
The Annals of Statistics
1999, Vol. 27, No. 1, 178–203

WHITTLE ESTIMATOR FOR FINITE-VARIANCE NON-GAUSSIAN
TIME SERIES WITH LONG MEMORY

By Liudas Giraitis1 and Murad S. Taqqu2

Boston University

We consider time series Yt = G�Xt� where Xt is Gaussian with long
memory and G is a polynomial. The series Yt may or may not have long
memory. The spectral density gθ�x� of Yt is parameterized by a vector θ
and we want to estimate its true value θ0. We use a least-squares Whittle-
type estimator θ̂N for θ0, based on observations Y1	 
 
 
 	YN. If Yt is
Gaussian, then

√
N�θ̂N − θ0� converges to a Gaussian distribution. We

show that for non-Gaussian time series Yt, this
√
N consistency of the

Whittle estimator does not always hold and that the limit is not necessarily
Gaussian. This can happen even if Yt has short memory.

1. Introduction. A time series Xt	 t ∈ Z is said to be strongly dependent
(possesses long memory or long-range dependence) if it has a spectral density
f�x�, satisfying

f�x� = �x�−αL�1/�x��	 x ∈ �−π	π		 �0 < α < 1�	(1.1)

whereL is a slowly varying function at infinity. Since such time series are used
as models in many applications, it is important to be able to estimate the long-
memory parameter α. It is well known that the strong dependence renders
many results in statistical inference invalid, for example, for confidence inter-
vals [see Beran (1992)], or U-statistics [see Dehling and Taqqu (1989)] or for
testing the change-points of the distribution function [see Giraitis, Leipus and
Surgailis (1996)]. Fox and Taqqu (1986) have discovered the surprising fact
that when Xt is Gaussian, the Whittle estimator of the long-memory param-
eter continues to satisfy the central limit theorem (CLT) and is

√
N-weakly

consistent; that is, it has the same type of asymptotic properties as under
short memory (α = 0). This is because the Whittle estimator compensates
for the underlying strong dependence. Giraitis and Surgailis (1990) showed
that a similar result holds for linear sequences. Dahlhaus (1989), extending
the result in the Gaussian case to the maximum likelihood, proved that the
maximum likelihood estimator is efficient and asymptotically normal.

In the semiparametric setup, when the knowledge about the behavior of the
spectral density is localized at frequency x = 0, Robinson (1994, 1995) devel-
oped methods for estimating the memory parameter, based on local Whittle
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and modified Geweke–Porter–Hudak estimators [see also Giraitis and Koul
(1997)]. These estimators are consistent and satisfy the CLT, but the rates of
convergence are slower than in the parametric cases. A comparative study of
the effectiveness of the various methods for estimating the long-memory pa-
rameter was considered by Taqqu, Teverovsky and Willinger (1995) and Taqqu
and Teverovsky (1998). The least-squares based Whittle method, it turns out,
is very effective for Gaussian or linear time series when the parametric model
is accurately specified.

We show in this paper that the compensation effect in the Whittle estimator
which appears when the observations Xt are pure Gaussian or linear is rather
the exception than the rule. The results below imply that, in general, for
non-Gaussian time series Yt, the

√
N consistency of the Whittle estimator

does not always hold and the limit, moreover, is not necessarily Gaussian.
Moreover, as shown in Section 5, it is possible that Yt has short memory and
that θ̂N converges, nevertheless, to a non-Gaussian distribution.

We suppose that �Xt� is a mean-zero Gaussian stationary time series with
long memory; that is, with spectral density (1.1). Its covariance is r�t� =
EX0Xt = ∫ π

−π e
itxf�x�dx. We shall refer to the exponent α in (1.1) as the

long-memory parameter of �Xt�. Suppose that the time series

Yt = G�Xt�	 t = 1	 
 
 
 	N	(1.2)

is observed, where G is a polynomial and �Yt� has zero mean. We suppose
that Yt	 t ∈ Z may display long memory, that is, it has a spectral density
sθ�x� = σ2gθ�x�, �x� ≤ π, θ ∈ �	 σ > 0, where � ⊂ R

p is a compact set and gθ
satisfies

gθ�x� = �x�−αG�θ� LG	θ�1/�x��	 �x� ≤ π	(1.3)

where 0 ≤ αG�θ� < 1 and LG	θ is a slowly varying function. The sequence �Yt�
is said to have short memory if αG�θ� = 0, in which case, gθ is bounded if LG	θ

is bounded. �Yt� is said to have long memory if αG�θ� > 0.
The Whittle estimator θ̂N of θ is a function of the observations Yt	 t =

1	 
 
 
 	N. Our goal is to characterize its asymptotic properties when the num-
ber N of observations goes to infinity. We want to understand why key features
of the Whittle estimator for Gaussian or linear observations such as compen-
sation of the long memory,

√
N consistency and asymptotic normality may

cease to hold when Yt = G�Xt� is nonlinear. We restrict ourselves to polyno-
mial G because such a choice already illustrates the problems associated with
nonlinear transformations of Gaussian data. The case of a general G, which
will be considered in a different paper, involves, in addition, delicate questions
of convergence.

