In the case when F is the ‖·‖r -distance from f to a closed convex set X, we
may pose a similar question about the risk of testing the hypothesis “f ∈X” versus
the alternative “the ‖·‖r -distance from f to X is greater than or equal to ε.”
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Recall that in all particular cases when the answer to (?) is known, it
is affirmative (e.g., the ‖·‖r -norm of f ∈ �ρ(β,L) indeed can be recovered
asymptotically better than f ; see [8], [17], [18], [36]). Is it a “law of nature” or
merely a consequence of “simplicity” of the functionals F (sets X) which have
been studied?

There is another important point to be stressed about the result in (5). Up to now
we have only considered the case when the distance to the cone is measured with
the Lr -norm with r <∞. On the other hand, the L∞-distance is a more sensitive
measure of discrepancy of functions on [0,1]. Note that the minimax rates of
convergence for the problems (i) and (ii) for the risks associated with the L∞-
distance are well known (cf., for instance, [3], and the references therein). They are
of order O((n/ logn)−β/(2β+1)). Furthermore, in the problem of the estimation of
the distance to the cone of nonpositive functions (testing the hypotheses about the
nonpositivity of f ) even the sharp constant in the minimax risk has been obtained
in [30]. Quite recently, those results were extended to the case of monotone
functions in [6]. As we have already seen, in the problem studied in the literature,
the risks R∗

est and R∗ for r <∞ are essentially smaller than the risks associated
with the L∞-distance, which motivated the choice of Lr -norm with relatively
small r in the test problems. An important consequence of the lower bound in
(5) is that in the problems considered in this paper there is no serious motivation
for using a distance other than L∞.

The rest of the paper is organized as follows. Relation (5) is carefully stated in
Section 2. Then a “better-than-plug-in” estimate of the distance from a signal to
the cone of nonpositive functions is built in Section 3. The proofs of the results are
collected in Sections 4 and 5.

2. Lower bound on R∗(n). Let us fix a class �ρ(β,L) with ρ ≥ 2L, an
r ∈ [1,∞) and a nonnegative integer q ≤ β , and let Mq be the closure, in
the uniform norm on [0,1], of the set of all C∞ functions with qth derivative
nonpositive everywhere. Let, further,

�r[f ] = inf{‖f − g‖r | g ∈Mq}
be the ‖·‖r -distance from a continuous function f : [0,1] → R to Mq . Note that,
for q = 0, 1 and 2, �r[f ] is the ‖·‖r -distance from f to the cones of nonpositive,
nonincreasing and concave functions, respectively—the cones in which we indeed
are interested.

Given observation Xfn (t) in (1) of a signal f ∈ �ρ(β,L) we are interested in
distinguishing between the following two hypotheses:

H0: f ∈Mq;
Hε: �r [f ] ≥ ε.

Recall that we say the hypotheses H0 and Hε are p-testable, n being the size of
the observation sample, if there exists a test T [·] [a functional of observation (1)
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taking values 0 or 1] satisfying (2), and we denote by R∗(n) the infimum of those
ε > 0 for which the hypothesesH0 and Hε are 1/8-testable.

Our goal is to establish the following.

THEOREM 1. Let β ≥ q . There exist C = C(β, r) > 0, ϑ = ϑ(β, r) and
M =M(β,ρ,L, r, q) such that for all n≥M it holds that

L−1/(2β+1)nβ/(2β+1)R∗(n)≥ C
(

1

lnn

)ϑ
.(7)

REMARK. When speaking about the cones of nonincreasing (q = 1) and
(q = 2) concave functions, we have assumed that the regularity of f is compatible
with the regularity of functions from the cone in question (i.e., respectively, β ≥ 1
and β ≥ 2). What happens when this assumption is violated? It can be easily
shown that here the plug-in estimates or tests become “essentially nonoptimal.”
Say, when β < 1, the minimax [on �ρ(β,L)] risk of recovering the ‖·‖2-distance
from f to the cone of nonincreasing functions is O(n−((1/3)∧2β/(4β+1))). This
phenomenon is quite natural. Indeed, the degree of regularity of a monotone
function is “nearly 1.” (To be more precise, the L1-norm of the derivative f ′ is
bounded.) So the projection f̂n of f on the cone of nonincreasing functions can
be recovered with the rate n−1/3 (see also [34]). Now, to measure the distance
from a “poorly regular” signal f to the cone of monotone functions is essentially
the same as to measure the distance from f to “the point” f̂n (cf. [28]). Thus the
minimax risk in this latter problem, as we have just mentioned, is significantly less
than R(n).

3. Distance to the cone of positive functions. Let us denote f+(t)=
f (t)1f (t)>0. We consider the problem of estimating from the observation (1) the
functional

�r[f ] = ‖f+‖r =
(∫ 1

0
f r+(t) dt

)1/r

.

We consider the maximal risk of the estimator �̂n:

R∗
est(�̂n)= sup

f∈�
Ef

∣∣�̂n −�r[f ]∣∣,
where � =�1(β,L) is the Hölder ball of functions such that ‖f ‖∞ < 1.

THEOREM 2. For any 1≤ r <∞ there exist an estimator �̂n and a constant
C such that, for n≥ n0(L,β, r),

R∗
est(�̂n)≤CL1/(2β+1)(n lnn)−2β/(2β+1).
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The proof of the theorem is presented in Section 5. The idea of the estimation
algorithm described below is as follows:

1. We start with the classical kernel smoothing f̂h(t) of the observation X(t)
with some “bandwidth” h. The parameter h is chosen in such a way that the
smoothing fh(t) of the function f is at the desired distance from f , so that to
estimate the distance �r[f ] it suffices to estimate the functional �r[fh].

2. To this end we use the technique suggested in [29]: we approximate the function
tr1t>0 with a trigonometric polynomial TN of high order N and construct
the unbiased estimate T ∗N(f̂h(t)) of TN(fh(t)) [here T ∗N(·) is a trigonometric
polynomial of degree N with specially corrected coefficients]. Finally, we set
�̂n = (∫ 1

0 T
∗
N(f̂h(t)) dt)

1/r .

Let m be the largest integer smaller than β and let K(·) be a kernel of order m
with compact support. That is, K satisfies the conditions

K(t)= 0 for |t|> 1,∫
K(t) dt = 1,∫
t iK(t) dt = 0 for i = 1, . . . ,m.

Along with the kernel K we consider the corrected left kernel K+(t), supported
on [0,2] and the right kernel K−(t), with its support in [−2,0], which satisfy the
moment relations above and have the same L2-norm.

