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THEORETICAL COMPARISONS OF BLOCK
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By S. N. Lahiri

Iowa State University

In this paper, we compare the asymptotic behavior of some common
block bootstrap methods based on nonrandom as well as random block
lengths. It is shown that, asymptotically, bootstrap estimators derived us-
ing any of the methods considered in the paper have the same amount of
bias to the first order. However, the variances of these bootstrap estima-
tors may be different even in the first order. Expansions for the bias, the
variance and the mean-squared error of different block bootstrap variance
estimators are obtained. It follows from these expansions that using over-
lapping blocks is to be preferred over nonoverlapping blocks and that using
random block lengths typically leads to mean-squared errors larger than
those for nonrandom block lengths.

1. Introduction. In recent years, different block bootstrap methods have
been proposed in the literature in the context of bootstrapping dependent data,
in attempts to reproduce different aspects of the dependence structure of the
observed data in the “resampled data.” In this paper, we consider some of the
most commonly used block bootstrap methods and compare their large sample
properties in estimating the bias and the variance of a large class of estimators
that can be represented in terms of certain multidimensional smooth functions
of sample means. The methods that we consider in this paper are:

1. The moving block bootstrap (MBB), proposed by Künsch (1989) and Liu
and Singh (1992).

2. The nonoverlapping block bootstrap (NBB), based on the work of Carlstein
(1986).

3. The circular block bootstrap (CBB), proposed by Politis and Romano (1992).
4. The stationary bootstrap (SB), proposed by Politis and Romano (1994).

The first three of these methods resample blocks of observations with a
nonrandom block length. The last one, namely, the SB, differs from the rest in
that it uses a random block length and hence, has a slightly more complicated
structure. (A description of all the methods are presented in Section 2.) It is
well known [cf. Hall, Horowitz and Jing (1995)] that the bias and the variance
of a block bootstrap estimator crucially depend on the block length (which
serves as the smoothing parameter in this case) and that either may be the
dominating term in the expansion for the mean-squared error (MSE) of a block
bootstrap estimator, depending on the order of magnitude of the block length.
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The main results of the paper show that for a given block length (expected
block length, for the last method), all the four methods have the same amount
of bias asymptotically. However, the leading terms in the variance part are
not the same for all methods. The first-order terms in the expansions for the
variances of the MBB and the CBB estimators are identical, making them
asymptotically equivalent also in the MSE sense at all levels of the block
length considered in the paper. In terms of the variance, the NBB estimators
have an asymptotic efficiency of 2/3 compared to the corresponding MBB or
CBB estimators. Consequently, when the block size l is such that the bias and
the variance are of the same order, the MSE of an NBB estimator continue to
be larger than that of the corresponding MBB and CBB estimators, making
the NBB less efficient.

Before comparing the performance of the SB method, we pause to note that
the expansions for the biases and the variances of the block bootstrap esti-
mators also yield asymptotic expressions for the MSE-optimal block sizes. As
a corollary to the expansions obtained in the paper, we determine the MSE-
optimal block sizes for (the bias and variance estimation based on) each of the
block bootstrap methods mentioned above. For the MBB and the NBB, some
results in this direction have been obtained by Bühlmann and Künsch (1994),
Hall, Horowitz and Jing (1995) and Lahiri (1996b). The results for the CBB
and the SB seem to be new. The major technical difficulties encountered in ob-
taining the expansions for the MSE’s of block bootstrap estimators arise in the
SB case. Because of the randomness of the block length, the number of blocks
resampled under the SB method is also random. In Section 4, we develop some
conditioning arguments to obtain bounds on conditional moments of a random
sum of block sums, where each block itself has a random number of terms.
These bounds yield suitable stochastic expansions for the SB estimators and
expansions for the MSEs of the SB estimators. For the latter purpose, we also
need to use some elementary Hilbert space techniques to obtain closed form
expressions for the variance part of the SB estimators. Politis and Romano
(1994) identified the right order of the optimal expected block length for esti-
mating the variance of the sample mean by the SB method. Our results refine
theirs by providing an exact expression for the optimality constant.

From these expansions, it follows that the variances of the SB estimators
are always at least twice as large as the variances of the corresponding NBB
estimators and at least three times as large as those of the MBB and CBB esti-
mators. Indeed, the results of Section 3 show that for all three block bootstrap
methods based on nonrandom block lengths, the variances depend only on the
value of the spectral density (say) f�·� at the origin, but for the SB method,
the variance gets contributions from the spectral density at all frequencies in
the interval �−π�π�. As a result, relative magnitudes of f�0� and f�x�, x �= 0
determine the degree of inferiority of SB estimators with respect to the other
block bootstrap methods. It is observed that for (expected) block lengths of
order larger than n1/3, the asymptotic relative efficiency (ARE) (defined as the
limit of the ratios of MSEs) of a SB estimator compared to a NBB estimator
lie in the range �0�1/2� and the ARE of a SB estimator compared to a MBB
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or CBB lie in the interval �0�1/3�. In fact, an ARE arbitrarily close to zero
is possible, for example, if the ratio f�w�/f�0� takes arbitrarily large values
over a set of the form ε < 	w	 < π/2− ε, ε > 0, making the variance of the SB
estimator relatively very large.

We also carry out comparisons of the bootstrap methods in terms of their
“best” possible performances, that is, by comparing the (asymptotically) min-
imum values of the MSE for each of the block bootstrap methods. This would
be the case if we used each block bootstrap method with the corresponding
optimal block length. In this case also, both the MBB and the CBB outperform
the NBB and the NBB outperforms the SB. The ARE of the NBB compared
to the MBB and the CBB is �2/3�2/3� and the ARE of the SB compared to the
NBB is less than 2−2/3 at the respective optimal block lengths.

