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This paper is concerned with nonparametric Bayesian inference of the
Aalen’s multiplicative counting process model. For a desired nonparamet-
ric prior distribution of the cumulative intensity function, a class of Lévy
processes is considered, and it is shown that the class of Lévy processes
is conjugate for the multiplicative counting process model, and formulas
for obtaining a posterior process are derived. Finally, our results are ap-
plied to several practically important models such as one point processes
for right-censored data, Poisson processes and Markov processes.

1. Introduction. For a given probability space ���� �P�, a stochastic
process N�t� defined on the time interval �0� τ� is called a counting process
if the sample paths of the process are right continuous step functions with
value 0 at t = 0 and with a finite number of jumps, each positive and of size
1. In practice, N�t� counts the number of certain events in time �0� t�, and so
counting process models are widely used in a variety of fields where a sequence
of times, each time corresponding to the occurrence of some event, constitutes
the observable data.

One of the widely used counting process models in statistics is the Aalen’s
multiplicative intensity model [Aalen (1978)]. Let ��t� be the cumulative
intensity process of N�t�. That is, ��t� is a predictable process such that
N�t� − ��t� is a martingale with respect to a given filtration �t (increasing
right-continuous, complete σ-field). The counting process N�t� is called a
multiplicative intensity model if the cumulative intensity process ��t� can be
written as

��t� =
∫ t

0
Y�s�dA�s��

where A�t� is a right-continuous nondecreasing function and Y�t� is a non-
negative predictable process. Typically, Y is a censoring indicator and A is a
parameter of interest. Then A can be a cumulative hazard function for sur-
vival data, a mean function for Poisson processes and a cumulative transition
intensity function for Markov processes. Various developments of statistical
theory for the multiplicative counting process model can be found in Karr
(1986) and Anderson, Borgan, Gill and Keiding (1993).

In this paper, we are concerned with nonparametric Bayesian inference of
the multiplicative intensity model. We will give a nonparametric prior dis-
tribution to the cumulative intensity function A�t� and obtain the posterior
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distribution: the conditional distribution of A given that N is observed contin-
uously on �0� τ�. For a prior distribution, Lévy processes without a Gaussian
term and a deterministic term are used. Such processes have been widely used
in Bayesian inference. Doksum (1974) noted the importance of Lévy processes
as a class of conjugate prior distributions in survival analysis. For counting
process models, Lo (1982, 1992) used the weighted gamma process as a prior
distribution of the mean function when sampling a Poisson process model.
Hjort (1990) used a beta process for a prior distribution of the cumulative
hazard function and showed that the beta process is a conjugate prior for right-
censored observations. Since all of the aforementioned models are special cases
of the multiplicative intensity model, our approach provides a unified method
for a wider class of nonparametric models. Along with the unification of the
previously considered models, the multiplicative intensity model includes var-
ious complicated censoring–filtering problems. Examples are right-censored
data with delayed entrance (left truncated) and the counter model. Details
are provided in Section 4.

The outline of this paper is as follows. In Section 2, we present the semi-
martingale approach to Lévy processes since this approach has several advan-
tages over the well-known Lévy formula. Section 3 contains the main results
of this paper, the posterior distribution of the cumulative intensity function A
given N. Finally in Section 4, examples are presented.

Throughout this paper, we will, if not otherwise stated, restrict all processes
to the time interval �0�1�. However, all of our results are also valid on �0� τ�
for any τ > 0.

2. Lévy processes and semimartingales. In this section, semimartin-
gale approaches to Lévy process are reviewed, since they are extensively used
in this paper. Before proceeding further, we explain why we use semimartin-
gale approaches instead of the well-known Lévy formula. It is well known that
a Lévy process A without a Gaussian term and a deterministic term is a pure
jump process which can be rewritten as

A�t� = ∑
s≤t��J�s�=1

�A�s��(2.1)

where J�t� = ∑
s≤t I��A�s� 	= 0� and �A�t� = A�t� − A�t−�� On the other

hand, if the intensity function A is given by (2.1), we have

Pr
N�1� = n and Sn = sn�A�

=
1∏
t=0

�Y�t��A�t��I�t∈sn��1 −Y�t��A�t��I�t	∈sn��
(2.2)

where Sn = �S1� � � � � Sn�, Si is the time of the ith jump of N, and sn ∈ �0�1�n
such that 0 < s1 < · · · < sn < 1. Hence, roughly speaking, the posterior
distribution of A given N can be obtained once the distributions of J�t� and
�A�t� are given a priori, which are easily derived from the semimartingale
representation of Lévy processes as shown below.
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Let � be the class of all right-continuous nondecreasing functionsA defined
on �0�1�, zero at time zero, such that the size of each jump is less than or equal
to 1, and let �� be the σ-algebra generated by the Borel cylinder sets. Suppose
that A is a Lévy process on �� � �� � (without a deterministic term). Define a
σ-finite measure µ on �0�1� × �0�1� such that

µ��0� t� ×D� = ∑
s≤t
I��A�s� ∈ D�

for t ∈ �0�1� and D ∈ ��0�1� where ��0�1� denotes the σ-field on �0�1�. Then
it is easy to see that the random measure µ is a Poisson random measure
[Jacod and Shiryaev (1987), page 70]. If we define a σ-finite measure ν on
�0�1� × �0�1� by

ν��0� t� ×D� = E�µ��0� t� ×D��
for t ∈ �0�1� and D ∈ ��0�1�, then we have

E�A�t�� =
∫ t

0

∫ 1

0
xν�ds�dx�(2.3)

and

Var�A�t�� =
∫ t

0

∫ 1

0
x2ν�ds�dx� −

(∑
s≤t

∫ 1

0
xν�
s�� dx�

)2

�(2.4)

Here, the measure ν is called the compensator of the Poisson random measure
µ. Conversely, suppose that a positive σ-finite measure ν on �0�1� × �0�1�
satisfying

ν�
t� × �0�1�� ≤ 1(2.5)

is given. Then, there exists a unique Poisson random measure µ whose com-
pensator is ν [Jacod (1979)], and a process A defined by

A�t� =
∫ t

0

∫ 1

0
xµ�ds�dx�(2.6)

is a Lévy process defined on �� � �� � provided that
∫
�0� t�×�0�1�

xν�ds�dx� <∞�(2.7)

Consequently, we can construct a Lévy process on �� � �� � simply by choosing
a σ-finite measure ν on �0�1� × �0�1� satisfying (2.5) and (2.7). Furthermore,
since the Lévy process A constructed by (2.6) satisfies the moment conditions
(2.3) and (2.4), we can reflect prior information given by mean and variance to
the prior process by choosing an appropriate σ-finite measure ν. More details
on this issue are given in Section 4. In what follows, we call the measure ν
simply the compensator of A.
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Remark. It is well known that any Lévy process A�t� on �� � �� � admits
a Lévy representation

E�exp�−θA�t��� =
[ ∏
tj≤t

E�−θUj�
]

exp
[
−
∫ 1

0
�1 − exp�−θx��dLt�x�

]
�

where 
Lt� t ≥ 0� is a continuous Lévy measure. Then the compensator ν of
A becomes

ν��0� t� ×D� =
∫
D
dLt�x� +

∑
tj≤t

∫
D
dHj�x�

for t ∈ �0�1� and D ∈ ��0�1�, where Hj�x� is a distribution function of a
random variable Uj.