Let [r] stand for the integer part of r . We define a partition function r(t): R+ →
R+, r(t)≥ 0 such that its ([r] + 1)st derivative r([r]+1)(t) is bounded and

r(t)= 1 if t ≤ 1,

0< r(t) < 1 if 1< t < 2,

r(t)= 0 if t ≥ 2.

(8)

ALGORITHM 1.
Step 1. Set

h= (L2n logn)−1/(2β+1),

and compute the smoothing

f̂ (t)= 1

h

∫ 1

0
K

(
t − u
h

)
dX(u).

This is a standard kernel estimator of f (t). In fact, to correct the boundary
effects we have to use, for t ∈ [−1,−1 + h], the corrected kernel K+ and, for
t ∈ [1− h,1], the kernel K−. To simplify the notation in what follows we use the
same notation K for all three kernels.
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Note that the estimate f̂ (t) possesses deterministic and stochastic components:

f̂ (t)= fh(t)+ λhξh(t),
where

fh(t)= 1

h

∫ 1

0
K

(
t − u
h

)
f (u) du(9)

and

λh =
[
E

(∫ 1

0
K

(
t − u
h

)
n−1/2 dW(u)

)2]1/2

= ‖K‖2√
nh
,

ξh(t)= 1

hλh

∫ 1

0
K

(
t − u
h

)
n−1/2 dW(u)= 1

‖K‖2
√
h

∫ 1

0
K

(
t − u
h

)
dW(u).

Here ‖·‖2 stands for the L2-norm and ξh(t) is clearly N(0,1). Hence

Ef̂h(t)= fh(t),
Var f̂h(t)= E( f̂h(t)− fh(t))2 = λ2

h.

Step 2. Define the function q(t) as

q(t)= tr1t>0r(t).

Let αk , k = 0,1, . . . , be Fourier coefficients of q(·): αk = ∫ 2
0 q(t)ψk(t) dt ,

where

ψ2k(t)= 2−1/2 cos(πkt/2), ψ2k+1(t)= 2−1/2 sin(πkt/2).

Set

N = [
θL−1/(2β+1)(n logn)β/(2β+1)],

where 0< θ < κ , with

κ =


4

π‖K‖2
√
r(2β + 1)

, for r > 2,

4

π‖K‖2
√

2(2β + 1)
, for 1≤ r ≤ 2.

(10)

For k = 0, . . . ,N we define the functions

φ2k,λ(t)= exp(π2k2λ2/8)ψ2k(t), φ2k+1,λ(t)= exp(π2k2λ2/8)ψ2k+1(t)

and the polynomial

T ∗N,λ(t)=
N∑
k=0

αkφk,λ(t).(11)

Finally, we define the estimator �̂n of �n as

�̂n =
(∫ 1

0
T ∗N,λh

(
f̂h(t)

)
dt

)1/r

.
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4. Proof of Theorem 1. The idea of the proof realized below can be
summarized as follows. We construct a parametric family {Gu(t)} of functions
from F and two discrete (and asymmetric) prior distributions µ0 and µ1 on the
parameter set which depend on n. We ensure that when drawn from the measure
µ0 random functions Gu(t) are in the cone Mq , while those generated from µ1
“typically” have a “significant non-Mq” part: �r[Gu] > δ∗ with certain δ∗ > 0.
Then assuming that the hypotheses H0 and Hδ∗ are testable, it should be possible
to distinguish well between the two hypotheses on observations (1) saying that
the observations are associated with random G distributed according to priors µ0
and µ1, respectively. On the other hand, we will show that our priors result in
the distributions of observations (1) too close to each other to allow for reliable
identification. Thus, the assumption that it is possible to distinguish well between
the hypotheses HN

0 and HN
δ∗ leads to a contradiction, whence R∗(n) ≥ δ∗. Note

that similar ideas are used in the study [19].
The technique used here is close to that in [29] and is rather nonstandard. For

instance, the prior measures µ0 and µ1 possess a number of moments, increasing
in n, that coincide. Their construction is based on the theory of Chebyshev
polynomials.

4.1. Setup.
4.1.1. Function Gu(·). Let us partition the segment [0,1] into q + 1 equal

segments 78, 8 = 0,1, . . . , q , and let t8 be the left endpoints of these segments.
Given a C∞-function g which vanishes outside70, consider the (q+ 1)× (q+ 1)
matrix A[g] with entries

ai8[g] =
∫
78

tig(t − t8) dt, 8, i = 0,1, . . . , q.

Of course, one can choose g to be positive on the interior of 70 and such that the
matrix A[g] is nonsingular (look what happens if g is a probability density close,
in the weak sense, to the unit mass placed at the midpoint of 70). Let us once and
for all fix a nonnegative C∞-function g which vanishes outside of 70, is positive
on the interior of the segment and is such that the matrix A[g] is nonsingular. Since
A[g] is nonsingular, there exist reals ω8, 8= 0,1, . . . , q , such that

q∑
8=0

ω8ai8[g] =
{

0, i < q,

1, i = q.(12)

It is clear that among the reals ω8, 8 = 0, . . . , q , some are positive (otherwise∑
8 ω8aq8[g] would be nonpositive). Let 8∗ ∈ {0,1, . . . , q} be such that ω8∗ is

positive. Also let ω = max8 |ω8|. We define the function Gu(t) (t is a real
argument, u is a real parameter) as follows:

1. When q = 0, we set

Gu(t)= ug(t).
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2. When q > 0, we set Gu(t)= 0 for t ≤ 0 and

Gu(t)=
∫ t

0

(t − τ )q−1

(q − 1)!
( q∑
8=0

[ω8u− ω̂8]g(τ − t8)
)
dτ,

ω̂8 =
{

0, 8= 8∗,
ω, otherwise,

for t ≥ 0. In other words, Gu(·) vanishes on the nonpositive ray; when t ≥ 0,
Gu(·) satisfies the relation

dq

dtq
Gu(t)=

q∑
8=0

[ω8u− ω̂8]g(t − t8);
(13)

di

dti

∣∣∣∣
t=0
Gu(t)= 0, i = 0,1, . . . , q − 1.

Note that by construction

Gu(t)=G(t)+ uD(t),
where both G and D are C∞-functions vanishing on the nonpositive ray.

We make the following claim.

G.1. dq

dtq
Gu(t) and D(·) vanish outside of [0,1].