We conclude this section with a brief literature review. Different versions
of block bootstrap methods have been formulated by Hall (1985), Carlstein
(1986), Künsch (1989), Liu and Singh (1992), Politis and Romano (1992, 1994)
and Carlstein, Do, Hall, Hesterberg and Künsch (1995), among others. Prop-
erties of block bootstrap methods have been investigated by Davison and Hall
(1993), Shao and Yu (1993), Bühlman (1994), Naik-Nimbalkar and Rajarshi
(1994), Lahiri (1991, 1995, 1996a), Götze and Künsch (1996), among others.
The important problem of choosing optimal block lengths has been addressed
by Bühlmann and Künsch (1994), Hall, Horowitz and Jing (1995) and Lahiri
(1996b).

The rest of the paper is organized as follows. In Section 2, we describe the
block bootstrap methods considered in the paper. In Section 3, we state the
main results of the paper. Results of a small simulation study are reported in
Section 4 while proofs of all results are given in Section 5.

2. Description of block bootstrap methods. In this section, we briefly
describe the block bootstrap methods and introduce the “smooth function
model” that will serve as the theoretical framework for our investigation. Let

Xi�∞

i=−∞ be a R
d-valued stationary process with EX1 = µ and let Xn =


X1� � � � �Xn� denote the available observations. Suppose that θ̂n is an esti-
mator of the parameter of interest θ. The “smooth function model” [cf. Bhat-
tacharya and Ghosh (1978), Hall (1992)] assumes that θ = H�µ� and θ̂n =
H�X̄n� where X̄n ≡ n−1 ∑n

i=1 Xi and H� R
d → R is a smooth function. Con-

sidering suitable transformations of the original observations, this formula-
tion allows us to consider a wide class of estimators, such as, the sample lag
cross-covariance estimators, the sample autocorrelation estimators, the gen-
eralized M-estimators of Bustos (1982) and the Yule–Walker estimators for
autoregressive processes.

Next we describe the block bootstrap methods mentioned in the introduc-
tion. Let l ≡ ln be an integer, satisfying 1 < l < n. Here, l denotes the
(expected) block length for the block bootstrap methods. Given the observa-
tions Xn, we form the time series 
X0i�i≥1 by periodic extension where for
i ≥ 1, X0i = Xj if i = mn + j for some integers m ≥ 0 and 1 ≤ j ≤ n.
Also, define blocks of length k ≥ 1 based on the time series X01, X02� � � � by
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��i� k� = �X0i� � � � �X0�i+k−1�, i ≥ 1� k ≥ 1. Different versions of block boot-
strap methods are obtained by resampling from suitable subcollections of all
“observable” blocks 
��i� k�� i ≥ 1� k ≥ 1�. We describe the details of each
method below.

MBB. The MBB method of Künsch (1989) and Liu and Singh (1992) resam-
ples blocks randomly, with replacement from the subcollection 
��i� k�� i =
1� � � � � n−l+1� k = l� of overlapping blocks. Let I11� � � � � I1b be conditionally iid
random variables with the discrete uniform distribution on 
1� � � � � n− l+ 1�,
that is, P∗�I11 = i� = �n− l+ 1�−1, 1 ≤ i ≤ n− l+ 1, where b = ��n/l��. Here,
and in the following, we use P∗ and E∗ to denote, respectively, the conditional
probability, and conditional expectation, given Xn, and for any real number
x, we write ��x�� to denote the largest integer not exceeding x. Thus, the re-
sampled blocks for the MBB are given by ��I11� l�� � � � ���I1b� l� and arrang-
ing the elements in all b blocks in a sequence, we get the bootstrap sample
X∗

1�1� � � � �X
∗
1� l�X

∗
1� l+1� � � � �X

∗
1�2l� � � � �X

∗
1� bl. Here, we use the subscript 1 in

X∗
1� i to specify the bootstrap samples selected using the MBB. Similarly, we

will use the subscripts 2, 3 and 4 in the following to specify the bootstrap
samples obtained by using the NBB, the CBB and the SB, respectively. The
bootstrap version of the centered estimator Tn ≡ θ̂n − θ under the MBB is
given by T

∗�1�
n� l = H�X̄∗�1�

n� l � − H�E∗X̄
∗�1�
n� l � where X̄

∗�1�
n� l = n−1

1
∑n1

i=1 X
∗
1� i is the

bootstrap sample mean and n1 ≡ bl denotes the bootstrap sample size. The
MBB estimator of the sampling distribution of Tn is given by the conditional
distribution of T∗�1�

n� l , given Xn.

NBB. In the NBB, one restricts attention to the collection of disjoint blocks

���i−1�l+1� l�� 1 ≤ i ≤ b�. The main idea behind the NBB is due to Carlstein
(1986), who developed a variance estimation technique based on nonoverlap-
ping blocks. To describe it, let I21� � � � � I2b be conditionally iid random variables
with P∗�I21 = i� = b−1, 1 ≤ i ≤ b� Then the bootstrap sample X∗

2�1� � � � �X
∗
2� bl

for the NBB is obtained by arranging the bl elements in the b resampled
blocks ���I21 − 1�l+ 1� l�� � � � ����I2b − 1�l+ 1� l�. The NBB version of Tn is
given by T

∗�2�
n� l = H�X̄∗�2�

n� l � −H�E∗X̄
∗�2�
n� l �, where X̄∗�2�

n� l = n−1
1

∑n1
i=1 X

∗
2� i.

CBB. The CBB method, proposed by Politis and Romano (1992), resam-
ples from the collection of blocks 
��i� l�� 1 ≤ i ≤ n�. Thus, in contrast to the
MBB and the NBB, the CBB uses elements from the periodically extended
series 
X0i�i≥1 beyond X0n. Let I31� � � � � I3b be conditionally iid r.v.’s with
P∗�I31 = i� = n−1, 1 ≤ i ≤ n� Then the bootstrap sample X∗

3�1� � � � �X
∗
3� bl

under the CBB method is given by the elements of the resampled blocks
��I31� l�� � � � ���I3b� l�. Politis and Romano (1992) showed that for the CBB
sample mean X̄