Now, we present how to derive the distributions of J�t� and �A�t� for a
given Lévy process on �� � �� �. Let A be a Lévy process on �� � �� � with a
compensator ν. Define a set U by setting U = 
t�ν�
t� × �0�1�� > 0�. Then it
is easy to see that U is the set of times of fixed discontinuity of A. We will
always assume that the number of elements in U is finite and denote it by
U = 
u1� � � � � ul�. Further, we assume that ν can be decomposed into

ν��0� t� ×D� =
∫ t

0

∫
D
dFs�x�ds+

∑
uj≤t

∫
D
dHj�x�(2.8)

for t ∈ �0�1� and D ∈ ��0�1�, where Fs are σ-finite measures on �0�1� such
that

∫ 1
0 xdFs�x� < ∞ and Hj are distribution functions on �0�1�. Suppose

that ν��0�1� × �0�1�� < ∞ and U = �. Then A becomes a compound Poisson
process such that J�t� is a Poisson process with intensity function λ�t� where
λ�t� = ∫ 1

0 dFt�x� and the distribution function of �A�t� conditional on �A�t� >
0 is Ft�x�/λ�t�. If U 	= �, J becomes a compound Poisson process with fixed
discontinuity at u1� � � � � ul and Hj is the distribution function of �A�uj�, in
which case A is called an extended compound Poisson process. If ν is not a
finite measure, no nice description of the processes J�t� and �A�t� exists.
However, we can always approximate any Lévy process A on �� � �� � with
a compensator ν given by (2.8) by a sequence of extended compound Poisson
processes as follows. Define

Fn
t �x� =

∫ x∨1/n

1/n
dFt�u�

and construct a compound Poisson process An�t� with the compensator νn,

νn��0� t� ×D� =
∫ t

0

∫
D
dFn

s �x�ds+
∑
uj≤t

∫
D
dHj�x�(2.9)

for t ∈ �0�1� and D ∈ ��0�1�. The next theorem is a simple corollary of
Theorem 3.13 in Jacod and Shiryaev (1987).
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Theorem 2.1. As n → ∞, An converges to A weakly on � , the space of
right-continuous functions with left limits existing on �0�1� equipped with Sko-
rohod topology.

When ν��0�1�×�0�1�� <∞, the posterior distribution of A can be calculated
directly since the distributions of J�t� and �A�t� are available, while when
ν��0�1�×�0�1�� = ∞ the posterior distribution ofA can be obtained as the limit
of the posterior distributions of An, which are the main contents of Section 3.

3. Posterior distribution. We begin by stating the model to be studied.
For a given intensity function A, let N be a counting process such that{

N�t� −
∫ t

0
Y�s�dA�s��� N

t

}
(3.1)

is a martingale where � N
t is a filtration generated by N and Y�s� is a pre-

dictable process with respect to � N
t . For a prior distribution, we assume that

A is a Lévy process defined on �� � �� � with a compensator ν. The problem
of nonparametric Bayesian inference consists in construction of the posterior
distribution, the conditional distribution ofA given a realization ofN on �0�1�.

Remark. Note that we use � N
t as a filtration of N, which means that we

can only observe a realization of N. In practice, we may have more informa-
tion than N, in which case the complete probabilistic model of the additional
information is needed for obtaining the posterior distribution. For example, in
survival analysis we have censoring information. One simple model of the cen-
soring information is that censoring times are independent of survival times,
and our results can be applied to this, since the process A is independent of
the censoring information.

In the model, we assume that Y�t� is predictable with respect to � N
t , which

means that Y�t� can be reconstructed from the observation of N. In fact, for
any predictable process Y with respect to � N

t , there always exists a sequence
of measurable functions 
φn� �0�1�n+1 → �0�1�� such that Y�t� = φ�t �N��
where

φ�t �N� = φ0�t� +
∞∑
n=1

φn�t �Sn�I�Sn < t ≤ Sn+1��(3.2)

Sn = �S1� � � � � Sn�, and each Si represents the time of the i-jump of N. For
proof, see Lemma III.1.29 in Jacod and Shiryaev (1987).

In this section, we derive the posterior distribution of A given N when
A is a Lévy process on �� � �� � with the compensator ν in (2.8). First, in
Theorem 3.1 we derive the posterior distribution of A when the prior process
is an extended compound Poisson process by direct calculation, and it is proved
in Theorem 3.2 that the result obtained in Theorem 3.1 still holds for any Lévy
process priors defined on �� � �� �.
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In this section, we will make extensive use of the distribution of Sn, which
are defective. That is, Pr
Si ∈ �0�1�� < 1. To avoid unnecessary notational
complication, we assume that Si is defined on �0�1� ∪ 
∞�� where Pr
Si =
∞� = 1 − Pr
Si ∈ �0�1��.

Since we use � N
t for the filtration of N, without loss of generality we as-

sume that the probability space ���� �P� is the same as �� ×� � �� ⊗�� �P�
where � is the space of right-continuous step functions defined on �0�1� with
value 0 at t = 0 and with a finite number of jumps, each positive and of size
1, and �� is the σ-field generated by the Borel cylinder sets. We denote the
marginal distributions of A and N by PA and PN, respectively.

Theorem 3.1. For a given A, let N be a counting process defined in (3.1).
Suppose that a priori A is a Lévy process on �� � �� � with a compensator ν
in (2.8) and we observe N�1� = n and Sn = sn. If ν��0�1� × �0�1�� < ∞, then
the posterior process A given N is again a Lévy process on �� � �� � with the
compensator

νp��0� t� ×D� =
∫ t

0

∫
D
�1 −Y�s�x�dFs�x�ds

+ ∑
ui∈sn

c1�ui�−1
∫
D
Y�ui�xdHi�x�I�ui ≤ t�

+ ∑
ui 	∈sn

c2�ui�−1
∫
D
�1 −Y�ui�x�dHi�x�I�ui ≤ t�

+ ∑
si 	∈U

c3�si�−1
∫
D
Y�si�xdFsi

�x�I�si ≤ t�

(3.3)

for t ∈ �0�1� and D ∈ ��0�1�, where

c1�ui� =
∫ 1

0
Y�ui�xdHi�x��

c2�ui� =
∫ 1

0
�1 −Y�ui�x�dHi�x�

and

c3�s� =
∫ 1

0
Y�s�xdFs�x��

Proof. Without loss of generality, we assume that
∫ 1

0 dFt�x� < ∞ for all
t ∈ �0�1�. Let λ�t� = ∫ 1

0 dFt�x� and define distribution functions Gt�x� on
�0�1� by Gt�x� = Ft�x�/λ�t�. Consider a sequence of nondecreasing positive
random variables 
Tn� such that J�t� = ∑

I�Tn ≤ t� is a Poisson process
with the intensity function λ�t�. Let 
ξn� be a sequence of random variables
on �0�1� such that for a given 
Tn�, ξn are independent random variables with
distribution GTn

. With the fixed set of times of discontinuity U = 
u1� � � � � ul�,
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define a process A�t� by

A�t� =
∞∑
n=1

ξnI�Tn ≤ t� +
l∑

i=1

ηiI�ui < t��(3.4)

where ηi are independent random variables with distributions Hi. Then the
process A�t� is a Lévy process with the compensator ν in (2.8).