Claim G.1 is evident when q = 0; let us verify this claim for q ≥ 1. The fact that
dq

dtq
Gu(t) vanishes when t ≥ 1 is readily given by (13), so that all we need is to

verify that D(t) vanishes outside of [0,1]. We already know that D(t)= 0 when
t ≤ 0. For t ≥ 1 we have

D(t)=
∫ t

0

(t − τ )q−1

(q − 1)!
[ q∑
8=0

ω8g(τ − t8)︸ ︷︷ ︸
h(τ)

]
dτ

=
∫ 1

0

(t − τ )q−1

(q − 1)! h(τ ) dτ [since h(·) vanishes outside of [0,1]]

=
q−1∑
i=0

ci(t)

∫ 1

0
τ ih(τ ) dτ

=
q−1∑
i=0

ci(t)

q∑
8=0

ω8ai8[g]

= 0 [see (12)].
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G.2. When −1≤ u≤ 0, Gu(t) ∈Mq , and when 0≤ u≤ 1, we have

�r[Gu(·)] ≥ κ1u(14)

(from now on, κi > 0 depend on β, r only).

Indeed, when −1 ≤ u ≤ 0, the right-hand side in (13) is nonpositive (since g
is nonnegative, ω8∗ > 0 and ω̂8 ≥ |ω8| when 8 �= 8∗), that is, gu(·) ∈Mq for the
indicated u. Now let 0≤ u≤ 1. By (13), the qth derivative ofGu(·) is nonnegative
on 78∗ and is greater than or equal to κ1,1u on a permanently fixed segment
7 ⊂ 78∗ . Hereafter let ψ be a fixed nontrivial nonnegative C∞-function which
vanishes outside of 7, and let θ(t) = (−1)q d

q

dtq
ψ(t). Whenever h(·) ∈ Mq , we

have dq

dtq
[Gu(t)− h(t)] ≥ κ1,1u on 7, whence∫
[Gu(t)− h(t)]θ(t) dt =

∫
7

(
dq

dtq
[Gu(t)− h(t)]

)
ψ(t) dt ≥ κ1,2u,

so that ‖Gu(·)− h(·)‖r ≥ κ1,2u

‖θ‖r/(r−1)
, and (14) follows.

We set

(a) κ−1
0 = 1+max0≤k≤β+1 max |u|≤1

0≤t≤1

∣∣∣∣ dkdtk Gu(t)
∣∣∣∣,

(b) κ∗ = κ0‖D(·)‖2.

(15)

4.1.2. ParametersN,h and α(N). Given n, let us set

(a) N = �(200Lκ∗)2/(2β+1)(n lnn)1/(2β+1)�,
h=N−1;

(b) α(N)= Lκ∗n1/2N−β−1/2.

(16)

Note that for all sufficiently large values of n the following holds:

0.001√
lnn

≤ α(N)≤ 0.01√
lnN

.(17)

4.2. Translation to the space of sequences. We are about to translate our
problem of hypothesis testing to the space of sequences. Let I1, . . . , IN be the
partition of the segment [0,1] into N segments of length h each, and let ti be the
left endpoint of Ii . We associate with a point θ = (θ1, . . . , θN) from the unit cube
BN = [−1,1]N the function

fθ(t)= Lκ0h
β
N∑
i=1

Gθi
(
h−1(t − ti ))

= Lκ0h
β

[
N∑
i=1

G
(
h−1(t − ti ))︸ ︷︷ ︸
F(t)

+
N∑
i=1

θiD
(
h−1(t − ti ))

]
(18)
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and claim first that fθ ∈�ρ(β,L).
Indeed, by construction fθ is a C∞-function on the axis which vanishes on the

nonpositive ray. For β + 1≥ p ≥ q we have

f
(p)
θ (t)=Lκ0h

β−p
N∑
i=1

H
p
i

(
h−1(t − ti )), H

p
i (t)=

dp

dtp
Gθi (t).

Since p ≥ q , the functions Hp
i vanish outside the respective segments Ii (by G.1).

Taking into account the origin of κ0, we conclude that whenever β + 1 ≥ p ≥ q
the following hold:

f
(p)
θ (ti )= 0, i = 1, . . . ,N; |f (p)θ (t)| ≤ Lhβ−p, 0≤ t ≤ 1.(19)

Now consider two cases: (a) β is not an integer; (b) β is an integer.
In the case of (a), the largest integer, m, which is less than or equal to β , is

greater than or equal to q , so that (19) is valid for p = m and p = m + 1. Let
t ≤ t ′ be two points of [0,1]. If t, t ′ are from the same segment of the partition
[0,1] = I1 ∪ · · · ∪ IN , then from (19) as applied to p =m+ 1 it follows that

|f (m)θ (t)− f (m)θ (t ′)| ≤ Lhβ−m−1|t ′ − t|
≤ Lhβ−m−1|t ′ − t|β−mh1−β+m =L|t − t ′|β−m.

If the points t < t ′ belong to two distinct segments of the partition, then let
t+ ≤ t− be, respectively, the right endpoint of the segment containing t and the
left endpoint of the segment containing t ′. Taking into account that f (m)θ vanishes
at t± by (19) and applying the above computation, we get

|f (m)θ (t)| = |f (m)θ (t)− f (m)θ (t+)| ≤ L|t − t+|β−m ≤ L|t − t ′|β−m,
|f (m)θ (t ′)| = |f (m)θ (t ′)− f (m)θ (t−)| ≤ L|t ′ − t−|β−m ≤ L|t − t ′|β−m,

whence

|f (m)θ (t)− f (m)θ (t ′)| ≤ 2L|t − t ′|β−m ∀t, t ′ ∈ [0,1],
so that fθ ∈H(β,L).

In the case of (b), (19) is valid for p = β (recall that q ≤ β). It follows that
|f (β)θ (t)| ≤ L; that is, f (m)θ = f

(β−1)
θ is Lipschitz continuous with constant L,

whence fθ ∈H(β,L).
We have seen that fθ ∈H(β,L). This inclusion combines with the fact that fθ

is a C∞-function vanishing on the nonpositive ray to yield that |fθ (t)| ≤ 2L ≤ ρ
on [0,1]. Thus, fθ ∈�ρ(β,L), as claimed.