Let θ0 denote the true (unknown) value of θ. To obtain the asymptotic be-
havior of θ̂N, we use Lemma 6.2 below to approximate θ̂N − θ0 by

TN = 1
N

N∑
t	 s=1

∇aθ0
�t− s�G�Xt�G�Xs�	(1.4)
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where

aθ�t� =
∫ π

−π
eitxg−1

θ �x�dx(1.5)

and where ∇aθ0
denotes the derivative of aθ with respect to θ evaluated at θ0

[see (2.9)]. The kernel aθ�t� involves the spectral density gθ of the observations
Yt and is defined in the same way as in the case of the Gaussian–Whittle
estimator. Because the product G�Xt�G�Xs� in (1.4) involves the joint vector
�Xt	Xs�, we will expand it in bivariate Hermite polynomials Hm	n�Xt	Xs�
[see (2.14) for a definition]. One gets

TN = 1
N

∑
m	n≥0

S
�m	n�
N 	

where

S
�m	n�
N =

N∑
t	 s=1

vm	n�t− s�Hm	n�Xt	Xs�	(1.6)

and where

vm	n�t− s� = 1
m!n!

�EG�m��Xt�G�n��Xs�	∇aθ0
�t− s�	(1.7)

G�0� ≡ G and G�m��x� = �dm/dxm�G�x�. To determine the exponent γ for
which Nγ�θ̂N− θ0� converges to a limit, we will show that for each �m	n�,
there is an exponent κ�m	n� such that N−κ�m	n�S�m	n�

N converges in distribu-
tion. The value of the exponent κ�m	n� decreases to 1/2 asm+n increases. The
asymptotic behavior of S�m	n�

N is controlled both by the dependence structure
of the bivariate Hermite polynomials Hm	n�Xt	Xs� and the weights vm	n�t�
in (1.6). This explains, in particular, the compensation that occurs in the lin-
ear case G�x� = x. For such a G, TN = N−1S

�1	1�
N = N−1 ∑N

t	 s=1 v1	1�t −
s�H1
1�Xt	Xs�. Because H1	1�Xt	Xs� = XtXs and because of the special
form of the weights v1	1�t� (see Example 4.1), there is compensation of the

long memory: the sum S
�1	1�
N converges to a Gaussian distribution with nor-

malizing factor N−1/2, and hence, the limiting distribution of
√
N�θ̂N − θ0� is

Gaussian. In the case of non-Gaussian observations G�Xt�, such a compensa-
tion is the exception rather than the rule and the class of limit distribution
is then much richer. The limit for θ̂N − θ0 may be Gaussian but with a nor-
malization different from

√
N (Section 2), but it can also be non-Gaussian; for

example, it may have the (non-Gaussian) Rosenblatt distribution (Section 3).
The paper is structured as follows. The main results are stated in Section 2.

We provide a more detailed analysis of the asymptotic behavior of the Whittle
estimator in Sections 3 and 4. Section 5 treats the special case of Hermite
filters. The results stated in Sections 2 and 3 are then proved in Sections 6
and 7, respectively.
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2. Main results. We want to estimate the parameters �θ	 σ� that char-
acterize the spectral density sθ�x� = σ2gθ�x� of the process �Yt�, using obser-
vations Y1	 
 
 
 	YN. We shall estimate the true value θ0 of θ, assuming, as
usual, that θ0 lies in the interior of the compact set �. We also assume that
if θ �= θ0, then the set �x� gθ�x� �= gθ0

�x�� has positive Lebesgue measure, so
that θ corresponds to a dependence structure different from the one associated
with θ0.

We use the standard (least-square) Whittle estimator θ̂N of θ0 [see Fox and
Taqqu (1986)], defined as follows: θ̂N is the value of θ that minimizes

σ2
N�θ� =N−1Y′ AN	θY	(2.1)

where Y denotes the column vector �Y1	 
 
 
 	YN�, Y′ its transpose and where
the entries of the Toeplitz matrix AN	θ = �aθ�t − s��t	 s=1	


	N	 are given in
(1.5). We then estimate the true value σ2

0 of σ2 by

σ̂2
N = �2π�−2σ2

N�θ̂N�
(2.2)

[Fox and Taqqu (1986) included the factor �2π�−2 in (1.5) instead of (2.2).]
To allow prediction, we suppose

∫ π
−π log�σ2gθ�x��dx > −∞ and, as in Han-

nan (1973) and Fox and Taqqu (1986), we suppose without loss of generality
that gθ is suitably normalized so that

∫ π

−π
loggθ�x�dx = 0	 θ ∈ �
(2.3)

(For more details about this normalization, see the beginning of Section 4.)
The following theorem shows that, as in the Gaussian case considered in

Fox and Taqqu (1986), θ̂N and σ̂N are strongly consistent.

Theorem 2.1. Assume that (2.3) holds and that g−1
θ �x� is a continuous

function. Then

lim
N→∞

θ̂N = θ0 and lim
N→∞

σ̂2
N = σ2

0 a.s.(2.4)

We now focus on the study of the asymptotic behavior of θ̂N − θ0. In the
next theorems, we show that contrary to the linear case G�Xj� =Xj, the con-
vergence Nγ�θ̂N − θ0� as N→ ∞ to a nondegenerate limit requires, typically,
γ < 1/2. The limit, moreover, may be either Gaussian or non-Gaussian.