Let Tm = �T1� � � � �Tm� and let Zm = �ξ1� � � � � ξm�η1� � � � � ηl�. For a given N,
let Q�· �N� be a probability measure on �� � �� � induced from a Lévy process
whose compensator is given by (3.3). To prove the theorem, it suffices to show
that

P�B ∩C� =
∫
C
Q�B �N�dPN

for any B ∈ �� and C ∈ �� . However, by Lemma III.1.29 in Jacod and
Shiryaev (1988), it suffices to consider only the sets B and C of the forms

B = 
J�1� =m�Tm ≤ tm� Zm ≤ zm�
and

C = 
N�1� = n� Sn ≤ sn�
for any given vectors tm ∈ �0�1�m, zm ∈ �0�1�m+l and sn ∈ �0�1�n� where
Tm ≤ tm is defined to be Ti ≤ ti for all i = 1� � � � �m. We define Zm ≤ zm and
Sn ≤ sn similarly.

We consider only the case when N�1� = 1. Extension of the results to
N�1� > 1 is straightforward. Suppose J�1� = m with Tm = tm and Zm = zm.
Then we can write

Pr
N�1� = 1� S1 ≤ s1 � A� =
m∑
k=1

Pr
N�1� = 1� S1 = tk �A�I�tk ≤ s1�

+
l∑

k=1

Pr
N�1� = 1� S1 = uk�A�I�uk ≤ s1�
(3.5)

and in view of (2.2) we have

Pr
N�1� = 1� S1 = tk �A� = 1�zm� tm� tk�
and

Pr
N�1� = 1� S1 = uk�A� = 1�zm� tm� uk��
where

1�zm� tm� s� =
m∏
i=1

�1 −φ0�ti�zi�I�ti<s��1 −φ1�ti � s�zi�I�ti>s��φ0�ti�zi�I�ti=s�

×
l∏

i=1

�1 −φ0�ui�zm+i�I�ui<s��1 −φ1�ui � s�zm+i�I�ui>s�

× �φ0�ui�zm+i�I�ui=s��
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For the marginal distribution of A, we can write

Pr
J�1� =m� �Tm�Zm� ≤ �tm� zm��
= Pr
J�1� =m�Pr
Tm ≤ tm�J�1� =m�

× Pr
Zm ≤ zm�Tm = tm� J�1� =m��
(3.6)

By the definition of the process J, we have

Pr
J�1� =m� = ��1�m
m!

e−��1��(3.7)

where ��t� = ∫ t
0 λ�v�dv. Also, it is well known that conditional on J�1� =m

Pr
Tm ≤ tm�J�1� =m� =m!��1�−m
∫ t1

0

∫ t2

v1

· · ·
∫ tm

vm−1

m∏
i=1

λ�vi�dvi�(3.8)

Also, it is clear from the definition of the process A that

Pr
Zm ≤ zm�Tm = tm� J�1� =m�

=
∫ z1

0
· · ·

∫ zm

0

∫ zm+1

0
· · ·

∫ zm+l

0

m∏
i=1

dGti
�wi�

l∏
i=1

dHi�wm+i��
(3.9)

Combining (3.7), (3.8) and (3.9), we can get the marginal distribution of A,
and in turn by integrating out (3.5) with the marginal distribution of A, we
have

Pr
A ∈ B� N ∈ C�

=
∫
B

Pr
N�1� = 1� S1 ≤ s1 � A�dPA

= e−��1�
m∑
k=1

[∫
O�tm�×�0�zm�

1�wm�vm� vk�

× I�vk ≤ s1�dGvm
�wm�d��vm�

]

+ e−��1�
l∑

k=1

[∫
O�tm�×�0�zm�

1�wm�vm� uk�

× I�uk ≤ s1�dGvm
�wm�d��vm�

]
�

(3.10)

where

dGvm
�wm� =

m∏
i=1

dGvi
�wi�

l∏
i=1

dHi�wm+i��

d��vm� =
m∏
i=1

λ�vi�dvi�

O�tm� = 
vm ∈ �0�1�m� vm ≤ tm and v1 ≤ · · · ≤ vm�
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and

�0� zm� = 
wm ∈ �0�1�m+l� wm ≤ zm��
The proof would be done if we show that

∫
c Q�B �N�dPN is the same as

(3.10). Suppose that the distribution of A conditional on N�1� = 1 and S1 = s1
is Q�· �N�. Then

Q�B �N� = Pr
J�1� =m� �Tm�Zm� ≤ �tm� zm� �N�1� = 1� S1 = s1��
First, consider the case of s1 = uk. Then in view of Q�· �N�, we have

Pr
J�1� =m�N = 1� S1 = uk� = B�1 �uk�m
m!

exp�−B�1 �uk���(3.11)

where

B�t �u� = B0�t �u� +B1�t �u��

B0�t �u� =
∫ t∧u

0
λ�v��1 −φ0�v�d�v��dv�

B1�t �u� =
∫ t∨u

u
λ�v��1 −φ1�v �u�d�v��dv

and d�s� = ∫ 1
0 xdGs�x�. Also, we have

Pr
Tm ≤ tm�J�1� =m� N�1� = 1� S1 = uk�

= B�1 �uk�−m
m!

∫
O�tm�

m∏
i=1

dB�vi �uk�
(3.12)

and

Pr
Zm ≤ zm�Tm = tm� J�1� =m� N�1� = 1� S1 = uk�

=
∫
�0� zm�

1�wm� tm� uk�dGtm
�wm�

×
(∫

�0�1�
1�wm� tm� uk�dGtm

�wm�
)−1

�

(3.13)

where 1 is a vector of length m+l whose elements are all 1. Combining (3.11),
(3.12) and (3.13), we have

Pr
J�1� =m� �Tm�Zm� ≤ �tm� zm� �N�1� = 1� S1 = uk�

= exp�−B�1 � s1��
∫

O�tm�×�0�zm�
1�wm�vm� uk�dGvm

�wm�d��vm�

×
[
φ0�uk�ek

k−1∏
i=1

�1 −φ0�ui�ei�
l∏

i=k+1

�1 −φ1�ui �uk�ei�
]−1

�

(3.14)

where ei =
∫ 1

0 xdHi�x�.
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Next, consider the case of s1 	∈ U. Then conditional on S1 = s1 and J�1� =
m, with probability 1 there exists a k ∈ 
1� � � � �m� such that Tk = s1. So we
can write