We further claim that

(a) θ ≤ 0 ⇒ fθ ∈Mq;
(b) ∀θ ∈ BN, �r[fθ ] ≥ κ2Lh

βAr(θ),
(20)
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where

Ar(θ)=
(

1

N

N∑
i=1

([θi]+)r
)1/r

(a+ =max[0, a]).(21)

This is an immediate consequence of G.1 and G.2.
For i = 1, . . . ,N , let

Yi = Y θi =
√
n

‖D(·)‖2
√
h

∫ ih

(i−1)h
D
(
h−1(t − ti ))[dXfθn (t)−Lκ0h

βF (t) dt].(22)

From (18) and (15) it immediately follows that

Yi = α(N)θi + ξi, i = 1, . . . ,N,(23)

where α(N) is given by (16b) and

ξi = 1

‖D(·)‖2
√
h

∫ ih

(i−1)h
D
(
h−1(t − ti ))dW(t),

so that ξi are independent N (0,1) random variables. It is straightforward to see
that the set of statistics Yi , i = 1, . . . ,N , is sufficient for the parametric submodel
(with f ∈ �N = {fθ }θ∈BN ). Therefore, when restricting f to belong to �N and
setting si = α(N)θi , i = 1, . . . ,N , the original “signal + white noise” model (1)
becomes the “sequence space” model

Yi = si + ξi, i = 1, . . . ,N,(24)

with s = (s1, . . . , sN) from the cube SN = [−α(N),α(N)]N . With this transforma-
tion, the original testing problem (reduced to �N ) becomes the problem of testing,
via observations (24) of an s ∈ SN , the hypothesis

H0: f s ≡ fα−1(N)s ∈Mq

versus the alternative

Hε: �r [f s] ≥ ε.
Now consider the problem of testing, via observations (24) of an s ∈ SN , the
hypothesis

HN
0 : s ≤ 0

versus the alternative

HN
δ : Ar(s)≥ δ

with

δ = δ(ε)= α(N)

Lκ2hβ
ε [see (20)].
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We claim that if the pair of hypotheses H0,Hε is 1
8 -testable, then so is the pair

HN
0 ,H

N
δ(ε). Indeed, whenever s ∈ Sn meets HN

0 , f s meets H0 [see (20a)], and

whenever s ∈ SN meets HN
δ(ε), f

s meets Hε [see (20b)]. Thus, denoting by Rs(N)

the infimum of those δ > 0 for which the hypotheses HN
0 and HN

δ are 1
8 -testable,

we get the relation

R∗(n)≥ Lκ2h
βα−1(N)Rs(N)= κ3

√
N

n
Rs(N).(25)

4.3. In the sequence space. We intend to establish the following.

PROPOSITION 4.1. For all sufficiently large values of N one has

Rs(N)≥ κ4(lnN)
−2α(N).(26)

4.3.1. From Proposition 4.1 to Theorem 1. Postponing for the moment the
proof of Proposition 4.1, let us derive from it the statement of Theorem 1. We have

R∗(n) ≥ κ3

√
N

n
Rs(N) [see (25)]

≥ κ4,1

√
N

n
α(N)(lnN)−2 [see (26)]

= κ4,2L
1/(2β+1)(n lnn)−β/(2β+1)(lnN)−2 [by (16)].

Taking into account (16), we conclude that for all sufficiently large values of n one
has

R∗(n)≥ κ4,3L
1/(2β+1)n−β/(2β+1)(lnn)−(5β+2)/(2β+1),

as required in (7).

4.4. Proof of Proposition 4.1.
4.4.1. Preliminaries. Let µN,0 and µN,1 be two probability measures on

the parameter set SN , and let PN,0 PN,1 be the corresponding distributions of
observations (24):

PN,j = µN,j ∗L, j = 0,1,

where L is the distribution of observation noises ξ in (24) (i.e., L is the N -
dimensional Gaussian distribution with zero mean and unit covariance matrix).
Also let

K(PN,0,PN,1)=
∫

log
(
dPN,1

dPN,0

)
dPN,1(27)

be the Kullback distance between PN,0 and PN,1. We need the following statement
(which can be obtained from the Fano inequality; we, however, prefer to present a
direct proof).
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LEMMA 4.1. One has

R(N)≡ inf
T

(
PN,0{T = 1}+PN,1{T = 0})≥ exp{−e−1−K(PN,0,PN,1)},(28)

the infimum being taken over all tests [ functions of observations (24) taking values
0,1].

PROOF. Consider a test T (·) for distinguishing between two hypotheses,
H0 and H1, on the distribution of observations (24), saying, respectively, that
the distribution is PN,0 and PN,1. Let A = {Y ∈ R

N : T (Y ) = 1}, B = R
N\A,

φ = PN,0(A), ψ = PN,1(B), p = φ +ψ . We have

K(PN,0,PN,1)=−
∫
A

ln
(
dPN,0

dPN,1

)
dPN,1−

∫
B

ln
(
dPN,0

dPN,1

)
dPN,1

≥ −PN,1(A) ln
(
PN,0(A)

PN,1(A)

)
− PN,1(B) ln

(
PN,0(B)

PN,1(B)

)
(Jensen’s inequality)

= (1−ψ) ln
(

1−ψ
φ

)
+ψ ln

(
ψ

1− φ
)

= (1−ψ) ln
(

1−ψ
p−ψ

)
︸ ︷︷ ︸

g1(ψ)

+ψ ln
(

ψ

1− p+ψ
)

︸ ︷︷ ︸
g2(ψ)

.

We claim that

g1(ψ)+ g2(ψ)≥ (p+ 1) ln
1

p
, 0≤ψ ≤ p,(29)

whence, by the preceding computation,

K(PN,0,PN,1)≥ (1+ p) ln
1

p
.(30)

To justify (29), observe that for 0≤ψ ≤ p it holds that

g′1(ψ)= ln
(
p−ψ
1−ψ︸ ︷︷ ︸
h

)
+ 1− p
p−ψ︸ ︷︷ ︸
(1−h)/h

≥ ln(1)= 0 [concavity of ln(·)],
⇓

g1(ψ) ≥ g(0)= ln
1

p
, 0≤ψ ≤ p,
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g′2(ψ)= ln
(

ψ

1− p+ψ︸ ︷︷ ︸
1−h

)
+ 1− p

1− p+ψ︸ ︷︷ ︸
h

≤ ln(1)= 0 [concavity of ln(·)],
⇓

g2(ψ) ≥ g2(p)=−p ln
1

p
, 0≤ψ ≤ p,

and (29) follows.
Since p lnp ≥ exp{−1}, (30) implies that p ≥ exp{−e−1−K(PN,0,PN,1)}, as

required in (28). �

4.4.2. Applying Lemma 4.1. We are about to use Lemma 4.1 in the situation
where the priors µN,j are of product structure

µN,j =µNj , j = 0,1;
here µ0, µ1 are probability measures on [−α(N),α(N)]. We assume that

(a) supp µ0 ⊂ [−α(N),0],
(b)

∫
t+µ1(dt)= v1 > 0.