∗�3�
n� l , E∗X̄

∗�3�
n� l = X̄n� Hence, the CBB version of Tn is given by

T
∗�3�
n� l = H�X̄∗�3�

n� l � −H�X̄n��
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SB. Unlike the MBB, NBB and CBB, the SB method of Politis and Ro-
mano (1994) uses a random block length to generate the bootstrap sample. Let
Lni ≡ Li, i ≥ 1 be conditionally iid r.v.’s having the geometric distribution with
parameter p = l−1 ∈ �0�1�, that is, P∗�L1 = k� = p�1 − p�k−1, k = 1�2� � � � �
Also, let I41� � � � � I4n be conditionally iid r.v.’s with the discrete uniform distri-
bution on 
1� � � � � n�. Then, the SB resamples K ≡ inf
k ≥ 1� L1+· · ·+Lk ≥ n�
blocks, given by ��I41�L1�� � � � ���I4K�LK�. Since E∗L1 = 1/p = l under the
geometric distribution of L1, on the average, the lengths of the resampled
blocks tend to infinity with n like the other block bootstrap methods. The
first n elements in the array ��I41�L1�� � � � ���I4K�LK� yield the SB sample
X∗

4�1� � � � �X
∗
4� n. Politis and Romano (1994) show that the bootstrap sample

generated by this resampling scheme is stationary (hence the name “station-
ary bootstrap”) and that E∗�X̄∗�4�

n� l � = X̄n. Hence, the bootstrap version of Tn

under the SB is given by T
∗�4�
n� l = H�X̄∗�4�

n� l � −H�X̄n�.
Each of the block bootstrap methods described above provides estimators

of different population characteristics of the estimator θ̂n. In this paper, we
compare the performance of these methods for estimating the parameters
φ1n ≡ Bias�θ̂n� = Eθ̂n − θ and φ2n ≡ Var�θ̂n� = E�θ̂n −Eθ̂n�2� The bootstrap
estimators of Bias�θ̂n� and Var�θ̂n� based on the block bootstrap methods de-
scribed above are respectively given by

φ̂1n�j� l� ≡ B̂IASj�l� = E∗T
∗�j�
n� l � j = 1�2�3�4�

φ̂2n�j� l� ≡ V̂ARj�l� = Var∗
(
T

∗�j�
n� l

)
� j = 1�2�3�4�

3. Main results. In this section, we compare the block bootstrap estima-
tors B̂IASj�l� and V̂ARj�l�, 1 ≤ j ≤ 4 in terms of their asymptotic MSEs.
Define the strong mixing coefficient of 
Xn� by α�n� ≡ sup
	P�A ∩ B� −
P�A�P�B�	� A ∈ � k

1 � B ∈ � ∞
k+n� k ≥ 1�� where for any 1 ≤ a ≤ b ≤ ∞� � b

a

denotes the σ-field generated by 
Xi� a ≤ i ≤ b�. Also, for r ≥ 1 and δ > 0, let
)�r� δ� = ∑∞

n=1 n
2r−1α�n�δ/�2r+δ�. As a convention, we also assume that unless

otherwise stated, limits in the order symbols are taken as n tends to infinity.

Conditions. �Dr� H� R
d → R and max
	DνH�x�	� 	ν	 = r� ≤ C�1+�x�a0�,

x ∈ R
d for some integer a0 ≥ 1�

�Mr� E�X1�2r+δ < ∞ and )�r� δ� < ∞ for some δ > 0�

Then we have the following result on the bias part of the bootstrap estima-
tors φ̂1n�j� l� and φ̂2n�j� l�, j = 1�2�3�4.

Theorem 3.1. Assume that l is such that l−1 + n−1/2l = o�1� as n → ∞.

(a) Suppose that Condition Dr holds with r = 3 and that Mr holds with
r = 3 + a0, where a0 is as specified by Condition Dr. Then there is a constant
A1 [cf. (5.1) in Section 5] such that

Bias�B̂IASj�l�� = n−1l−1A1 + o�n−1l−1� for j = 1�2�3�4�
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(b) Suppose that Condition Dr holds with r = 2 and that Mr holds with
r = 4 + 2a0, where a0 is as specified by Condition Dr. Then there is a constant
A2 [cf. (5.2) in Section 5] such that

Bias�V̂ARj�l�� = n−1l−1A2 + o�n−1l−1� for j = 1�2�3�4�

Thus, it follows from Theorem 3.1 that the biases of the bootstrap estimators
of φ1n and φ2n are identical up to the first-order terms for all of the block boot-
strap methods considered here. In particular, contrary to the common belief,
the stationarity of the SB observations X∗

4�1�X
∗
4�2� � � � does not contribute sig-

nificantly toward reducing the bias of the resulting bootstrap estimators. Also,
using either overlapping or nonoverlapping blocks incurs the same amount of
bias asymptotically. Since the bias of the block bootstrap estimators essentially
results from replacing the original data sequence X1� � � � �Xn by independent
copies of smaller subsequences, all the methods perform similarly as long as
the (expected) length l of these subsequences are asymptotically equivalent.

Next we compare the variances of the block bootstrap estimators of φ1n
and φ2n.

Theorem 3.2. Assume that the conditions of Theorem 3.1 on the block
length parameter l and on the index r in Conditions Dr and Mr for the re-
spective parts hold. Then there exist symmetric real valued functions g1, g2 [cf.
(5.3) in Section 5] such that:

(a) Var�B̂IASj�l�� = {
4π2g1�0�/3

}
n−3l+ o�n−3l�� j = 1�3�

Var�B̂IASj�l�� = {
2π2g1�0�

}
n−3l+ o�n−3l�� j = 2�

Var�B̂IASj�l�� = �2π�
[
2πg1�0� +

∫ π

−π
�1 + eiw�g1�w�dw

]
�n−3l�

+ o�n−3l�� j = 4�

(b) Var�V̂ARj�l�� = {�2π�2g2�0�/3
}
n−3l+ o�n−3l�� j = 1�3�

Var�V̂ARj�l�� = {�2π�2g2�0�/2
}
n−3l+ o�n−3l�� j = 2�

Var�V̂ARj�l�� = �2π�
[
2πg2�0� +

∫ π

−π
�1 + eiw�g2�w�dw

]
�n−3l�

+ o�n−3l�� j = 4�

Theorem 3.2 shows that the MBB and the CBB (i.e., j = 1�3) estimators
of φ1n = Bias�θ̂n� and φ2n = Var�θ̂n� have 2/3-times smaller variances than
the corresponding NBB estimators. Since the blocks in the MBB and the CBB
are allowed to overlap, the amount of variability in the resampled blocks is
less, leading to a smaller variance for these estimators. This advantage of
the MBB over the NBB was first noted by Künsch (1989) (cf. Remark 3.3) for
the sample mean and, more generally, by Hall, Horowitz and Jing (1995). It is
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interesting to note that in spite of all the differences in their resampling mech-
anisms, all four-block bootstrap methods have the same order of magnitude
for the variances of the resulting estimators. This is particularly surprising
in the case of the SB method, since it introduces additional randomness in
the resampled blocks. The effect of this additional randomness shows up in
the constant of the leading term in the expansion for the variances of the SB
estimators. Since )k ≡ ∫ π