2.1. Gaussian limit. We shall need a number of technical conditions sim-
ilar to those in Fox and Taqqu (1986). They are widely used in the statistical
literature to control the behavior of the spectral density sθ�x� around the pole
x = 0.
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Standard assumptions. In addition to (1.1), (1.3) and (2.3), we assume
that �∂2/∂θi∂θj�g−1

θ �x� is a continuous function in �x	 θ�,∣∣∣∣ ∂

∂θj
g−1
θ �x�

∣∣∣∣≤ C�x�αG�θ�−ε	 �x� ≤ π for θ = θ0(2.5)

and ∣∣∣∣ ∂2

∂x∂θj
g−1
θ �x�

∣∣∣∣≤ C�x�αG�θ�−1−ε	 �x� ≤ π for θ = θ0	(2.6)

where ε > 0 is any small fixed number. We also assume that the spectral
density f of the Gaussian sequence �Xt� satisfies∣∣∣∣ ddxf�x�

∣∣∣∣≤ C�x�−α−1−ε	 �x� ≤ π	(2.7)

where ε = ε�θ� > 0 is any small fixed number.

We start with some notation. Define the column vector

ρ1 = 2
∑
t∈Z

�EĠ�Xt�G�X0�	∇aθ0
�t�	(2.8)

where Ġ denotes the derivative of G,

∇aθ�t� =
(
∂

∂θ1
aθ�t�	 
 
 
 	

∂

∂θp
aθ�t�

)′
	 t ∈ Z	(2.9)

and ∇aθ0
�t� = ∇aθ�t��θ=θ0

.
Since by (2.6), �∂/∂x��∂/∂θi�g−1

θ ∈ Lγ�−π	π	, i = 1	 
 
 
 	 p for some γ > 1,
then by a well-known property of Fourier coefficients [see Zygmund (1979),
Theorem VI.3.8, Vol. I], ∑

t∈Z

�∇aθ0
�t�� <∞
(2.10)

Since �EĠ�Xt�G�X0�� ≤ �E�Ġ�X0��2�EG�X0��2�1/2, this implies that �ρ1� <
∞.

Now introduce the k×k variance-covariance matrix Wθ = �wθ�i	 j��i	 j=1	


	k
with entries

wθ�i	 j� =
∫ π

−π
gθ�x�

∂2

∂θi∂θj
g−1
θ �x�dx
(2.11)

Theorem 2.2. Suppose that the standard assumptions hold, that W−1
θ0

ex-
ists and ρ1 �= 0. Then

θ̂N − θ0 = −�2πσ2
0 �−1W−1

θ0
ρ1

(
N−1

N∑
j=1

Xj

)
�1 + oP�1��
(2.12)
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This theorem is remarkable, in that it indicates that, under strong depen-
dence, θ̂N−θ0 behaves asymptotically like the sample mean of the underlying
Gaussian vector Xt when ρ1 �= 0. Since �Xt� has strong dependence, the
normalization will not

√
N as the following corollary indicates.

Corollary 2.1. Theorem 2.2 implies that

�N1−αL−1�N�	1/2�θ̂N − θ0� ⇒ �2πσ2
0 �−1W−1

θ0
ρ1ξ	(2.13)

where α is the long-memory parameter of the Gaussian sequence Xt appearing
in (1.1), and where ξ is a Gaussian random variable with zero mean and
variance Eξ2 = 2/�α�α+ 1��.

Corollary 2.1 follows immediately from Theorem 2.2 because

Var
( N∑
j=0

Xj

)
=
∫ π

−π

∣∣∣∣ei�N+1�x − 1
eix − 1

∣∣∣∣
2

f�x�dx∼N1+αL�N�
∫ ∞

−∞

∣∣∣∣eix − 1
ix

∣∣∣∣
2

�x�−α dx

as N→ ∞ and∫ ∞

−∞

∣∣∣∣eix − 1
ix

∣∣∣∣
2

�x�−α dx =
∫ 1

0

∫ 1

0
�x− y�−1+α dxdy = 2/�α�α+ 1��


Remark. Fox and Taqqu (1986) have shown that when G�Xt� = Xt, one
has compensation and the rate of convergence is

√
N. In this case, Ġ�Xt� = 1,

EĠ�Xt�G�Xt� = EXt = 0 and ρ1 = 0 by (2.8). Hence Corollary 2.1 does not
apply.

2.2. Asymptotic expansion for θ̂N− θ0. Theorem 2.2 is a consequence of the
general asymptotic expansion for θ̂N which is given in Theorem 2.3 below. To
characterize this expansion, we now define the bivariate Hermite polynomials
Hn1	n2

�x1	 x2�	 n1	 n2 = 0	1	 
 
 
, which are particular cases of multivariate Ap-
pell polynomials [see Avram and Taqqu (1987), Giraitis and Surgailis (1986),
Giraitis and Taqqu (1998)].

They are defined by the recurrence relations

∂

∂x1
Hn1	 n2

�x1	 x2� = n1Hn1−1	 n2
�x1	 x2��

∂

∂x2
Hn1	 n2

�x1	 x2� = n2Hn1	 n2−1�x1	 x2��

EHn1	 n2
�Xt1

	Xt2
� = 0


(2.14)

The first two relations indicate that these polynomials behave like power func-
tions. The last relation provides the constants of integration and relates the
polynomial to the joint distribution of the Xt’s. Finally, the bivariate Hermite
polynomials are orthogonal; that is, for any t	 s	 u	 v,

EHm	n�Xt	Xs�Hm′	 n′ �Xu	Xv� = 0 if m+ n �=m′ + n′
(2.15)
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We now focus on the random variables S�m	n�
N which were defined in (1.6).