(31)

We claim that the following implication holds true:

(a)
4α2r(N)

Nv2r
1

≤ 1

4

(b) K(PN,0,PN,1)≤ 0.3

⇒Rs(N)≥ 1
2v1.(32)

Indeed, assume, contrary to what should be proved, that the premise in (32) is
satisfied and that there exists a test T , based on observations (24), such that

sup
s∈SN
s≤0

Prob
s
{T = 1} + sup

s∈SN
Ar (s)>(1/2)v1

Prob
s
{T = 0} ≤ 1

8 ,(33)

where Probs stands for the probability w.r.t. the distribution of observations (24)
associated with s. Let us see how well the test T distinguishes between the
distributions PN,0 and PN,1. In view of (31a), the prior µN,0 “sits” on the set
of nonpositive s ∈ SN ; applying (33), we therefore get

PN,0{T = 1} =
∫

Prob
s
{T = 1}µN,0(ds)≤ 1

8 .(34)

Now let A= {s ∈ SN :Ar(s)≤ 1
2v1}. Applying (33), we get

PN,1{T = 0} =
∫

Prob
s
{T = 0}µN,1(ds)≤ 1

8 +
∫
A
µN,1(ds)≡ 1

8 + p.(35)



514 A. JUDITSKY AND A. NEMIROVSKI

We are about to prove that p ≤ 1
4 . To this end, we first observe that

EµN,1{Arr (s)} =
∫
(t+)rµ1(dt)≡ vr ≥ vr1.(36)

Setting w = 1
2v1, we have

p = µN,1
{
s :

(
1

N

N∑
i=1

([si]+)r
)1/r

≤w
}

= µN,1
{
s :

1

N

N∑
i=1

([si]+)r ≤wr
}

≤ µN,1
{
s :

1

N

N∑
i=1

([si]+)r ≤ 1

2r
vr

}

≤ N−1 ∫ [(t+)2r − v2r ]µ1(dt)

(vr − 2−rvr )2
(the Chebyshev inequality)

≤ 4α2r(N)

Nv2r
(since supp µ1 ⊂ [−α(N),α(N)])

≤ 1
4 [by (32a) and in view of v ≥ v1]

as claimed.
Since p ≤ 1

4 , (34) and (35) imply that

PN,0{T = 1} + PN,1{T = 0} ≤ 1
2 ,

whence, by (28),

exp{−e−1−K(PN,0,PN,1)} ≤ 0.5,

or, which is the same,

K(PN,0,PN,1)≥ ln 2− e−1 = 0.325 . . . ,

which contradicts (32b). Implication (32) is proved.
Note that the Kullback distance between the marginal measures PN,0 and PN,1,

due to the product structure of model (24) and of the priors µN,0,µN,1, can be
written as

K(PN,0,PN,1)=NK(pµ0,pµ1),

K(pµ0,pµ1)=
∫

ln
(
pµ1(y)

pµ0(y)

)
pµ1(y) dy,

(37)

where, for a finitely supported measure µ on the axis,

pµ(y)=
∫
ϕ(y − t)µ(dt),

ϕ(y)= 1√
2π

exp
{
−y

2

2

}
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(ϕ is the standard Gaussian density on the axis). Thus, (32) can be rewritten as

(a)
4α2r(N)

Nv2r
1

≤ 1

4

(b) NK(pµ0,pµ1)≤ 0.3

⇒Rs(N)≥ 1
2v1.(38)

4.4.3. Specifying µ0,µ1. It is time now to specify our choice of the measures
µj , j = 0,1. These measures will be “α(N)-scalings” of probability measures νj
on [−1,1]:

µj(A)= νj (α−1(N)A) (λA= {t = λa | a ∈A}).(39)

The measures νj , j = 0,1, are determined by two parameters: a positive integerm
and a real σ ∈ (0,1]; these parameters will be specified later.

Given m,σ , we define µj , j = 0,1, as follows. Consider the Banach space
C[−1,0] of continuous functions on [−1,0] equipped with the uniform norm, and
let Pm be the subspace of this space comprising all polynomials of degree less than
or equal to m. The value p(σ ) of a polynomial p ∈ Pm at the point σ is a linear
functional on the finite-dimensional subspace Pm of C[−1,0]; let ν∗ be the norm
of this linear functional on Pm. By the Hahn–Banach theorem, we can extend the
functional in question from Pm to the entire space C[−1,0], not increasing the
norm of the functional. Taking into account that every continuous linear functional
onC[−1,0] is an integral over a measure (not necessarily nonnegative) of bounded
variation, we see that there exists a measure ν on [−1,0] such that

(a)
∫
p(t)ν(dt) = p(σ ) ∀p ∈Pm,

(b) Var(ν)≡
∫
|ν(dt)| = ν∗.

(40)

The quantity ν∗ can be computed explicitly. Indeed, by its origin, ν∗ is the
maximum of p(σ ), the maximum being taken over all polynomials p(·) with
degp ≤ m and max−1≤t≤0 |p(t)| ≤ 1. The corresponding extremal polynomial
πm(t) is known (Markov’s theorem); it is obtained from the Chebyshev polynomial
Tm(t) = cos(m arccos(t)) by linear substitution of argument which maps the
segment [−1,0] onto the segment [−1,1]:

πm(t)= Tm(2t + 1).

Thus, ν∗ = πm(σ ) = Tm(1 + 2σ). Taking into account that Tm(h) =
ch(m arccosh(h)) for h > 1, we get

ν∗ = ch
(
m arccosh(1+ 2σ)

)
.(41)

Now let ν = ν+ − ν− be the decomposition of ν into its positive and negative
components, and let δσ be the unit mass placed at the point σ . We set

ν0 =Var−1(ν+)ν+, ν1 = [Var(ν−)+ 1]−1[ν− + δσ ].(42)
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By construction, ν± are probability measures on [−1,1]. We claim that the
following hold:

(a) suppν0 ⊂ [−1,0];
(b) suppν1 ⊂ [−1,0] ∪ {σ },

ν1({σ })= 2

1+ ch(m arccosh(1+ 2σ))
;

(c)
∫
t iν0(dt)=

∫
t iν1(dt), i = 0,1, . . . ,m.