−π�1 + eiw�gk�w�dw ≥ 0 for k = 1�2, it follows that
the SB estimators have asymptotically the largest variances among all four-
block bootstrap estimators for a given sequence of values of l. Furthermore,
as pointed out in the introduction, there exist random processes for which the
constants )1, )2 can be very large, leading to arbitrarily large MSEs for the SB
estimators.

From Theorems 3.1 and 3.2, we see that for each of the block bootstrap
methods considered here, as the (expected) block length l increases, the bias
of a block bootstrap estimator decreases while its variance part increases.
As a result, for each block bootstrap estimator, there is a critical value of
the block length parameter l that minimizes the MSE. We call the value of
l minimizing the leading terms in the expansion of the MSE as the (first-
order) MSE-optimal block length. Let lo1j = arg min
MSE�B̂IASj�l��� nε < l <

n�1−ε�/2� and lo2j = arg min
MSE�V̂ARj�l��� nε < l < n�1−ε�/2�, 1 ≤ j ≤ 4,
where 0 < ε < 1/2 is a given number. The following result gives the optimal
block lengths lokj, k = 1�2, j = 1�2�3�4 for estimating φ1n, φ2n by the four-
block bootstrap methods.

Corollary 3.1. Assume that the conditions of Theorems 3.1 and 3.2 hold
and that Ak �= 0, gk�0� �= 0, k = 1�2. Then, for k = 1�2,

lokj = (
3A2

k/�2π2gk�0��
)1/3

n1/3�1 + o�1��� j = 1�3�
lokj = (

A2
k/�π2gk�0��

)1/3
n1/3�1 + o�1��� j = 2�

lokj =
(
A2

k

/[
2π2gk�0� + π

∫ π

−π
�1 + eiw�gk�w�dw

])1/3

n1/3�1 + o�1���

j = 4�

The formulas in Corollary 3.2 for the MBB have been noted before by
Bühlmann and Künsch (1994), Hall, Horowitz and Jing (1995) and Lahiri
(1996b) under similar moment and mixing conditions. For the SB variance
estimator of the sample mean, Politis and Romano (1994) show that the order
of the MSE-optimal expected block length l = p−1 must be n1/3. Corollary 3.2
specifies the optimality constant that multiplies n1/3 for the optimal value of l.

It is clear from the definitions of lokj that each block bootstrap method pro-
vides the most accurate estimator of the parameter φkn when it is used with
the corresponding optimal block length. In the next result, we compare the
block bootstrap methods at their best possible performances, that is, when



COMPARISONS OF BLOCK BOOTSTRAP METHODS 393

each method is used to estimate a given parameter with its MSE-optimal
block length.

Theorem 3.3. Assume that the conditions of Corollary 3.1 hold. Then:

(a) MSE
(
B̂IASj�lo1j�

) = 31/3
[
2π2g1�0�A1

]2/3
n−8/3 + o�n−8/3�� j = 1�3�

MSE
(
B̂IASj�lo1j�

) = 3
[
π2g1�0�A1

]2/3
n−8/3 + o�n−8/3�� j = 2�

MSE
(
B̂IASj�lo1j�

) = 3
[{

2π2g1�0� + π
∫ π

−π
�1 + eiw�g1�w�dw

}
A1

]2/3

× n−8/3 + o�n−8/3�� j = 4�

(b) Expansions for MSE�V̂ARj�lo2j��’s are obtained by replacing g1�·� and
A1 in part (a) by g2�·� and A2, respectively.

Theorem 3.3 shows that when each method is used with the corresponding
MSE-optimal value of l, the MBB and the CBB has a MSE that is �2/3�2/3

times smaller than the MSE for the NBB, and the MSE of a NBB estimator
is, in turn, at least 2−2/3-times smaller than that of a SB estimator. Noting
that

∫ π
−π�1 + eiw�gk�w�dw can take arbitrarily large positive values for some

spectral densities f�·�, it follows that even at the respective optimal blocking
parameter values, the asymptotic relative efficiency of a SB estimator com-
pared to a NBB estimator can still be arbitrarily close to zero.

Remark 3.1. Recently Carlstein, Do, Hall, Hesterberg and Künsch (1995)
have proposed a block bootstrap method, called the matched block bootstrap.
Under some structural assumptions on the underlying process [e.g., AR�p�
or Markov], they show that the resulting estimator of the variance of the
sample mean has a variance of comparable order as the NBB and a bias that
is of smaller order than n−1l−1. Thus, the minimum MSE of the matched
block bootstrap is of a smaller order than the minimum MSEs for the four
methods considered in this paper. Consequently, the matched block bootstrap
outperforms the other methods at the respective optimal block sizes.