Observe first that since G is a polynomial, S�m	n�
N is zero for large enough m

and n. Moreover, (2.15) implies

ES
�m	n�
N S

�m′	 n′�
N = 0 if m+ n �=m′ + n′


We want to normalize each of the S
�m	n�
N suitably. We shall assume at first

that 1/�1 − α� is not an integer, that is, α �= 1/2	 2/3	 3/4 
 
 
 and let

k∗ = �1/�1 − α�	

denote the smallest integer less than 1/�1 − α�.
When m = n = 0, define the nonrandom term

µN �=N−1/2S
�0	0�
N =N−1/2

N∑
t	 s=1

∇aθ0
�t− s� EG�Xt�G�Xs�
(2.16)

When 1 ≤m+ n ≤ k∗, set

Tk	N = ∑
m	n≥0�m+n=k

�N2−k�1−α�	Lk�N�	−1/2S
�m	n�
N 	 1 ≤ k ≤ k∗�(2.17)

and, gathering the finitely many remaining S�m	n�
N , set

VN =N−1/2 ∑
m	n≥0�m+n>k∗

S
�m	n�
N 
(2.18)

Finally, using the definition of vm	n�t� in (1.7), set

ρk = ∑
m	n≥0�m+n=k

∑
t∈Z

vm	n�t�

= ∑
m	n≥0�m+n=k

1
m!n!

∑
t∈Z

�EG�m��Xt�G�n��X0�	∇aθ0
�t�	

(2.19)

and note that

ρk = 1
k!

∑
t

E

[
dk

dµk
G�µ+Xt�G�µ+X0�

]∣∣∣∣
µ=0

∇aθ0
�t�


The sum (2.19) converges absolutely, since
∑

t �∇aθ0
�t�� <∞ [see (2.10)].

We provide in the following theorem an asymptotic expansion for the Whit-
tle estimator. Similar types of expansions for M-estimators of the location
parameter are discussed in the recent paper by Koul and Surgailis (1997)
and, for empirical distribution functions, in Ho and Hsing (1996) [see also Ho
and Hsing (1997)].
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Theorem 2.3. Suppose that the standard assumptions hold, that W−1
θ0

ex-
ists and that 1/�1 − α� is not an integer. Then

θ̂N = θ0 − �1 + oP�1���2πσ2
0 �−1W−1

θ0

×
[ ∑

1≤k≤k∗
N−k�1−α�/2Lk/2�N�Tk	N +N−1/2VN +N−1/2µN

]

+ oP�N−1�	

(2.20)

where µN	 T1	N	 
 
 
 	Tk∗	N	VN are defined in (2.16), (2.17), (2.18), respec-
tively. The vectors T1	N	 
 
 
 	Tk∗	N and VN are uncorrelated. Moreover, as
N→ ∞,

�T1	N	 
 
 
 	Tk∗	N� ⇒ �ρ1I1	 
 
 
 	 ρk∗Ik∗�	(2.21)

where Ik is the k-tuple Itô–Wiener integral (2.23), while

VN ⇒ � �0	Dk∗�(2.22)

is asymptotically normally distributed with zero mean and covariance matrix
Dk∗ , where the entries of the k × k matrix Dk∗ are given below in (6.22) or
(6.23). In addition,

µN → 0


The k-tuple Itô–Wiener integral Ik is defined by

Ik =
∫ ′′

Rk

exp�i�x1 + · · · + xk�� − 1
i�x1 + · · · + xk�

�x1�−α/2 · · · �xk�−α/2Z�dx1� · · ·Z�dxk�	

k = 1	 
 
 
 	 k∗	
(2.23)

where Z�dx� = Z�−dx� is a standard Gaussian complex measure with zero
mean and variance E�Z�dx��2 = dx. The symbol

∫ ′′ indicates that one does
not integrate on the hyperdiagonals xi = ±xj	 i	 j = 1	 
 
 
 	 k. The integral is
well defined if

∫
R
k

∣∣∣∣exp�i�x1 + · · · + xk�� − 1
i�x1 + · · · + xk�

∣∣∣∣
2

�x1�−α · · · �xk�−αdx1 · · ·dxk <∞	

and this relation holds for k = 1	 
 
 
 	 k∗, as long as k∗ < 1/�1 − α�.
Applications of Theorem 2.3 will be found in the next sections. Theorem

2.3 provides in particular the limits of T1	N	 
 
 
 	Tk∗	N and VN, which are
properly normalized sums of bivariate Hermite polynomials. The theorem also
indicates how θ̂N − θ0 relates to these quantities.

The univariate Hermite polynomials Hn�x� are defined by the relations

H0�x� = 1	
d

dx
Hn�x� = nHn−1�x�	 EHn�Xt� = 0	 n ≥ 1
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If instead of expanding G�Xt�G�Xs� in the bivariate Hermite polynomials
Hm	n�Xt	Xs�, we had expanded separately each G�Xt� in univariate Her-
mite polynomials, we would not have easily obtained the correct normaliza-
tion factors. In fact, the first nonzero term in the bivariate expansion is not
determined by the first nonzero term in the univariate expansion.

The following theorem concerns the boundary case α = 1 − 1/k∗.

Theorem 2.4. If 1/�1−α� is an integer in Theorem 2.3, that is, α = 1−1/k∗,
then as N→ ∞,

�T1	N	 
 
 
 	Tk∗−1	N� ⇒ �ρ1I1	 
 
 
 	 ρk∗−1Ik∗−1�(2.24)

and

VarTk∗	N = O�N1+ε�(2.25)

for any ε > 0.