(43)

Indeed, (a) is evident. To prove (b) and (c), observe first that (40a) applied with
p(t)≡ 1 implies that

Var(ν+)=Var(ν−)+ 1,(44)

whence, in view of (40b),

Var(ν+)=Var(ν−)+ 1= ν∗ + 1

2
= ch(m arccosh(1+ 2σ))+ 1

2
;

in particular, (43b) indeed takes place. Besides this, (44) ensures that∫
t i[ν0(dt)− ν1(dt)] = 1

Var(ν+)

∫
t i[ν+(dt)− ν−(dt)− δσ (dt)]

= 1

Var(ν+)

[∫
t iν(dt)− σ i

]
,

and the latter quantity is 0 for i ≤m due to (40a). We have proved (43c).
Since the measures µj , j = 0,1, are obtained from the measures νj by

scaling (39), relation (43) implies that the following hold:

(a) suppµ0 ⊂ [−α(N),0];
(b) suppµ1 ⊂ [−α(N),0] ∪ {σα(N)} ⊂ [−α(N),α(N)],

µ1({σα(N)})= 2

1+ ch(m arccosh(1+ 2σ))
;

(c)
∫
t iµ0(dt)=

∫
t iµ1(dt), i = 0,1, . . . ,m.

(45)

4.4.4. Bounding K(pµ0,pµ1). Now let us prove the following.

LEMMA 4.2. Let α ∈ (0,1], let m > 0 be an integer and let φ,ψ be two
probability measures on [−1,1] such that∫

t iφ(dt)=
∫
t iψ(dt), i = 0,1, . . . ,m.(46)
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For a probability measure γ on [−1,1], let

pγ,α(y)=
∫
ϕ(y − αt)γ (dt)= ϕ(y)

∫
exp

{
αty − α2t2

2

}
γ (dt),

[
ϕ(y)= 1√

2π
exp

{
−y

2

2

}]
.

Then for every T ≥ 2 and all α ≤ 1
10T one has

K(pφ,α,pψ,α)≡
∫

ln
(
pψ,α(y)/pφ,α(y)

)
pψ,α(y) dy

(47)

≤ 3

2
(10αT )m+1 + 12α exp

{
−(T − 1)2

2

}
.

PROOF.

Step 1. We have

K(α)≡K(pφ,α,pψ,α)=
∫

ln
(
gψ(α, y)

gφ(α, y)

)
gψ(α, y)ϕ(y) dy,

gγ (α, y)=
∫

exp
{
αty − α2t2

2

}
γ (dy).

(48)

For every T ≥ 2, we have

K(α)=KT (α)+HT (α),
KT (α)=

∫ T

−T
ln

(
gψ(α, y)

gφ(α, y)

)
gψ(α, y)ϕ(y) dy,

HT (α)=
∫
|y|≥T

ln
(
gψ(α, y)

gφ(α, y)

)
gψ(α, y)ϕ(y) dy.

(49)

Step 2. We claim that the following hold:

(i) One has

HT (α)≤ 12α exp
{
−(T − 1)2

2

}
.(50)

Indeed, whatever a probabilistic measure γ on [−1,1] is, we clearly have

exp
{
−α

2

2
− α|y|

}
≤ gγ (α, y)≤ exp{α|y|},



518 A. JUDITSKY AND A. NEMIROVSKI

whence

HT (α) ≤
∫
|y|≥T

ln
(

exp{α|y|}
exp{−α2/2− α|y|}

)
exp{α|y|}ϕ(y) dy

= 2
∫
y≥T

(
2αy + α2

2

)
exp

{
αy − y2

2

}
dy√
2π

=
√

2
π

∫
z≥T−α

(
2αz+ 5α2

2

)
exp

{
−z

2

2

}
exp

{
α2

2

}
dz

(substitution z= y − α)

≤ 6 exp
{
α2

2

}
α

∫
z≥T−1

z exp
{
−z

2

2

}
dz

(
since T − α ≥ T − 1≥ 1≥ α, whence 2αz+ 5α2

2
≤ 6αz

)

≤ 12α exp
{
−(T − 1)2

2

}
.

(ii) The function KT (·) can be extended, as an analytic function, to the circle

DT =
{
z ∈C : |z| ≤ dt ≡ 1

10T

}
and

z ∈DT ⇒ |KT (z)| ≤ 3
2 .(51)

Indeed, if γ is a probability measure on [−1,1] and |y| ≤ T , then the function
of α

hy(α)= gγ (α, y)=
∫

exp
{
αty − α2t2

2

}
γ (dt)

is analytic, and the modulus of its derivative in the circle |α| ≤ a ≤ 1 does not
exceed (T + 1) exp{aT + a2/2}, whence

|α| ≤ a ≤ 1 ⇒ |hy(α)− hy(0)| = |hy(α)− 1| ≤ a(T + 1) exp
{
aT + a2

2

}
.

It follows that

∀(y ∈R : |y| ≤ T,α ∈C : |α| ≤ dT ),
(52)

|gγ (α, y)− 1| ≤ T + 1

10T
exp{0.105} ≤ 1

5
exp{0.105} ≤ 1

4
.

As a result,

∀(y ∈R : |y| ≤ T,α ∈C : |α| ≤ dT ),
∣∣∣∣gψ(α, y)gφ(α, y)

− 1
∣∣∣∣≤ 1+ 1/4

1− 1/4
− 1= 2

3
.
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We see that the function ln(gψ(α, y)/gφ(α, y)), regarded as a function of α, can
be extended analytically from the real axis to the circle DT on the complex plane,
and the modulus of the extension in this circle does not exceed the quantity∑∞
j=1

1
j
(2

3 )
j =− ln(1− 2

3)= ln 3:

∀(y ∈R: |y| ≤ T,α ∈C: |α| ≤ dT ),
∣∣∣∣ ln(gψ(α, y)gφ(α, y)

)∣∣∣∣≤ ln 3.(53)

Combining (52) as applied to γ = ψ with (53), we see that the function KT (α)

indeed can be extended, as an analytic function of α, to the circle DT , and the
modulus of the extension in this circle does not exceed the quantity∫

|y|≤T
(ln 3)

(
1+ 1

4

)
ϕ(y) dy ≤ 5 ln 3

4
≤ 3

2
,

as claimed.
(iii) The function KT (α) has a zero of order at least m+ 1 at the point α = 0.
Indeed, let

f (α, y)= gψ(α, y)− gφ(α, y)=
∫

exp
{
αty − α2t2

2

}
[ψ(dt)− φ(dt)].

For 8= 0,1, . . . ,m we have

∂8

∂α8

∣∣∣∣
α=0

f (α, y)=
∫
∂8

∂α8

∣∣∣∣
α=0

exp{αty − α2t2}[ψ(dt)− φ(dt)]

=
∫
t8f8(y)[ψ(dt)− φ(dt)]

= 0 [see (46)].