Remark 3.2. It is possible to carry out a comparison of the block bootstrap
methods for more complicated functionals of the sampling distribution of suit-
ably normalized or studentized θ̂n than the bias and the variance functionals.
In particular, for estimating the distribution function of a Studentized version
of θ̂n, an expansion for the MSE of the MBB estimator is known [cf. Lahiri
(1996b)]. Similar arguments also yield expansions for the NBB and the CBB
estimators as well. Furthermore, the Edgeworth expansion results of Lahiri
(1997) for the SB can be used to derive an expansion for the MSE of the SB
distribution function estimator. However, since exactly the same conclusions
continue to hold in that case, we present the results in this simpler and rep-
resentative set up and do not pursue such extensions here.
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4. Simulation results. In this section, we present the results of a small
simulation study to get an idea about the implications of the theoretical find-
ings of Section 3 in finite sample situations. In the simulation study, we con-
sidered three different models generating the observations, namely:

1. ARMA �1�1� model: Xt − 0�3Xt−1 = εt + 0�4εt−1;
2. AR (1) model: Xt = 0�3Xt−1 + εt;
3. MA (1) model: Xt = εt + 0�4εt−1;

where the innovations 
εt� were independent N�0�1� random variables. Per-
formance of the block bootstrap methods were compared at two sample sizes,
namely, n = 100 and n = 400 for estimating the parameter φ2n ≡ Var�X̄n�.
MSE’s of different block bootstrap estimators were computed using 2000 sim-
ulation runs.

Figures 1 and 2 show the MSEs of the MBB, NBB and the SB estimators of
φ2n as a function of the (expected) block length l for the three models based on
500 bootstrap relicates at each block length. We chose to present the result for
smaller values of l for highlighting their differences, though a similar pattern
continues to hold over a larger range of l. Also, we left out the CBB estmators
because of their almost identical performance to the MBB estimators over

Fig. 1. MSE’s of block bootstrap estimators of Var�X̄n� as a function of block length parameter l
at sample size n = 100.
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Fig. 2. MSE’s of block bootstrap estimators of Var�X̄n� as a function of block length parameter l
at sample size n = 400.

the range of values of l considered. From the figures, it is apparent that the
SBB estimators tend to have larger MSEs than the MSEs of the MBB and
NBB estimators under all three models at both sample sizes. Furthermore,
the relative magnitude of the MSEs of different methods shows the ordering
predicted by the theory, at all levels of the block length parameter l, starting
from l = 2. Thus, it appears that one is likely to gain some advantages by
using the MBB or the CBB over the other two-block bootstrap methods even
for moderate sample sizes.

5. Proofs. For proving the results, we need to introduce some notation.
Let Z denote the set of all integers and let Z+ = 
0�1� � � � � �. For α = �α1� � � � �

αd�′ ∈ �Z+�d, x = �x1� � � � � xd�′ ∈ R
d, let 	α	 = α1 + · · · + αd, α! = ∏d

i=1 αi!,
xα = ∏d

i=1�xi�αi and let Dα denote the αth order partial differential operator
∂α1+···+αd/∂xα1

1 · · · ∂xαdd . For any real numbers x�y, let x ∧ y = min
x�y�, x ∨
y = max
x�y�� and x+ = max
x�0�. Let ζs = �E�X1�s�1/s, s > 0. Write

cα = DαH�µ�/α!, ĉα� j = DαH�µ̂�j� l��/α!, and µ̂�j� l� = E∗X̄
∗�j�
n� l , where 1 ≤

j ≤ 4 and α ∈ Z
d
+. Write 6∞ for the limiting covariance matrix of the scaled

sample mean n1/2X̄n. Let Z∞ denote a random vector having the N�0� 6∞�
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distribution on R
d. Let f�·� denote the spectral density matrix of 
Xn�. We

index the components of the d×d matrix-valued function f�x� by unit vectors
α�β ∈ Z

d
+ as f�x�α�β�, 	α	 = 1 = 	β	. Let Z̃i = ∑

	α	=1 cα�Xi − µ�α, i ≥ 1. For
integers i ≥ 1, k ≥ 1, define the partial sum S�i� k� = X0i + · · · + X0�i+k−1�
of the extended time series 
X0j�j≥1. Set N = n − l + 1. For a set A, let
1�A� denote the indicator function of the set A. We will use C�C�·� to denote
generic positive constants depending on their arguments (if any) but not on n.
For notational simplicity, we shall always set µ = 0 in expressions involving
the r.v.’s Xi’s.

Then the constants Ai appearing in Theorem 3.1 are defined as

A1 = − ∑
	α	=1

∑
	β	=1

cα+β

( ∞∑
j=−∞

	j	EXα
1X

β
1+j

)
�(1)

A2 = −
∞∑

j=−∞
	j	EZ̃1Z̃1+j�(2)

Also, the function g1 of Theorem 3.2 is defined as

g1�w� = ∑
	α	=1

∑
	β	=1

∑
	γ	=1

∑
	ι	=1

cα+βcγ+ι

× {
f�w�α� γ�f̄�w�β� ι� + f�w�α� ι�f̄�w�β� γ�
+ f�w�β� γ�f̄�w�α� ι� + f�w�β� ι�f̄�w�α� γ�}�

(3)

−π ≤ w ≤ π, where z̄ denotes the conjugate of a complex number z. The
function g2�w� is obtained by replacing cα+β� cγ+ι in the definition of g1�w� by
cαcβ� cγcι� respectively.

In the following, to save space we shall only outline the main steps in the
proofs of the results.

Lemma 5.1. Let 
tn� be a sequence of real numbers such that tn → ∞ as
n → ∞ and let r ≥ 1 be an integer. Then:

(i) P�L1 > tnl� ≤ C exp�−tn�;
(ii) P�	K− np	 > √

np�log n�� ≤ exp�−C�log n�2�;
(iii) E�LK�r ≤ C�r�lr+1;
(iv) E�K�r ≤ C�r��np�r;
(v) E�Kr−1 ∑K

i=1 L
r
i � ≤ C�r�nr.