The results of this section are proved in Section 6.

3. Convergence to the Rosenblatt distribution. We now analyze the
asymptotic expansion (2.20) in more detail. We show that, if the observed
process is Yt = G�Xt�, then the deviation of the Whittle estimate θ̂N from the
true value of parameter θ0, after suitable rescaling can have, asymptotically,
either a Gaussian or non-Gaussian distribution, in particular, the Rosenblatt
distribution. This is the distribution of

I2 =
∫ ′′

R
2

exp�it�x1 + x2�� − 1
i�x1 + x2�

�x1�−α�x2�−αZ�dx1�Z�dx2�	 α > 1/2	(3.1)

and arises when the dominant term in (2.20) is k = 2. The expansion (2.20)
indicates, that θ̂N could have, in principle, limit distributions represented by
multiple Wiener–Itô integrals of third or higher order.

Theorem 2.2 implies that ρ1 �= 0 is a sufficient condition for the limit to be
Gaussian. The next result indicates when the limit I2 can appear.

Theorem 3.1. Let ρ1 = 0, ρ2 �= 0.
If 1/2 < α < 1, then

N�1−α�L−1�N��θ̂N − θ0� ⇒ �2πσ2
0 �−1W−1

θ0
ρ2 I2	 N→ ∞	(3.2)

where I2 has the Rosenblatt distribution.
If 0 < α < 1/2, then

√
N�θ̂N − θ0� ⇒ � �0	 �2πσ2

0 �−2W−1
θ0
DW−1

θ0
�	(3.3)
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where D is p× p matrix with entries

d�i	 j�=∑
t∈Z

[ ∑
s1	 s2∈Z

ȧ
�i�
θ0
�s1�ȧ�j�

θ0
�s2�Cov�G�Xt�G�Xt+s1

�	G�X0�G�Xs2
��
]

(3.4)

Theorem 3.1 is proved in Section 7.

Remark 1. The convergence in (3.4) has to be understood as

lim
T→∞

∑
�t�≤T

∑
s1	 s2




The order of summation is important because
∑

t	 s1	 s2
� · � = ∞.

Remark 2. As indicated by the theorem, in the case (3.2), the limit is not
Gaussian. As noted in Section 5 below, this can happen even when the obser-
vations Yt = G�Xt� are weakly dependent, for example, if Yt =Hk�Xt� with
k > 1/�1 − α�.

Remark 3. Relation 1/2 < α < 1 implies k∗ ≥ 2 and 0 < α < 1/2 implies
k∗ = 1. In the latter case, the term that determines the limit is VN [see (2.18)].

Remark 4. To understand the essence of the difficulty in the proof of The-
orem 3.1, note that the convergence (2.21) in the case 1/2 < α < 1 implies
T1	N ⇒ 0 and T2	N ⇒ ρ2I2 since ρ1 = 0	 ρ2 �= 0. If the expansion (2.20) were
to be applied in a simple-minded fashion, one would get

�2πσ2
0Wθ0

�N�1−α�L−1�N��θ̂N − θ0�
∼N�1−α�/2L−1/2�N�T1	N +T2	N ∼ ∞ · 0 + ρ2I2


In the proof, we show that this “∞ · 0” is in fact 0.

4. An alternative expression for �k. Theorem 3.1 and Corollary 2.1
show the important role that the ρk’s play in determining the limit distribution
of θ̂N − θ0. The expression for ρk given in (2.19) is, however, difficult to work
with. To derive an alternative one, we first need to make explicit the functional
relationship that results from the normalization (2.3).

The spectral density sθ�x� of the observations �Yt� has the two following
equivalent expressions:

sθ�x� = σ2gθ�x� = v2hθ�x�	(4.1)

where v2 = VarYt. Because of the normalization (2.3), the factors σ2 and
gθ�x� are related to v2 and hθ�x� as follows:

σ2 = σ2�v2	 θ� = exp
{

1
2π

∫ π

−π
log�v2hθ�x�	dx

}
and

gθ�x� = v2hθ�x�/σ2�v2	 θ�	
(4.2)
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and, in particular,

σ2�v2	 θ� = v2σ2�1	 θ� and gθ�x� = hθ�x�/σ2�1	 θ�
(4.3)

The parameter σ2�v2	 θ� equals the one-step prediction variance. If the vari-
ance v2 is unknown, σ2 will be unknown even if θ is known. This is why both
θ and σ have to be estimated and can be regarded as independent parameters.

Introduce also the coefficients

J�=� = EG�X0�H=�X0�	 = ≥ 0(4.4)

(J�0� = EG�Xt� = 0) in the expansion

G�Xt� =
∑
=≥1

J�=�
=!

H=�Xt�(4.5)

of G in univariate Hermite polynomials [see Taqqu (1975)].
We can now derive the following alternative expression for ρk.

Lemma 4.1. For all k ≥ 1,

ρk = σ2
0

[∫ π

−π
λk�x�
sθ0

�x� dx
∫ π

−π

∇sθ0
�x�

sθ0
�x� dx− 2π

∫ π

−π
λk�x�
sθ0

�x�
∇sθ0

�x�
sθ0

�x� dx

]
	(4.6)

where sθ0
is given in (7.3),

λk�x� =
∑

m	n≥0
m+n=k

1
m!n!

hm	n�x�	(4.7)

hm	n�x� =
∑
=≥1

1
=!
J�=+m�J�=+ n�f�∗=��x�	(4.8)

and the J�=�, = ≥ 1, are the coefficients (4.4) in the expansion of G in Hermite
polynomials.