Pr
J�1� =m� �Tm�Zm� ≤ �tm� zm� �N�1� = 1� S1 = s1�

=
m∑
k=1

[
Pr
J�1� =m�Tk = s1�N�1� = 1� S1 = s1�

× Pr
{�Tm�Zm� ≤ �tm� zm��J�1� =m�

N�1� = 1� Tk = S1 = s1
}]
�

(3.15)

Here, it is easy to show that

Pr
J�1� =m� Tk = s1 �N�1� = 1� S1 = s1�

= B0�s1 � s1�k−1

�k− 1�! exp�−B0�s1 � s1��
B1�1 � s1�m−k

�m− k�! exp�−B1�1 � s1��
(3.16)

and

Pr
Tm ≤ tm�J�1� =m� N�1� = 1� Tk = S1 = s1�

= �k− 1�!�m− k�!
B0�s1 � s1�k−1B1�1 � s1�m−k

×
∫

Ok�tm � s1�

k−1∏
i=1

dB0�vi � s1�
m∏

i=k+1

dB1�vi � s1��

(3.17)

where

Ok�tm � s1� =
{
vm ∈ �0�1�m� vm ≤ tm and

v1 ≤ · · · ≤ vk−1 ≤ vk = s1 ≤ vk+1 ≤ · · · ≤ vm
}
�

Also it is true that

Pr
Zm ≤ zm�Tm = tm� J�1� =m� N�1� = 1� Tk = S1 = s1�

=
∫
�0� zm�

1�wm� tm� tk�dGtm
�wm�

×
(∫

�0�1�
1�wm� tm� tk�dGtm

�wm�
)−1

�

(3.18)
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Now combining (3.15), (3.16), (3.17) and (3.18) with (3.14), we have

Pr
J�1� =m� �Tm�Zm� ≤ �tm� zm��N�1� = 1� S1 = s1�
= I�s1 	∈ U� exp�−B�1 � s1��

×
m∑
i=1

[∫
Ok�tm� s1�×�0� zm�

1�wm�vm� vi�dGvm
�wm�d��i��vm�

×
{
v�s1�φ0�s1�

l∏
i=1

�1 −φ0�ui�ei�I�ui<s1�

× �1 −φ1�ui � s1�ei�I�ui>s1�
}−1]

+ e−B�1 � s1�
l∑

i=1

I�ui = s1�

×
[∫

O�tm�×�0�zm�
1�wm�vm� ui�dGvm

�wm�d��dvm�

×
{
φ0�ui�ei

i−1∏
k=1

�1 −φ0�uk�ek�
l∏

k=i+1

�1 −φ1�uk �ui�ei�
}−1]

�

(3.19)

where

d��i��vm� =
n∏

j=1� j	=i
λ�vj�dvj�

For the marginal distribution of N, first consider Pr
S1 > s1�. By the defi-
nition of the process, we can write

Pr
S1 > s� = E
{ ∏
t∈�0� s�

�1 −φ0�t�dA�t��
}

= ∏
t∈�0� s�

�1 −φ0�t�dA0�t���

where A0�t� = E�A�t��� Therefore

Pr
S1 > s� =
[ ∏
ui≤s

�1 −φ0�ui�ei�
]

exp
{
−
∫ s

0
λ�v�φ0�v�d�v�dv

}
�

Since A�t� has independent increments,

Pr
S2 > s2 � S1 = s1�

=
[ ∏
s1<ui≤s2

�1 −φ1�ui � s1�ei�
]

exp
{
−
∫ s2

s1

λ�v�φ1�v � s1�d�v�dv
}
�
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Hence

Pr
N�1� = 1� S1 ≤ s1�
= Pr
S2 > 1� S1 ≤ s1�

=
∫ s1

0

[ ∏
v<ui≤1

�1 −φ1�ui �v�ei�

× exp
{
−
∫ 1

v
λ�w�φ1�w �v�d�w�dw

}]
dP1�v��

where P1�v� = Pr
S1 ≤ v�. Consequently,

Pr
N�1� = 1� S1 ≤ s1� S1 	∈ U�

=
∫ s1

0
λ�s�

[ ∏
ui<s

�1 −φ0�ui�ei�
∏
ui>s

�1 −φ1�ui � s�ei�φ0�s�d�s�

× exp
{
−
∫ 1

0
λ�v��φ0�v�I�v≤s�φ1�v � s�I�v>s��d�v�dv

}]
ds�

(3.20)

In a similar manner we can show that

Pr
N�1� = 1� S1 ≤ s1� S1 ∈ U�

=
m∑
k=1

[
I�uk ≤ s1�φ0�uk�ek

k−1∏
j=1

�1 −φ0�ui�ei�
m∏

j=k+1

�1 −φ1�ui �uk�ei�

× exp
{
−
∫ 1

0
λ�v��φ0�v�I�v<uk�φ1�v �uk�I�v>uk��d�v�dv

}]
(3.21)

Integrating out (3.19) with (3.20) and (3.21) yields the same distribution as in
(3.10), which completes the proof. ✷

Now, we proceed to drop the condition ν��0�1�×�0�1�� <∞ in Theorem 3.1.
If ν��0�1� × �0�1�� = ∞, Fs may not be a finite measure, in which case the
process A jumps infinitely many times on a finite time interval. Before go-
ing further, we explain why we need a process with infinitely many jumps.
Consider a random variable X on �0�1� whose cumulative hazard function is
A. In many situations a priori we want that the support of X covers �0�1�.
Equivalently, we want

n∏
i=1

Pr
X ∈ �ti−1� ti��A� > 0(3.22)

for any sequence 0 = t0 < t1 < · · · < tn = 1. If A is random, we want that
(3.22) holds with probability 1, which is impossible if A has only finitely many
jumps.

The main idea of obtaining the posterior distribution is to approximate the
Lévy process A�t� with the compensator (2.8) by a sequence of extended com-
pound Poisson processes An�t� with the compensator νn given by (2.9). To
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complete the proof, we shall show that the sequence of the posterior distribu-
tions of An converges weakly to the posterior distribution of A in some sense.
Unfortunately, the convergence of joint distributions does not always imply the
convergence of the conditional distributions. Some sufficient conditions for the
convergence of conditional distributions are available in Sweeting (1989). In
our situation, however, those conditions in Sweeting (1989) are not applica-
ble since the posterior distribution is not continuous on � due to the fixed
times of discontinuity. To circumvent this difficulty, we will directly prove the
convergence of the posterior distributions.

Throughout this section, we always assume that An and A are Lévy pro-
cesses on �� � �� � with the compensators (2.9) and (2.8), and given An and
A, Nn and N are multiplicative intensity counting processes with cumulative
intensity functions An and A and the predictable processes

Yn�t� = φ�t �Nn�
and

Y�t� = φ�t �N��
where φ is given by (3.2).

Lemma 1. For all f ∈ B�� �,
E�f�Nn�� → E�f�N���(3.23)

where B�� � is a class of all bounded measurable functions on � .