Proof. Since L1 has a geometric distribution, it can be shown [cf. Lem-
ma 4.4, Lahiri (1997)] that P�L1 > tnp

−1� ≤ exp��p−1tn − 1� log�1 − p�� ≤
C exp�−tn�� proving part (i). Part (ii) follows from Lemma 4.5 of Lahiri (1997),
which in turn, implies part (iv). For part (iii), we have

P�LK = m� =
n∑

k=1

P�LK = m�K = k�

= P�L1 = m�L1 ≥ n�
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+P�L1 = m�
n∑

k=2

P
(
n−m ≤ L1 + · · · +Lk−1 < n

)

≤ P�L1 = m�
[
1 +

n∑
k=2

k+m−1∑
j=k

P�K = j�
]
≤ �m+ 1�P�L1 = m��

Hence, E�LK�r ≤ ∑∞
m=1 m

r�m+ 1�P�L1 = m� ≤ C�r�lr+1.
For part (v), note that K is a stopping time with respect to 
σ L1� � � � �

Lk!�nk=1. Hence, by (iv), Wald’s lemma [cf. Theorem 1.3, Woodroofe (1982)] and
Hölder’s inequality,

E

(
Kr−1

K∑
i=1

Lr
i

)
≤ {

E�K2r−2�}1/2
[
E

{ K∑
i=1

�Lr
i −ELr

1�
}2

+ �EK2��ELr
1�2

]1/2

≤ C�r��np�r−1[E�K�EL2r
1 + �EK2��EL2r

1 �]1/2

≤ C�r��np�rlr� ✷

Lemma 5.2. Assume that l = O�n1−ε� for some 0 < ε < 1 and that Condi-
tion Mr holds for some positive integer r. Then:

(i) E
E∗�S�Ij1� l��2r� ≤ C�r�d�ζ2r
2r+δ)�r� δ�lr for j = 1�2�3;

(ii) E
E∗�S�I41�L1��2r� ≤ C�r�d�ζ2r
2r+δ)�r� δ�lr;

(iii) E�µ̂�j� l��2r ≤ C�r�d�ζ2r
2r+δ)�r� δ�n−r for j = 1�2�3�4.

(iv) E
E∗�X̄∗�j�
n� l �2r� ≤ C�r�d�ζ2r

2r+δ)�r� δ�εn�r�j� for j = 1�2�3�4 where

εn�r�j� = n−r, 1 ≤ j ≤ 3 and εn�r�4� = n−r�1 + l�np�−2r�.

Proof. Proof of the lemma for the nonrandom block lengths (i.e., for j =
1�2�3) follows using cumulant expansions and some standard arguments [cf.
Lemmas 5.2 and 5.3, Lahiri (1996b)]. Hence, we sketch a proof for the case j =
4 only. By Lemmas 5.1, 5.2(i) and the equality of I31 and I41 in distribution,

E
[
E∗�S�I41�L1��2r]

≤
2rl log n∑
m=1

E
{
E∗�S�I31�m��2rp�1 − p�m−1}

+C�r� max
1≤k≤n

{
E�S�1�k��2r} exp�−2r log n�

≤ C�r�d�)�r�d�ζ2r
2r+δl

r�

proving (ii). Since µ̂�4� l� = X̄n, (iii) holds trivially for j = 4. As for (iv), de-
fine N1 = L1 + · · · + LK, and R∗

4n = ∑LK

i=1 w
∗
iXn�J�i� where J�i� = I4�K +

i − 1 and w∗
i = 0 if L1 + · · · + LK−1 + i ≤ n and = 1, otherwise. With-

out loss of generality, assume that the bootstrap variables I41� � � � � I4n and
L1� � � � �Ln are also defined on the underlying probability space �@�� �P�,
supporting the sequence 
Xn�. Let �n = σ L1� � � � �Ln!� �n = σ X1� � � � �Xn!
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and �n = �n ∨ �n, n ≥ 1. Then, by the independence of the variables I4j’s,
Lj’s and 
Xn�, we get E
E∗�R∗

4n�2r�≡E
E��R∗
4n�2r	�n��=E��R∗

4n�2r�=
E�E
E��R∗

4n�2r	�n�	�n�� ≤ C�r�E�max
E�∑m
i=1 aiXi�2r� 1 ≤ m ≤ LK, ai ∈


0�1��� ≤ C�r�ζ2r
2r+δ)�r� δ�ELr

K. Hence, by Lemma 5.1 and Lemma III.3.1 of
Ibragimov and Hasminskii (1981), we have, for j = 4,

E�E∗�X̄∗�j�
n�l �2r�

= n−2rE

{
E∗

∥∥∥∥ K∑
i=1

S�I4i�Li� +R∗
4n

∥∥∥∥
2r}

≤ C�r�n−2r
[
E
(
E∗�R∗

4n�2r)+E

{(
E∗

∣∣∣∣ K∑
i=1

Li

∣∣∣∣
2r)

�X̄n�2r
}

+C�r�n−2rE

(
E

{
E

(∥∥∥∥ K∑
i=1

�S�I4i�Li� −LiX̄n�
∥∥∥∥

2r ∣∣∣∣�n

)∣∣∣∣�n

})]

≤ C�r�ζ2r
2r+δ)�r� δ�n−r[1 + n−2rE�LK�2r]

+C�r�n−2rE

{
Kr−1

K∑
i=1

E
(�S�I4i�Li��2r	�n

)}
(4)

≤ C�r�ζ2r
2r+δ)�r� δ�n−r[1 + n−2rl2r+1]

+C�r�n−2rE

[
Kr−1

K∑
i=1

{�E�S�1�Li��2r	�n�1�Li ≤ 4rl log n�

+ max
{
E�S�1�m��2r� 1 ≤ m ≤ n

}
× 1

(
Li ≥ 4rl log n

)}]
≤ C�r�ζ2r

2r+δ)�r� δ�n−r�1 + l�np�−2r��
This completes the proof of Lemma 5.2. ✷

Lemma 5.3. Let g� �−π�π� → �0�∞� be a continuous function that is sym-
metric about zero. Then, with p = l−1, q = 1 − p, and Qjn�w� = eijw�1 −
qjeijw�−1, j = 1�2:

(i) lim
n→∞

∫ π

−π
�Q1n�w��g�w�dw

= πg�0� +
∫ π

−π

[
2−1 cosw+ �cos�w/2��2]g�w�dw;

(ii) lim
n→∞p

∫ π

−π
�Q1n�w�Q2n�w��g�w�dw

= g�0�
[
2
∫ ∞

−∞
�1 + 4y2�−2 dy−

∫ ∞

−∞
�1 + 4y2�−1 dy

]
;