Proof. Since

G�m��x� = ∑
=≥m

J�=�
�=−m�! H=−m�x�	

we have

EG�m��Xt�G�n��X0� =
∑

=	 =′≥0

J�=+m�
=!

J�=+ n�
=′!

EH=�Xt�H=′ �X0�

= J�m�J�n� + ∑
=≥1

J�=+m�J�=+ n�
=!

r=�t�	

where r�t� = EXtX0 = ∫ π
−π e

itxf�x�dx, so that by (4.8), we have

EG�m��Xt�G�n��X0� = J�m�J�n� +
∫ π

−π
eitxhm	n�x�dx
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We now incorporate this relation in the expression (2.19) for ρk. Since∑
t

∇aθ0
�t� = 2π∇g−1

θ0
�0� = 0

by (2.5), the constant term J�m�J�n� contributes nothing to ρk. Applying the
Parseval identity and the relations (4.7) and (1.5), we obtain

ρk = 2π
∫ π

−π
λk�x�∇g−1

θ0
�x�dx
(4.9)

By (4.3), gθ�x� = hθ�x�/σ2�1	 θ�, and hence

∇g−1
θ0

= −g−2
θ0
∇gθ0

= −σ4�1	 θ0�h−2
θ0
��∇σ−2�1	 θ��hθ + σ−2�1	 θ�∇hθ	

∣∣
θ=θ0




Since (4.2) implies

∇σ−2�1	 θ0� = ∇�σ2�1	 θ0��−1 = − 1
σ4�1	 θ0�

∇σ2�1	 θ0�

= −σ−2�1	 θ0�
1

2π

∫ π

−π

∇hθ0
�u�

hθ0
�u� du	

(4.10)

we get

∇g−1
θ0
�x� = σ2�1	 θ0�

[
1

2π
1

hθ0
�x�

∫ π

−π

∇hθ0
�u�

hθ0
�u� du− 1

hθ0
�x�

∇hθ0
�x�

hθ0
�x�

]



Using (4.1) and (4.3), we can now replace hθ0
�x� by sθ0

�x�/v2, σ2�1	 θ0� by
σ2

0/v
2 and then use (4.9) to get (4.6). ✷

Remark 1. The parameter σ2
0 in ρk is estimated by σ̂2

N [see (2.2)].

Remark 2. The integrands in (4.6), in particular ∇sθ0
= ∇sθ�θ=θ0

, are non-
necessarily strictly positive or negative functions.

Particular cases.

λ1�x� = h1	0�x� + h0	1�x� = 2
∑
=≥1

J�=�J�=+ 1�f�∗=��x�	

λ2�x� = h2	0�x�/2 + h0	2�x�/2 + h11�x�

= ∑
=≥1

1
=!
�J�=+ 2�J�=� +J2�=+ 1�	f�∗=��x�


Example 4.1. If G�Xt� =Xt, then J�1� = 1 and J�=� = 0 for = �= 1. Hence
ρk = 0 for all k ≥ 1. In this case, as was already proved in Fox and Taqqu
(1986), we have “compensation,” and θ̂N − θ0 converges to a Gaussian limit
after a

√
N normalization.

Example 4.2. If G�Xt� =H=�Xt�	 = ≥ 1, then ρ1 = ρ3 = ρ5 = · · · = 0.
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Example 4.3. One gets ρ1 = 0 if G is such that J�=�J�= + 1� = 0 for all
= ≥ 1, for example if G�Xt� =H1�Xt� +H3�Xt� =X3

t − 2Xt.

5. Hermite filters. Suppose Yt=H=�Xt� with =≥2 and that �Xt	 t≥0�
has long memory (1/2 < α < 1). If = < 1/�1 − α�, then the spectral density of
Yt diverges at the origin. In this case, Yt has also long memory and satisfies a
noncentral limit theorem [Taqqu (1979) and Dobrushin and Major (1979)]. On
the other hand, if = > 1/�1−α�, then the spectral density of Yt is continuous. In
this second case, Yt has short memory and satisfies a central limit theorem
[Breuer and Major (1983), Giraitis and Surgailis (1985)]. What happens to
the Whittle estimator of θ in either of these two cases? The following corollary
provides the answer.

Corollary 5.1. If Yt =H=�Xt�	 = ≥ 2	 1/2 < α < 1, then the convergence
(3.2) holds with

ρ2 = σ2
0=

[∫ π

−π
f�∗�=−1���x�
f�∗=��x� dx

∫ π

−π
∇f�∗=��x�
f�∗=��x� dx

− 2π
∫ π

−π
f�∗�=−1���x�
f�∗=��x�

∇f�∗=��x�
f�∗=��x� dx

]
	

(5.1)

where σ2
0 is the true value of σ2.

The proof follows directly from Theorem 3.1 and Lemma 4.1 by using J�=� =
=! and J�j� = 0 for j �= =.

If α > 1/2 and ρ2 �= 0, then Theorem 3.1 implies that θ̂N converges to a
non-Gaussian distribution. We see, therefore, that if = is large enough, namely
= > 1/�1−α�, then, on one hand, Yt has short memory and its normalized sums
converge to a Gaussian distribution, but, on the other hand, the correspond-
ing Whittle estimator converges to a non-Gaussian distribution. Because this
is a situation where we have weakly dependent observations, we could have
expected the Whittle estimator to behave as in the weakly dependent case. In
reality, as Corollary 5.1 indicates, the asymptotic behavior of the estimator is
still strongly influenced by the underlying long memory. This apparent para-
dox can be explained by the fact that the quadratic forms characterizing the es-
timator depend on the two-dimensional process �G�Xt�	G�Xs��	 t	 s ≥ 0 and
not merely on the weakly dependent one-dimensional process G�Xt�	 t ≥ 0.