Proof. Since Nn →� N by Theorem A.1 in the Appendix and f is
bounded, for a given ε > 0, we can choose some constants k and M such that

E�f�Nn�I�Nn�1� ≥ k�� < ε

and

E�f�N�I�N�1� ≥ k�� < ε

for all n > M. So it suffices to show that

E�f�Nn�I�Nn�1� < k�� → E�f�N�I�N�1� < k��(3.24)

for all k. Since f�Nn�I�Nn�1� < k� and f�N�I�N�1� < k� are bounded mea-
surable functions for σ�Sn1 � � � � � Snk� and σ�S1� � � � � Sk�, respectively, where Sni
and Si are the times of the ith-jump of Nn and N, respectively, (3.24) would
be true if

Pr
�Sn1 � � � � � Snk� ∈ B� → Pr
�S1� � � � � Sk� ∈ B�(3.25)

for all B ∈ �k�0�1� as n→ ∞.



NONPARAMETRIC BAYESIAN ESTIMATOR 575

We shall use mathematical induction to prove (3.25). Since the processes
An and A have independent increments, it is easy to see that the cumulative
hazard functions Gn

1 and G1 of Sn1 and S1 are

Gn
1�t� =

∫ t

0
φ0�s�dA0

n�s�

and

G1�t� =
∫ t

0
φ0�s�dA0�s��

where A0
n = E�An� and A0 = E�A�. Here,

A0
n�t� =

∫ t

0
an�s�ds+

l∑
i=1

aiI�ui ≤ t�

and

A0�t� =
∫ t

0
a�s�ds+

l∑
i=1

aiI�ui ≤ t��

where an�s� =
∫ 1

1/n udFs�u�, a�s� =
∫ 1

0 udFs�u� and ai =
∫ 1

0 udHi�u�. Since
an → a, the bounded convergence theorem implies that

sup
B∈��0�1�

∣∣Pr
Sn1 ∈ B� − Pr
S1 ∈ B�∣∣ → 0�

Suppose the assertion (3.25) is true for k =m. Define a sequence of proba-
bility measures Qn�· � sm� and Q�· � sm� on ��0�1� indexed by sm ∈ �0�1�m by

Qn�B � sm� = Pr
Snm+1 ∈ B � Sn
m = sm�

and

Q�B � sm� = Pr
Sm+1 ∈ B � Sm = sm��
where Sn

m = �Sn1 � � � � � Snm� and Sm = �S1� � � � � Sm�. Then it is easy to see that
the cumulative hazard functions corresponding to Qn�· � sm� and Q�· � sm� are
Gn
m+1 and Gm+1� where

Gn
m+1�t � sm� =

∫ t

0
φm+1�s � sm�I�sm ≤ s�dA0

n�s�

and

Gm+1�t � sm� =
∫ t

0
φm+1�s � sm�I�sm ≤ s�dA0�s��

Again the bounded convergence theorem implies

sup
B∈��0�1�� sm∈�0�1�m

∣∣Qn�B � sm� −Q�B � sm�∣∣ → 0�(3.26)
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For Bm+1 ∈ �m+1�0�1�, let B�sm� = 
s� �s1� � � � � sm� s� ∈ Bm+1�. Then, we
have ∣∣Pr
Sn

m+1 ∈ B� − Pr
Sm+1 ∈ B�∣∣
= ∣∣EPn

�Qn�B�Sn
m� �Sn

m�� −EP�Q�B�Sm� �Sm��∣∣
≤ ∣∣EPn

�Qn�B�Sn
m� �Sn

m� −Q�B�Sn
m� �Sn

m��∣∣
+ ∣∣EPn

�Q�B�Sn
m� �Sn

m�� −EP�Q�B�Sm� �Sm��∣∣�
(3.27)

The first term of the last inequality in (3.27) converges to 0 due to (3.26),
and the second term also converges to 0 since Q�B�Sm� �Sm� is a measurable
function for σ�S1� � � � � Sm�. ✷

Theorem 3.2. Theorem 3.1 still holds when ν��0�1� × �0�1�� = ∞.

Proof. Let An be the extended compound Poisson process with the com-
pensator νn defined by (2.9). By Theorem A.1 in the Appendix, we have

E
[
exp

{
−
∫ 1

0
g�t�dAn�t� − f�t�dNn�t�

}]

→ E
[
exp

{
−
∫ 1

0
g�t�dA�t� − f�t�dN�t�

}](3.28)

for all f�g ∈ C+�0�1� where C+�0�1� is the class of all nonnegative continuous
functions on �0�1�.

Define a sequence of probability measures Qn�· �y� and Q�· �y� on � in-
dexed by y ∈ � by

Qn�G �Nn� = Pr
An ∈ G�Nn�
and

Q�G �N� = Pr
Ã ∈ G�N��

where Ã is a Lévy process on �� � �� � with the compensator ν in (3.3) for
given N.

To prove the theorem, we shall show that

∫
�

∫
�

exp
{
−
∫ 1

0
g�t�da�t� − f�t�dy�t�

}
Q�da �y�PN�dy�

= E
[
exp

{
−
∫ 1

0
g�t�dA�t� − f�t�dN�t�

}]
�

(3.29)

for all f�g ∈ C+�0�1�. Let

1n�y� =
∫
�

exp
{
−
∫ 1

0
g�t�da�t�

}
Qn�da �y�
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and

1�y� =
∫
�

exp
{
−
∫ 1

0
g�t�da�t�

}
Q�da �y��

Because of (3.28), (3.29) is equivalent to
∫
�

exp
{
−
∫ 1

0
f�t�dy�t�

}
1n�y�PNn

�dy�

→
∫
�

exp
{
−
∫ 1

0
f�t�dy�t�

}
1�y�PN�dy��

(3.30)

Now it can be shown that∫
�

exp
{
−
∫ 1

0
f�t�dy�t�

}
�1n�y� −1�y��PNn

�dy� → 0�(3.31)

The proof is in the Appendix. Also, by Lemma 1, we have
∫
�

exp
{
−
∫ 1

0
f�t�dy�t�

}
1�y��PNn

�dy� −PN�dy�� → 0�(3.32)

Combining (3.31) and (3.32) we conclude (3.30), which completes the proof. ✷

Let us next consider multiple sample paths. Let N1� � � � �Nn be i.i.d. multi-
plicative counting processes with a common cumulative intensity function A.
Define a new process N�t� by

N�t� =
n∑
k=1

Nk�t��

let q be the number of the distinct jumps of N and let v1� � � � � vq be the distinct
points at which the process N makes jumps. The following theorem can be
proved by repeated application of Theorem 3.2, conditioning first on N1, then
on N2 and so on.