(iii)
∫ π

−π
�Q2n�w��g�w�dw = O�1�.
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Proof. Since g is real and symmetric, for any M> 1, we have∫ π

−π
�Q1n�w��g�w�dw

=
(∫

	w	≤Mp
+
∫
Mp<	w	<M−1

+
∫
M−1<	w	<π

)
[�p2 + 4q sin2�w/2��−1{�p+ 2q sin2�w/2�� cosw(5)

+ q�sinw�2}g�w�]dw
≡ I1�M� + I2�M� + I3�M�� say�

Using the change of variable y = w/2p and the bounded convergence the-
orem, one can show that for any M> 1, as n → ∞,

I1�M� = 2
∫
	y	<M/2

�1 + 2qp−1 sin2 yp� cos 2py+ qp−1�sin2 2yp�
1 + 4qy2��py�−2 sin2 py� g�2py�dy

(6)
= 2g�0�

∫
	y	<M/2

�1 + 4y2�−1dy+ o�1��

Next, noting that x/3 < sinx for all x ∈ �0� π/2�, for any M> 1, we have

I2�M� ≤ C

[∫
M<y<�Mp�−1

y−2g�py�dy+
∫

0<w<M−1
g�w�dw

]
(7)

≤ Cmax
{
g�w�� 0 < w <M−1}M−1�

Finally, by the bounded convergence theorem, for any M> 1,

lim
n→∞I3�M� =

∫
M−1<	w	<π

�4 sin2 w/2�−1

×[�2 sin2 w/2� cosw+ �sinw�2]g�w�dw�(8)

Part (i) follows from (5)–(8), by letting M → ∞. The proof of part (ii) is similar
to part (i), except that we need to split the integral into three parts, now
ranging over the sets �−Mp�Mp�, 
w� Mp < 	w	 < π/2� and 
w� π/2 ≤
	w	 < π�, M> 1 and establish negligibility of the last two terms. We omit the
details. The proof of (iii) is similar and is also omitted to save space. ✷

Proof of Theorem 3.1. We provide an outline of the proof only for the
bias estimators φ̂1n�j� l�, j = 1�2�3�4. Using Taylor’s expansion, Hölder’s
inequality, and Lemma 5.2, for j ∈ 
1�2�3�, one can show that

φ̂1n�j� l� = b−1l−2 ∑
	α	=2

cαE∗�S�Ij1� l��α + R̂1n�j� l��(9)

where the remainder term R̂1n�j� l� satisfies the inequality E�R̂1n�j� l��2 ≤
C�n−3 +n−4l2� � Now one can establish Theorem 3.1 for j ∈ 
1�2�3� using (9)
and the fact that BIAS�θ̂n� = n−1 ∑	α	=2 cαEZ

α
∞ +O�n−2�. We omit the details.
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Next we consider the case j = 4. As in (9), one can show that for j = 4,

φ̂1n�j� l� = ∑
	α	=2

cαE∗�X̄∗�j�
n� l − X̄n�α + R̂1n�j� l��(10)

where the remainder term R̂1n�j� l� admits the bound E�R̂1n�j� l��2 ≤ Cn−3�
Next for 0 ≤ j ≤ n − 1 and α, β ∈ Z

d
+ with 	α	 = 1 = 	β	, write σ̂�j�α�β� =

n−1 ∑n−j
i=1 X

α
iX

β
i+j� Note that 
X∗

4� i�i≥1 is stationary and that for all j < L1,
X∗

4�1 and X∗
4� �j+1� are in the same resampled block. Hence, arguing as in

Politis and Romano (1994), for any 	α	 = 	β	 = 1, 1 ≤ j ≤ n− 1, one gets

E∗�X∗
4�1�α�X∗

4� �j+1��β

= E
[
E
{(�X∗

4�1�α�X∗
4� �j+1��β1�L1 ≤ j�

+ �X∗
4�1�α�X∗

4� �j+1��β1�L1 > j�) ∣∣�n

}∣∣∣�n

]

= �X̄n�α+βP�L1 ≤ j� +
(
n−1

n∑
i=1

Xα
0iX

β
0�i+j�

)
P�L1 > j�

= �X̄n�α+β�1 − qj� + qj
{
σ̂�j�α�β� + σ̂�n− j�β�α�}�

Hence, using the stationarity of X∗
4� i’s, one can show that∑

	α	=1

∑
	β	=1

cα+βE∗�X̄∗�4�
n� l − X̄n�α+β

= n−1 ∑
	α	=1

∑
	β	=1

cα+β

[ n−1∑
j=0

qnj
(
σ̂�j�α�β� + σ̂�j�β�α�)(11)

−
{

1 + 2
n−1∑
j=1

�1 − n−1j�qj
}
�X̄n�α+β

]
�

where qnj = �1 − n−1j�qj + �n−1j�q�n−j�, 1 ≤ j ≤ n − 1 and qn0 = 1/2. Next,
note that by Taylor’s expansion, 	1 − qj − jp	 ≤ j2p2/2 for all j ≥ 1, and that
p−1�1 − qnj��1 −n−1j� → j as n → ∞, for all j ≥ 1� Now, using (10), (11) and

the fact that
∑∞

j=1 j
2	EXα

1X
β
1+j	 < ∞, one can complete the proof for the case

j = 4. ✷

Proof of Theorem 3.2. For j = 1�2�3, a proof of the expansion for Var
�φ̂1n�j� l�� under the conditions of Theorem 3.2 can be constructed using (9)
and the arguments in the proof of Theorem 2.1 of Lahiri (1996b). [See also
Hall, Horowitz and Jing (1995).] Here, we obtain the desired expansion for
Var�φ̂1n�j� l��, j = 4 only. Since E
n−1�1 + 2

∑n−1
j=1�1 − n−1j�qj�2�X̄n�4� =

O�n−4l2�, in view of (10) and (11), it is enough to show that Var�n−1 ∑	α	=1∑
	β	=1 cα+β�

∑n−1
j=0 qnj�σ̂�j�α�β� + σ̂�j�β�α���� = �2π��2πg1�0� + ∫ π

−π�1 + eiw� ·
g1�w�dw��n−3l� + o�n−3l��
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Using Bartlett’s (1946) formula for the covariance of sample autocovariance
estimators [cf. (5.3.21), (5.3.22), Priestley (1981)], one can show that for unit
vectors α�β� γ� ι ∈ Z

d
+,

cov
(
σ̂�j�α�β�� σ̂�k�γ� ι�)
= n−1

�n−j−v−1�∑
m=−�n−j�+1

{
1 − n−1�ηjv�m� + k�}

(12)
× {�EXα

1X
γ
1+m��EXβ

1X
ι
1+m+v� + �EXα

1X
ι
m+k+1��EXβ

1X
γ
1+m−j�

}
+R21n�j� k�α�β� γ� ι��

where v = k − j, ηjv�m� = m1�m > 0� − �m + v�1�−�n − j� + 1 ≤ m < −v�,
and the remainder term R21n�j� k�α�β� γ� ι� satisfies the inequality n−2 ∑n−1

j=0∑n−1
k=0 qnjqnk	R21n�j� k�α�β� γ� ι�	 = O�n−3�.
Next, let a ≡ an = ��l�log n�2+n1/3�� and djvm ≡ djvmn = n−1
1−n−1�ηjv�m�

+ j+ v��. Note that

max
{
qnj� a ≤ j ≤ n− a

}
≤ qa = O

(
exp�−�log n�2�

)
�∣∣qnjqn�j+v� − qjqj+v

∣∣
≤ 2n−1�jqj + �j+ v�qj+v�� 1 ≤ j� v ≤ 2a�

× n−2
n−2∑

j=n−a

n−1−j∑
v=1

qnjqn�j+v�
�n−j�−v−1∑
m=−�n−j�+1

∣∣djvm�EXα
1X

γ
1+m��EXβ

1X
ι
1+v+m�∣∣

≤ n−3
n−2∑

j=n−a

a∑
v=1

a−v−1∑
m=−a+1

{
n−1�	n− j	 + 	m	 + v�}∣∣EXα

1X
γ
1+m

∣∣∣∣EXβ
1X

ι
1+v+m

∣∣
≤ 3n−4a2

( ∞∑
m=−∞

∣∣EXα
1X

γ
1+m

∣∣)( ∞∑
u=−∞

∣∣EXβ
1X

ι
1+u

∣∣)�

and by similar arguments, n−2 ∑a
j=0

∑�n−j�−1
v=n−2a qnjqn�j+v�

∑n−j−v−1
m=−�n−j�+1 	djvm	

	EXα
1X

γ
1+m	 	EXβ

1X
ι
1+v+m	 = O�n−4a2�. Hence, using these bounds, Condition

Mr and Perseval’s identity [cf. Chapter 4, Rudin (1985)] for Hilbert spaces,
one can show that for any unit vectors α�β� γ� ι ∈ Z

d
+,

n−2
n−2∑
j=0

n−1−j∑
v=1

qnjqn�j+v�

{ �n−j�−v−1∑
m=−�n−j�+1

djvm�EXα
1X

γ
1+m��EXβ

1X
ι
1+v+m�

}

= n−3
( a∑
v=1

2−1qv +
a∑

j=1

a∑
v=1

q2j+v
)
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×
{ �n−j�−v−1∑
m=−�n−j�+1

�EXα
1X

γ
1+m��EXβ

1X
ι
1+v+m�

}
+O�n−4a2�

= n−3
(

2−1
∞∑
v=1

qv +
∞∑
j=1

∞∑
v=1

q2j+v
)

×
[ ∞∑
m=−∞

(∫ π

−π
eimwf�w�α� γ�dw

)(∫ π

−π
exp�−i�v+m�w�f̄�w�β� ι�dw

)]
(13)

+O�n−4a2�

= n−3
(
π + 2πq2

�1 − q2�
) ∞∑
v=1

qv
(∫ π

−π
f�w�α� γ� exp�−ivw�f̄�w�β� ι�dw

)

+O�n−4a2�

= n−3
(
π + 2πq2

�1 − q2�
) ∫ π

−π
qeiw�1 − qeiw�−1f�−w�α� γ�f̄�−w�β� ι�dw

+O�n−4a2��

Using similar arguments, one can show that for any unit vectors α�β� γ�
ι ∈ Z

d
+,

n−2
n−2∑
j=0

n−1−j∑
v=1

qnjqn�j+v�

{ �n−j�−v−1∑
m=−�n−j�+1

djvm�EXα
1X

ι
1+m+j+v��EXβ

1X
γ
1+m−j�

}

= n−3
∫ π

−π

{
π + 2π�qeiw�2

1 − �qeiw�2

}{
qeiwf�w�β� γ�f̄�w�α� ι�

1 − qeiw

}
dw(14)

+O�n−4a2��

n−3
n−1∑
j=0

q2
nj

�n−j�−1∑
m=−�n−j�+1

(
1 − 	m	 + j

n

)

× {�EXα
1X

γ
1+m��EXβ

1X
ι
1+m� + �EXα

1X
ι
1+m+j��EXβ

1X
γ
1+m−j�

}
= n−3

{(
π

2
+ 2πq2

1 − q2

) ∫ π

−π
f�w�α� γ�f̄�w�β� ι�dw(15)

+
∫ π

−π

(
π

2
+ 2π�qeiw�2

1 − �qeiw�2

)
f�−w�β� γ�f̄�−w�α� ι�dw

}

+O�n−4a2��
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The proof of Theorem 3.2 can now be completed using (13)–(15) and Lem-
ma 5.3. We omit the details. ✷

Proof of Corollary 3.1. Corollary 3.1 follows from Theorems 3.1 and 3.2
and the fact that the function h�x� = c1x + c2x

−2, x > 0, c1 ≥ 0, c2 ≥ 0 is
minimized at x∗ = �2c2/c1�1/3 and h�x∗� = �3/ 3

√
4�c2/3

1 c
1/3
2 . ✷

Proof of Theorem 3.3. Theorem 3.3 follows from Theorems 3.1 and 3.2
and Corollary 3.1. ✷
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