6. Proof of the results of Section 2.

6.1. Proof of Theorem 2.1. The assumptions σ > 0 and (2.3) imply that Yt

can be represented as one-sided linear process Yt =
∑∞

k=0 a�k	 θ�ε�t− k� with
uncorrelated innovation sequence εk with variance σ2 [see for example, The-
orems 5.7.1 and 5.7.2 in Brockwell and Davis (1991)]. The Gaussian sequence
�Xj� is, moreover, an ergodic sequence, because it possesses a spectral density
and hence a spectral measure which does not have an atom at frequency 0.
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Thus, G�Xj� is also an ergodic sequence. We can now apply Theorem 1 of
Hannan (1973) to obtain (2.4). ✷

6.2. Proof of Theorem 2.3. We will need a number of preliminary lemmas.
The first involves the expansion of G�Xt�G�Xs� in bivariate Hermite polyno-
mials. The expansion holds pointwise because G is a polynomial.

Lemma 6.1.

G�Xt�G�Xs� =
∑

m	n≥0

1
m!n!

�EG�m��Xt�G�n��Xs�	Hm	n�Xt	Xs�
(6.1)

Proof. The expansion

G�Xt�G�Xs� =
∑

m	n≥0

Jt	 s�m	 n�
m!n!

Hm	n�Xt	Xs�

has only a finite number of terms since G is a polynomial. To identify the
coefficients, use the differentiation rules (2.14), to get

G�m0��x�G�n0��y�

= ∑
m≥m0	 n≥n0

1
�m−m0�!

1
�n− n0�!

Jt	 s�m	n�Hm−m0	 n−n0
�x	y�


Since EHm−m0	 n−n0
�Xt	Xs� equals 1 if m =m0	 n = n0, and 0 otherwise, one

obtains EG�m0��Xt�G�n0��Xs� = Jt	 s�m0	 n0�, which identifies the coefficients.
This concludes the proof. ✷

Remark. Observe, that contrary to the univariate case, the coefficients
in the expansion (6.1) are not constants; they depend on t and s. Since the
sequence Xt is stationary, they only depend, in fact, on the difference t− s.

In the following lemma, we show that θ̂N − θ0 is a sum of a negligible
oP�N−1� term and a quadratic form.

Lemma 6.2. Under the conditions of Theorem 2.3,

θ̂N = θ0 − �1 + oP�1���2πσ2
0 �−1W−1

θ0
N−1�Y′∇AN	θ0

Y� + oP�N−1�


Proof. By the mean value theorem,

Y′∇AN	 θ̂N
Y−Y′∇AN	θ0

Y = �Y′∇2AN	θ∗N
Y��θ̂N − θ0�	(6.2)

where �θ∗N − θ0� ≤ �θ̂N − θ0� and ∇AN	θ = ��∂/∂θ1�AN	θ	 
 
 
 	 �∂/∂θp�AN	θ�

Since Y′θ̂NY minimizes Y′AN	θY for θ ∈ �, we have ∇AN	 θ̂N

Y = 0 if θ̂N
belongs to the interior �0 of �.

If �Y′∇AN	 θ̂N
Y� > 0 then θ̂N must lie on the boundary ∂� of � and since θ0

is in the interior, the distance between θ̂N and θ0 will be at least as big as the
distance δ = minθ∈∂� �θ− θ0� > 0 between θ0 and the boundary ∂�. Therefore,



192 L. GIRAITIS AND M. S. TAQQU

using the same argument as in Dahlhaus (1989),

P��Y′∇AN	 θ̂N
Y�>0�≤P�θ̂N ∈ ∂��≤P��θ̂N− θ0� ≥ δ�→0 �N→∞�(6.3)

by Theorem 2.1. Thus

−N−1Y′∇AN	θ0
Y = �N−1Y′∇2AN	θ∗N

Y��θ̂N − θ0� + oP�N−1�
(6.4)

By the assumption (2.5), �∂2/∂θi∂θj�g−1
θ �x� is a continuous function in �x	 θ�.

Therefore, as in Lemma 1 and 2 of Fox and Taqqu (1986), we get

�2π�−2N−1Y′∇2AN	θ∗N
Y→ σ2

0

2π
Wθ0

	 N→ ∞
with probability 1. ✷

Since Yt = G�Xt�, we can write, using Lemma 6.1,

N−1Y′∇AN	θ0
Y =N−1

N∑
t	 s=1

∇aθ0
�t− s�G�Xt�G�Xs�

=N−1 ∑
m	n≥0

S
�m	n�
N

=
k∗∑
k=1

N−k�1−α�/2Lk/2�N�Tk	N +N−1/2VN +N−1/2µN	

(6.5)

where S�m	n�
N 	 µN	 Tk	N and VN are defined in (1.6), (2.16), (2.17) and (2.18),

respectively. The asymptotic expansion (2.20) now follows from relation (6.5)
and Lemma 6.2.