It follows that there exist C <∞, c > 0 such that

∀(α, y ∈R : |y| ≤ T, |α| ≤ c), |f (α, y)| ≤C|α|m+1.

Since

ln
(
gψ(α, y)

gφ(α, y)

)
= ln

(
1+ f (α, y)

gφ(α, y)

)
,

we conclude that there exist C′ <∞, c′ > 0 such that

∀(α, y ∈R : |y| ≤ T, |α| ≤ c′),
∣∣∣∣ln(gψ(α, y)gφ(α, y)

)∣∣∣∣≤ C′|α|m+1,

whence

|KT (α)| ≤
∫
|y|≤T

∣∣∣∣ln(gψ(α, y)gφ(α, y)

)∣∣∣∣gψ(α, y)ϕ(y) dy ≤ o(|αm|), α→ 0,

as claimed.
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Step 3. By Step 2(ii) and (iii), the function KT in the circle DT satisfies the
bound

|KT (α)| ≤ 3

2

( |α|
dT

)m+1

.(54)

Combining (54) and Step 2(i), we come to (47). �

4.5. Concluding the proof of Proposition 4.1. Now let us specify the parame-
ters m, σ underlying the construction of the measures νj , µj , j = 0,1, as

m= � lnN�,

σ = 1

4m2 .

(55)

Step 1. Observe that the data [α = α(N), m,ψ = ν1, φ = ν0] satisfy the
premise of Lemma 4.2, and that the functions pφ,α(·), pψ,α(·) associated with
this data are pµ0(y), pµ1(y), respectively. Setting

T =√2 lnN + 1

and taking into account (17), we see that 10α(N)T ≤ 0.2, provided that N is large
enough. Thus, we may use (47) to get the estimate

NK(pµ0,pµ1) ≤
3

2
N
(
10α(N)T

)m+1 + 12Nα(N) exp
{
−(T − 1)2

2

}
≤ 3

2
N(0.2)m+1+ 12Nα(N) exp{− lnN}

= 3

2
N(0.2)m+1+ 12α(N),

(56)

and the concluding quantity, in view of (55) and (17), is less than or equal to 0.3
for all sufficiently large values of N . Thus, (38a) is valid for all sufficiently large
values of N .

Step 2. The measureµ0 clearly satisfies (31a). In view of (45), µ2 satisfies (31b)
with

v1 = 2σα(N)

1+ ch(m arccosh(1+ 2σ))
.

We have ch(2
√
σ)≥ 1+ 1

2 (2
√
σ)2 = 1+ 2σ , whence arccosh(1+ 2σ)≤ 2

√
σ =

m−1. It follows that for all sufficiently large values of N it holds that

v1 ≥ 2σα(N)

1+ ch(1)
≥ 0.75σα(N)≥ κ5(lnN)

−2α(N).(57)

In view of (17), (57) and (16) the condition in (38a) is satisfied for all sufficiently
large values of N .
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Step 3. We see that when n (or, which is the same, N ) is large enough, the
measures µj , j = 0,1, satisfy the premise in (38), and the corresponding v1
satisfies (57). Applying (38), we get the bound

Rs(N)≥ κ6(lnN)
−2α(N),

as required in Proposition 4.1. �

5. Proof of Theorem 2. We start with a simple technical lemma.

LEMMA 1. Let

TN(z)=
N∑
k=0

αkψk(z)(58)

be the Fourier polynomial of order N > 1 of the function q . Let j be an integer.
Then there exists C0 such that, for any −2≤ z≤ 2,

∣∣q(j)(z)− T (j)N (z)
∣∣≤ C0(π/4)j

Nr−j (r − j) for 0≤ j < r.(59)

Further, if r is an integer, |T (r)N (z)| ≤ C0(π/4)r(1+ lnN), and∣∣T (j)N (z)
∣∣≤ C0(π/4)

jNj−r for j > r.(60)

PROOF. It can be easily verified that the Fourier coefficients αk of q satisfy
|αk| ≤C0k

−(r+1) for some C0 <∞. Then, for any z ∈ [−2,2],
∣∣q(j)(z)− T (j)N (z)

∣∣≤ ∞∑
k=N+1

(
πk

4

)j
|αk| ≤ C0

(
π

4

)j ∞∑
k=N+1

kj−r−1

= C0

(
π

4

)j
Nj−r .

On the other hand, for j ≥ r ,
∣∣T (j)N (z)

∣∣≤ ∞∑
k=0

(
πk

4

)j
|αk| ≤ C0

(
πk

4

)j ∞∑
k=0

kj−r−1.

The latter sum can be bounded by (1 + lnN) for j = r and by Nj−r for
j > r . �

LEMMA 2. Let the polynomial T ∗N,λ(·) be defined by (11). Suppose that ξ is
a N(0,1) random variable. Then T ∗N,λ(z+ λξ) is an unbiased estimate of TN(z),
that is,

ET ∗N,λ(z+ λξ)= TN(z),(61)
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and there exists C1, which depends only on r , such that for z ∈ [−1,1] the variance

E
(
T ∗N,λ(z+ λξ)− TN(z)

)2
(62)

≤ C1

(
λ2z2r−21z>0+ λ2r ln2N +N−2r exp

(
π2λ2N2

16

))
.

PROOF. Note that

Eφ2k,λ(z+ λξ)

= 2−1/2(2π)−1/2 exp
(
π2k2λ2

8

)∫ ∞
−∞

cos
(
πk(z+ λx)

2

)
exp

(
−x

2

2

)
dx

= 2−1/2(2π)−1/2Re
(∫ ∞
−∞

exp
(
pi2k2λ2

8
+ iπk(z+ λx)

2
− x2

2

)
dx

)

= Re
(

2−1/2 exp
(
iπkz

2

)
(2π)−1/2

∫ ∞
−∞

exp
(
−
(
x − iπkλ

2

)2

/2
)
dx

)

= 2−1/2 cos
(
πkz

2

)
= ψ2k(z).

We get the equality Eφ2k+1,λ(z+λξ)= ψ2k(z) in the same way. This implies (61)
by construction of the polynomial T ∗N,λ in (11).

The result of Theorem 1.1 of [16] states that, for z ∈ [−2,2],

E
(
T ∗N,λ(z+ λξ)− TN(z)

)2 = N∑
j=1

λ2j |T (j)N (z)|2
j ! ≡

N∑
j=1

Ij

j ! .(63)

Let us estimate the terms in the right-hand side of (63). Note that if g(t)= tr1t>0,

g(j)(t)= r(r − 1) · · · (r − j + 1)tr−j1t>0 for j < r.