Theorem 3.3. Let A be a Lévy process on �� � �� � with a compensator ν,

ν��0� t� ×D� =
∫ t

0

∫
D
dFs�x�ds

for t ∈ �0�1� and D ∈ ��0�1�. Then the posterior distribution of A given
N1� � � � �Nn is also a Lévy process on �� � �� � with the compensator

νp��0� t� ×D� =
∫ t

0

∫
D

n∏
i=1

�1 −Yi�s�x�dFs�x�ds

+
q∑

k=1

c−1
k

∫
D

n∏
i=1

η�Yi�vk�x��Ni�vk��dFvk
�x�I�vk ≤ t��

for t ∈ �0�1� and D ∈ ��0�1�, where

η�x�y� = xI�y>0��1 − x�I�y=0�
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and

ck =
∫ 1

0

n∏
i=1

η�Yi�vk�x��Ni�vk��dFvk
�x��

Remark. In Theorem 3.3, we assume that U = �, which is needed only
for the notational convenience and can be easily dropped out.

For multivariate counting processes, we can also obtain a similar result
as in Theorem 3.3. Let N1� � � � �Nn be i.i.d. k-variate counting processes with
intensity processes �1� � � � ��n� where Ni = �Ni1� � � � �Nik�, �i = ��i1� � � � � �ik�
and �ij can be represented by

�ij =
∫ t

0
Yij�s�dAj�s�

for some predictable processes Yij with respect to � Ni . Suppose that the com-
mon cumulative intensity functions A = �A1� � � � �Ak� are independent Lévy
processes on �� � �� � with the compensators � = �ν1� � � � � νk�. Define a new
process N• = �N•1� � � � �N•k� by

N•j�t� =
n∑
i=1

Nij�t�

and let qj be the number of distinct jumps of N•j and v1j� � � � � vqjj be the
distinct points at which the process N•j makes a jump. We state the main
result without proof. The proof can be done by modifying the proof of the
univariate case.

Theorem 3.4. Suppose that for j = 1� � � � � k�

νj��0� t� ×D� =
∫ t

0

∫
D
dFj

s �x�ds
for t ∈ �0�1� and D ∈ ��0�1�. Then the posterior distributions of Aj given
N1� � � � �Nn, are mutually independent Lévy processes on �� � �� � with the com-
pensator ν

p
j ,

ν
p
j ��0� t� ×D� =

∫ t

0

∫
D

n∏
i=1

�1 −Yij�s�x�dFj
s �x�ds

+
qj∑
i=1

c−1
ij

∫
D

n∏
m=1

η�Ymj�vij�x��Nmj�vij��dFj
vij
�x�I�vij ≤ t��

for t ∈ �0�1� and D ∈ ��0�1�, where

η�x�y� = xI�y>0��1 − x�I�y=0�

and

cij =
∫ 1

0

n∏
m=1

η�Ymj�vij�x��Nmj�vij��dFj
vij
�x��
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4. Examples. Let A be a Lévy process on �� � �� � with the compensator
ν in (2.8). Then the prior mean of A becomes

E�A�t�� =
∫ t

0

∫ 1

0
xdFs�x�ds+

l∑
k=1

I�uk ≤ t�
∫ 1

0
xdHk�x��

If we define distribution functions Gt�x� on �0�1� by Gt�x� =
∫ x

0 ydFt�y�/λ�t��
where λ�t� = ∫ 1

0 ydFt�y�, then the prior mean becomes

E�A�t�� =
∫ t

0
λ�s�ds+

l∑
k=1

I�uk ≤ t�ek�

where ek = ∫ 1
0 xdHk�x�. Also the prior variance of the process A is

Var�A�t�� =
∫ t

0

∫ 1

0
xdGs�x�λ�s�ds+

l∑
k=1

I�uk ≤ t�
(∫ 1

0
x2 dHk�x� − e2

k

)
�

So to choose a Lévy process corresponding to prior information given by mean
and variance, we simply choose a mean function λ�s� and distribution func-
tions Gt and Hk appropriately. Note that the distributions Gt do not affect the
prior mean given λ�t�, and they control the variance of the process through
their means. For example, let us consider the beta process defined by Hjort
(1990). We can redefine the beta process with parameters A�t� and c�t� by a
Lévy process with λ�t� = dA�t�/dt and Gt�x� being a beta distribution func-
tion with parameters 1 and c�t�, that is,

Gt�x� =
∫ x

0
c�t��1 − y�c�t�−1 dy�

In this view, the name “beta process” fits well.
Now we present several examples of practical importance. For simplicity,

we always assume that U = �.

Example 1. Right-censored survival data. Let X1� � � � �Xn be i.i.d. ran-
dom survival times given a cumulative hazard function A. Assume that
�T1� δ1�� � � � � �Tn� δn� is observed where Ti = min�Xi�Ci�, δi = I�Xi ≤ Ci�
and C1� � � � � Cn are the censoring times. If we let

Ni�t� = I�Ti ≤ t and δi = 1��
then the cumulative intensity process �i�t� of Ni�t� with respect to �t becomes

�i�t� =
∫ t

0
Yi�s�dA�s��(4.1)

where Yi�s� = I�Ti ≥ s� and

�t = �
Ni

t ∨ �
Ci

t �

where �
Ci

t = σ�I�Ci ≤ s�� s ≤ t�.
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Under the assumption of independent censoring (i.e., Xi and Ci are inde-
pendent), we can consider (4.1) as the intensity process of Ni with respect to
�

Ni

t conditional on �
Ci

t . Hence all necessary calculations can be done condi-
tionally. If the prior distribution of A is a beta process with parameters A0�t�
and c�t�, the posterior distribution is also a beta process with parameters

Ap�t� =
∫ t

0

c�s�
c�s� +Y•�s�

dA0�s� + 1
c�s� +Y•�s�

dN•�s�(4.2)

and

cp�t� = c�t� +Y•�t��(4.3)

where N•�t� =
∑n

i=1 Ni�t� and Y•�t� =
∑n

i=1 Yi�t�, which was already obtained
by Hjort (1990).

Remark. In usual models of survival data, A is defined on �0�∞� instead
of on the compact set �0� t�, in which case we need to put a prior mass on the
space of intensity functions defined on �0�∞�. However, this can be done by
assigning the prior mass on the compact sets �0� t� for all t > 0 in a certain
consistent way. For example, we can define a beta process A on �0�∞� with
parameters A0 and c by a stochastic process such that on any compact set
�0� t�, A is a beta process with parameters A0 and c. The process A is well
defined on �0�∞� because the beta process has independent increments and
so all finite dimensional distributions are uniquely determined which satisfy
the consistency condition of Kolmogorov’s existence theorem [see, for example,
Shiryaev (1991)]. With this definition, we can conclude that the posterior dis-
tribution of A on �0�∞� is also a beta process with parameters Ap and cp in
(4.2) and (4.3), since the posterior distribution of A on �0� t� is a beta process
with the same parameters for all t > 0.