Since the function q(t) and its derivatives coincide with those of g(t) on [−1,1],
we have, by (59),

Ij = λ2j |T (j)N(z)|2

≤ 2λ2j
[
z2r−2j1z>0

(
r(r − 1) · · · (r − j + 1)

)2 +C2
0

(
π

4

)2j
N2(j−r)

(r − j)2
]

(64)

≤ ajλ2j z2r−2j1z>0+C2N
−2r

(
π2λ2N2

16

)j
for 1 ≤ j < r . Here the coefficients aj depend only on r . In the case when r is
integer,

Ir ≤ C2
0λ

2r
(
π

4

)2r

(1+ lnN)2.
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On the other hand, for j > r we get, from (60),

Ij ≤ C2
0λ

2j
(
π

4

)2j

N2(j−2) =C2
0N

−2r
(
π2λ2N2

16

)j
.(65)

The bounds in (64) and (65) provide us with the estimate

N∑
j=1

Ij

j ! ≤
r−1∑
j=1

ajλ
2j z2r−2j1z>0+C2N

−2r
N∑
j=1

(
π2λ2N2

16

)j/
j !

+C2
0λ

2r
(
π

4

)2r
(1+ lnN)2

r! (if r is an integer)

≤ C1

(
λ2z2r−21z>0+ λ2r ln2N +N−2r exp

(
π2λ2N2

16

))
. �

Let us denote Ar [fh] = ∫ 1
0 f

r
h,+(t) dt , γn(t)= T ∗N,λh(f̂h(t)) and Ân = ∫ 1

0 γn(t) dt ,

so that Ar[fh] = (Ar [fh])1/r and �̂n = (Ân)1/r .

LEMMA 3. We have the estimate

E|Ân−EÂn| ≤ C3t (N
−1�r−1

t [fh] +N−r).

PROOF. Since the kernel K is compactly supported we conclude from the
definition of f̂h(t) that f̂h(t) and f̂h(t ′) are independent random variables when
|t ′ − t|> 2h. Consider the partition of the interval [0,1] into bins of length 2h. For
the sake of simplicity we suppose that h−1 = 4m for some integer m, so that there
are exactly 2m bins. Let us denote

ξj =
∫ 2(2j+1)h

4jh

(
γn(t)−Eγn(t)) dt, ηj =

∫ 4(j+1)h

2(2j+1)h

(
γn(t)−Eγn(t)) dt.

Then we have, for any p, 1≤ p ≤ 2,

[E|Ân −EÂn|p]1/p =
[
E

∣∣∣∣ ∫ 1

0

(
γn(t)−Eγn(t))dt∣∣∣∣p]1/p

≤
[
E

∣∣∣∣∣
m−1∑
j=0

ξj

∣∣∣∣∣
p]1/p

+
[
E

∣∣∣∣∣
m−1∑
j=0

ηj

∣∣∣∣∣
p]1/p

(66)

≤
[
m−1∑
j=0

E|ξj |p
]1/p

+
[
m−1∑
j=0

E|ηj |p
]1/p

,
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where the last bound results from the Marcinkiewicz–Zygmund inequality. By the
Jensen inequality we have, from (62),

E|ξj |p ≤ (2h)p−1
∫ 2(2j+1)h

4jh
E|γn(t)−Eγn(t)|p dt

≤ (2h)p−1
∫ 2(2j+1)h

4jh

(
E
(
γn(t)−Eγn(t))2)p/2

≤ C4h
p−1

(
λ
p
h

∫ 2(2j+1)h

4jh
f
p(r−1)
h,+ + λrph (lnN)p

+N−rp exp
(
pπ2N2λ2

h

32

))
.

The same bound holds for E|ηj |p. Let us take p = r/(r − 1) for r > 2 and p = 2
for 1≤ r ≤ 2. When substituting these bounds into (66) we obtain

E|Ân−EÂn| ≤ [E|Ân −EÂn|p]1/p

≤ C5h
(1/r)∧(1/2)

(
λh‖fh,+‖r−1

r + λrh(lnN)

+N−r exp
(
π2N2λ2

h

32

))
.

Now recall that λh and N are chosen so that λ2
hN

2 = θ2‖K‖2
2 lnn. For the

values of θ which satisfy (10) we have θ2π2‖K‖2
2/32 ≤ 1

2r(2β+1) for r > 2 and

θ2π2‖K‖2
2/32≤ 1

4(2β+1) for 1≤ r ≤ 2. Thus

h(1/r)∧(1/2) exp
(
π2N2λ2

h

32

)
≤ n−(1/(2r(2β+1))∧1/(4(2β+1)))

[here we use the notation a ∧ b for min(a, b)]. Furthermore, h1/r∧1/2λrh lnN ≤
N−r and h1/r∧1/2λh ≤N−1 for n large enough. When summing up we obtain the
bound

E|Ân−EÂn| ≤ C3(N
−r+N−1‖fh,+‖r−1

r ). �

We can now complete the proof of the theorem. Indeed,

E|�̂n−�r [f ]| = E|Â1/r
n −A1/r

r [f ]|
≤ E|(Ân)1/r − (EÂn)1/r | + |(EÂn)1/r −A1/r

r [fh]|
(67) + |�r[fh] −�r [f ]|

= δ1 + δ2 + δ3.
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Recall that �r(f ) is Lipschitz continuous in the norm ‖·‖r with unit Lipschitz
constant. This implies that

δ3 = |�r[fh] −�r[f ]| ≤ ‖fh(t)− f (t)‖r ≤ Lhβ =L1/(2β+1)(n lnn)−β/(2β+1).

Further, the bound (59) for j = 0 gives

δ2 ≤ |EÂn−Ar [fh]|1/r ≤maxz∈[−1,1] |zr1z>0− TN(z)|1/r ≤ C6N
−1.(68)

On the other hand,

δ1 = E|Â1/r
n − (EÂn)1/r |

≤ (E|Ân−EÂn|)1/r1�r [fh]≤2C6N
−1 + E|Ân−EÂn|

(EÂn)(r−1)/r
1�r [fh]>2C6N

−1 .

However, due to (68) we conclude that, for �r[fh]> 2C6N
−1,

(EÂn)
1/r ≥�r[fh] −C6N

−1 ≥�r[fh]/2.
Now, by Lemma 3, δ1 can be bounded as follows:

δ1 ≤ C7

(
N−1 + N−1(�r [fh])r−1 +N−r

(�r[fh])r−1 1�r [fh]>2C6N
−1

)
≤ C8N

−1.

When substituting the obtained bounds into (67) we obtain the statement of the
theorem. �
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