Example 2. Left-truncated, right-censored survival data. Left truncation is
very common in fields like demography and epidemiology where observations
consist of an entrance time (left truncation), an exit time and a type of exit
(either death or right censoring). See Anderson, Borgan, Gill and Keiding
(1993) and references therein. Let X1� � � � �Xn be i.i.d. survival times with
cumulative hazard function A. Let E1� � � � �En and C1� � � � � Cn be entrance
times and censoring times, respectively, which are independent of Xi’s. Now,
define Mi�t� = I�Xi ≤ t� and

Ni�t� =
∫ t

0
I�Ei < s ≤ Ci�dMi�s��

Then conditional onE1� � � � �En andC1� � � � � Cn,Ni is a multiplicative counting
process with the cumulative intensity process

��t� =
∫ t

0
Yi�s�dA�s��
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where Yi�s� = I�Ei < s ≤ Ci�� Therefore, if the prior distribution of A is a
beta process with parameters A0�t� and c�t�, the posterior distribution is also
a beta process with parameters

Ap�t� =
∫ t

0

c�s�
c�s� +Y•�s�

dA0�s� + 1
c�s� +Y•�s�

dN•�s�

and

cp�t� = c�t� +Y•�t��
where N•�t� =

∑n
i=1 Ni�t� and Y•�t� =

∑n
i=1 Yi�t�.

Example 3. Poisson process. Let N1� � � � �Nn be i.i.d. Poisson processes
with the mean function A. In this case, Yi�t� ≡ 1 for i = 1� � � � � n. If the
prior distribution of A is a beta process with parameters A0�t� and c�t�, then
the posterior distribution is again a beta process with parameters

Ap�t� =
∫ t

0

c�s�
c�s� + n

dA0�s� + 1
c�s� + n

dN•�s�

and

cp�t� = c�t� + n�

Example 4. Censored Poisson process. A nonparametric Bayesian problem
for a censored Poisson process model was considered by Lo (1992) as follows.
Let M1� � � � �Mn be i.i.d. Poisson processes with the common mean function
A. Define risk functions Yi such that

Yi�t� = 1 if the process Mi is observed at time t�

= 0 if the process Mi is not observed at time t

and Yi is assumed to be left continuous and independent of Mi. A censored
Poisson process Ni can be defined by

Ni =
∫ t

0
Yi�s�dMi�s��

In this case, for a given Yi, the cumulative intensity process �i of Ni is

�i�t� =
∫ t

0
Yi�s�dA�s��

Hence if the prior distributions of A is a beta process with parameters A0�t�
and c�t�, then the posterior distribution is a beta process with parameters

Ap�t� =
∫ t

0

c�s�
c�s� +Y•�s�

dA0�s� + 1
c�s� +Y•�s�

dN•�s�

and

cp�t� = c�t� +Y•�t��
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Example 5. Counter model. A counter is a device for detecting and reg-
istering instantaneous pulse-type signals. A familiar example is the electron
multiplier. All physically realizable counters are imperfect, incapable of detect-
ing all signals that enter their detection chambers. After a particle or signal
is registered, a counter must recuperate or renew in preparation for the next
arrival. This readjustment period is called locked time. See Pyke (1958), Kar-
lin and Taylor (1975) and Kao and Smith (1993) for details. Suppose that the
arrival process M follows a Poisson process with mean function A and locked
times C1�C2� � � � are i.i.d. positive random variables which are independent of
M. Then the observable process N is

N�t� =
∫ t

0
Y�s�dM�s��

where Y�s� = I�s ≥ SN�s−� + CN�s−�� and Si is the time of the ith jump
of N. The counter model is also used for disease event history data where
subjects under observation experience a certain disease repeatedly, and once
the disease occurs it lasts for a certain period of time in which no new disease
can occur.

Let M1� � � � �Mn be i.i.d. Poisson processes with mean function A. Let
Ci�1�Ci�2� � � � be i.i.d. positive random variables which are independent of
Mi’s. Now, define a process Ni�t� by

Ni�t� =
∫ t

0
Yi�s�dMi�s��

where

Yi�s� = I�s ≥ Si�Ni�s−� +Ci�Ni�s−���
Then conditional on Cij’s, Ni is a multiplicative counting process with the
cumulative intensity process

�i�t� =
∫ t

0
Yi�s�dA�s��

So if the prior distribution of A is a beta process with parameters A0�t� and
c�t�, then the posterior distribution is a beta process with parameters

Ap�t� =
∫ t

0

c�s�
c�s� +Y•�s�

dA0�s� + 1
c�s� +Y•�s�

dN•�s�

and

cp�t� = c�t� +Y•�t��

Remark. The counter model and the censored Poisson process are similar
in the sense that the two processes are thinned Poisson processes. However,
the thinning procedure in the counter model depends on the underlying pro-
cess while it is independent of the underlying process in the censored Poisson
process. It is worth noting that Bayesian estimators of any thinned Poisson



NONPARAMETRIC BAYESIAN ESTIMATOR 583

processes can be obtained by applying our results as long as the thinning
procedure is predictable.

Example 6. Finite state space Markov chain. Suppose that X1�t�� � � � �
Xn�t� are i.i.d. Markov processes moving around in the state space 
1� � � � � k�
with cumulative transition intensity functions Ajl. Introduce

Nijl�t� = number of observed transitions j→ l of Xi during [0,t]

and

Yij�t� = I�Xi�t−� = j��
Then the cumulative intensity process �ijl of Nijl becomes

�ijl�t� =
∫ t

0
Yij�s�dAjl�s��

Therefore, if the prior distributions of Ajl are independent beta processes with
parameters A0

jl and cjl, the posterior distributions are also independent beta
processes with parameters

A
p
jl�t� =

∫ t

0

cjl�s�
cjl�s� +Y•j�s�

dA0
jl�s� +

1
cjl�s� +Y•j�s�

dN•jl�s�

and

c
p
jl�t� = cjl +Y•j�t��

where N•jl�t� =
∑n

i=1 Nijl�t� and Y•j�t� =
∑n

i=1 Yij�t�.

APPENDIX

A.1. Weak convergence of multiplicative counting processes.

Lemma 2. LetAn andA be a sequence of functions on � such thatAn → A
with respect to the total variation norm. Suppose that Nn and N are counting
processes defined on �� � �� �, whose cumulative intensity processes �n and �
are given by

�n�t� =
∫ t

0
φ�s �Nn�dAn�s�

and

��t� =
∫ t

0
φ�s �N�dA�s��

where φ is defined in (3.2). Then as n→ ∞, Nn →� N on � .



584 Y. KIM

Proof. First, we will show that the sequence of Nn is tight. For this, it
suffices to show that for a given ε > 0, there exists some constants M and k
such that Pr
Nn�1� > k� < ε for all n > M. By the Chebyshev inequality,

Pr
Nn�1� > k� ≤ EPn
�Nn�1��/k

= EPn
��n�1��/k

≤ An�1�/k�
where the last inequality holds because of φ ≤ 1. Since An�1� → A�1�, we
can choose k and M sufficiently large so that An�1�/k < ε for n > M, which
completes the proof of tightness.

Now, we can apply Theorem IX.2.11 in Jacod and Shiryaev (1987) to con-
clude the theorem. ✷

Theorem A.1. For given An and A, let Nn and N be multiplicative count-
ing processes defined on �� � �� � with the cumulative intensity processes �n
and � given by

�n�t� =
∫ t

0
φ�s �Nn�dAn�s�

and

��t� =
∫ t

0
φ�s �N�dA�s��

where φ is given by (3.2). Suppose that A is a Levy process on �� � �� � with
the compensator

ν��0� t� ×D� =
∫ t

0

∫
D
dFs�x�ds+

∑
uj≤t

∫
D
dHj�x�

for t ∈ �0�1� and D ∈ ��0�1� and a given set U = 
u1� � � � � ul�, and that An

are Levy processes on �� � �� � with the compensators

νn��0� t� ×D� =
∫ t

0

∫
D∩�1/n�1�

dFs�x�ds+
∑
uj≤t

∫
D
dHj�x�

for t ∈ �0�1�, D ∈ ��0�1� and n = 1�2� � � � � Then

�Nn�An� →� �N�A�
on � ×� .

Proof. It suffices to show that for all f and g in C+�0�1�,

E
[
exp

{
−
∫ t

0
g�s�dAn�s� − f�s�dNn�s�

}]

→ E
[
exp

{
−
∫ t

0
g�s�dA�s� − f�s�dN�s�

}]
�

(A.1)
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Define a function 1�a� on � by

1�A� = E
[
exp

{
−
∫ 1

0
f�t�dN�t�

}∣∣∣∣A
]

exp
(
−
∫ t

0
g�s�dA�s�

)
�

where E�·�A� denotes a conditional expectation for a given A. Then (A.1) is
equivalent to

E�1�An�� → E�1�A���

Define a new process Ãn by

Ãn�t� =
∑
s≤t
�A�s�I��A�s� ≥ 1/n��

Then it is easy to see that Ãn is a Levy processes on �� � �� � with the com-
pensator νn, and hence Ãn =d An. Since

sup
t∈�0�1�

∣∣Ãn�t� −A�t�∣∣ → 0

with probability 1, Lemma 2 implies

1�Ãn� −1�A� → 0(A.2)

with probability one. Since 1 is a bounded function, the proof is done. ✷

A.2. Proof of (3.31).

Lemma 3. Let z1� � � � � zn and w1� � � � �wn be real numbers whose absolute
values are less than or equal to 1. Then

∣∣∣∣
n∏
i=1

zi −
n∏
i=1

wi

∣∣∣∣ ≤
n∑
i=1

�zi −wi��

The proof can be found in any standard book [see, e.g., Durrett (1991)].

Lemma 4. For any given C ∈ ��0�1�, let C̃ = C\U. Then

Pr
Nn makes no jump on C̃� ≥ exp
(−A0�1�µ�C�) �

where µ is the Lebesgue measure.

Proof. Since we are only interested in the behavior ofNn onC\U, without
loss of generality, we can assume that A0�s� is continuous. Since A0

n ≤ A0, for
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any open interval C = �a� b� we have

Pr
Nn makes no jump on C�

= E
[
E
{

exp
(
−
∫ b

a
φk�s �Tk�dA0

n�s�
) ∣∣∣∣Nn�a� = k

}]

≥ exp
{
−
∫ b

a
dA0

n�s�
}

≥ exp
{
−
∫ b

a
dA0�s�

}

≥ exp
−A0�1��b− a���
The same idea can be employed to show that for any set C of a finite union of
disjoint open intervals,

Pr
Nn makes no jump on C� ≥ exp
−A0�t�µ�C���
For any open set C ∈ �0�1�, there exist countably many disjoint open inter-

vals O1�O2� � � � such that

C =
∞⋃
i=1

Oi�

Let Cm = ⋃m
i=1 Oi. Then since


Nn makes no jump on Cm� ↓ 
Nn makes no jump on C�
as m→ ∞ and for each m,

Pr
Nn makes no jump on Cm� ≥ exp
−A0�1�µ�Cm���
we can conclude that

Pr
Nn makes no jump on C� ≥ exp
−A0�1�µ�C���
For any set C ∈ ��0�1�, there exists an open set Co such that C ⊂ Co and

µ�Co� − µ�C� < ε for a given ε > 0. Then

Pr
Nn makes no jump on C� ≥ Pr
Nn makes no jump on Co�
≥ exp
−A0�1�µ�Co��
≥ exp
−A0�1��µ�C� + ε���

Since ε is arbitrary, we complete the proof. ✷

Proof of (40). For a given ε > 0, define a sequence of sets Cn�ε� by

Cn�ε� =
{
s ∈ �0�1�

∣∣∣
∫ 1/n

0
udFs�u� > ε

}
�

Since
∫ 1/n

0 uFs�du� → 0 for all s ∈ �0�1�,
µ�Cn�ε�� → 0(A.3)
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as n→ ∞. By Lemma 4, we have

Pr
Nn makes no jump on Cn�ε�� ≥ exp�−A0�1�µ�Cn�ε����(A.4)

and so we can choose a constant M1 sufficiently large such that for all n > M1,

1 − Pr
Nn makes no jump on Cn�ε�� < ε�

Also, since Nn →� N, there exist constants K and M2 such that

Pr
Nn�1� > K� < ε(A.5)

for all n > M2.

Let B�Cn�ε�� = 
y ∈ � � y makes no jump on Cn�ε�� and B = 
y ∈
� � y�1� ≤K�� Then � = Bc ∪ �B∩B�Cn�ε��� ∪ �B∩Bc�Cn�ε���� Pn�Bc� ≤ ε
and Pn�B ∩Bc�Cn�ε�� ≤ ε� Therefore, we have

∣∣∣∣
∫
�

exp
(
−
∫ 1

0
f�t�dy�t�

)
�Dn�y� −D�y��PNn

�dy�
∣∣∣∣

≤
∫
B∩B�Cn�ε��

∣∣Dn�y� −D�y�∣∣PNn
�dy� + 4ε�

(A.6)

Since Nn�1� ≤K and

∫ 1/n

0
xdFt�x� ≤ ε

whenever �Nn�t� = 1 and Nn ∈ B ∩ B�Cn�ε��, by applying Lemma 3 to the
Lévy’s formulas of Dn and D, we can show that for n > max
M1�M2�,

∫
B∩B�Cn�ε��

�Dn�y� −D�y��PNn
�dy�

≤
∫
B∩B�Cn�ε��

∑
s��y�s�=1� s	∈U

∣∣∣∣cn3�s�−1
∫ 1

0
exp�−g�s�x�Y�s�xdFn

s �x�

− c3�s�−1
∫ 1

0
exp�−g�s�x�Y�s�xdFs�x�

∣∣∣∣
+

∣∣∣∣exp
(∫ 1

0

∫ 1

0
�1 − eg�s�x��1 −Y�s�x�dFn

s �x�
)
ds

− exp
(∫ 1

0

∫ 1

0
�1 − eg�s�x��1 −Y�s�x�dFs�x�

)
ds

∣∣∣∣PNn
�dy�

≤Mε�

where the constant M depends on neither n nor ε. Since ε is arbitrary, the
proof is done. ✷
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