Because of (2.3) and (2.6),

µN → 0 as N→ ∞	

by Lemma 4 in Giraitis and Surgailis (1990). It is therefore sufficient to focus
on Tk	N	 1 ≤ k ≤ k∗ and VN. These terms involve the quadratic forms S�m	n�

N

defined in (1.6). The weights vm	n�t� in the expression of S�m	n�
N satisfy∑

t

�vm	n�t�� <∞	(6.6)

because ∑
t

�∇aθ0
�t�E�G�m��Xt�G�n��X0�	� ≤ C

∑
t

�∇aθ0
�t�� <∞	(6.7)

since �EG�m��Xt�G�n��X0�� ≤ �E�G�m��X0��2E�G�n��X0��2�1/2 < ∞ and (2.10).
Relation (6.6) implies that the Fourier transform v̂m	n�x� �= �2π�−1 ∑

t∈Z ·
e−itxvm	n�t� of the weights

vm	n�t� =
∫ π

−π
eitxv̂m	n�x�dx

is a bounded and continuous function, and v̂m	n�0� = �2π�−1 ∑
t vm	n�t�.
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The vectors T1	N	 
 
 
 	Tk∗	N and VN in (6.5) are uncorrelated because the
bivariate Hermite polynomials Hm	n are orthogonal for different values of
m+n. To derive the asymptotic behavior of the various terms in the expansion
(6.5), we shall use central and noncentral limit theorems for quadratic forms
obtained in Giraitis, Taqqu and Terrin (1998) and Giraitis and Taqqu (1998).
These theorems involve the quantities d+

k �α�	 k ≥ 0, defined as follows. For
any 0 < α < 1,

d+
0 �α� = 1 and d+

k �α� �=
{
α	 if k = 1	
max�dk�α�	0�	 if k �= 1	

(6.8)

where

dk�α� = 1 − k�1 − α�

Let us consider first the case where S�m	n�

N , properly normalized, satisfies a
noncentral limit theorem, that is, when it requires a normalization different
from

√
N. The limit may or may not be Gaussian. We shall use the following

general proposition which may be useful in other contexts as well.

Proposition 6.1. Suppose that

Q
�m	n�
N =

N∑
t	 s=1

λm	n�t− s�Hm	n�Xt	Xs�	

where m	n ≥ 0, 1 ≤m+ n, �Xt� is a Gaussian sequence with spectral density
(1.1), and

d+
m�α� + d+

n �α� > 1	(6.9)

where d+
n , n ≥ 0 is defined in (6.8). Then, for any �λm	n�t�� satisfying∑

t∈Z

�λm	n�t�� <∞	(6.10)

the normalized quadratic form

�Nd+
m�α�+d+

n �α�Lm+n�N�	−1/2Q
�m	n�
N

converges in distribution as N→ ∞ to the multiple Itô–Wiener integral

Im	n �=
(
�2π�−1 ∑

t∈Z

λm	n�t�
)

×
∫ ′′

R
m+n

[∫ ∞

−∞
exp�i�x1 + · · · + xm + u�� − 1

i�x1 + · · · + xm + u�

× exp�i�xm+1 + · · · + xm+n − u�� − 1
i�xm+1 + · · · + xm+n − u� du

]

× �x1�−α/2 · · · �xm+n�−α/2Z�dx1� · · ·Z�dxm+n�


(6.11)

The convergence also holds in the sense of finite-dimensional distributions for
any finite collection of �m	n�.
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That proposition follows from the following theorems in Giraitis, Taqqu
and Terrin (1998): Theorem 2.1 (when m ≥ 1, n ≥ 1), Theorem 2.2 (when m ≥
1	 n = 0 or m = 0, n ≥ 1) and Theorem 3.3 (in the multivariate case). [In the
notation of Giraitis, Taqqu and Terrin (1998), we are considering cases (A.1)
and (A.5), with β = 0 and L1�N� ∼ λ̂m	n�0� = �2π�−1 ∑

t∈Z λm	n�t� �N→ ∞�.]
We shall now verify that the conditions of Proposition 6.1 are satisfied with

λm	n = vm	n and Q
�m	n�
N = S

�m	n�
N . Relation (6.10) holds because of (6.6). To

verify Relation (6.9), recall that 1/�1 − α� is assumed non-integer, and con-
sequently d+

m+n�α� > 0 for m + n ≤ k∗. Since d+
m�α� ≥ d+

m+n�α� > 0 and
d+
n �α� ≥ d+

m+n�α� > 0, we have

d+
m�α� + d+

n �α� = 1 + d+
m+n�α� > 1


Proposition 6.1 and Lemma 6.3 below then imply

��N1+d+
m+n�α�Lm+n�N�	−1/2S

�m	n�
N �m	n≥0�1≤m+n≤k∗

⇒ �Im	n�m	n≥0�1≤m+n≤k∗	
(6.12)

where ⇒ denotes convergence of finite-dimensional distributions, and where

Im	n = ∑
t

vm	n�t�
∫ ′′

R
m+n

exp�i�x1 + · · · + xm+n�� − 1
i�x1 + · · · + xm+n�

�x1�−α/2

· · · �xm+n�−α/2Z�dx1� · · ·Z�dxm�

(6.13)

Lemma 6.3. For all x ∈ R,

1
2π

∫
R

exp�i�x+ u�� − 1
i�x+ u�

exp�−iu� − 1
−iu du = exp�ix� − 1

ix

(6.14)

Proof. Since
N∑
j=0

exp�ijx� = exp�i�N+ 1�x� − 1
exp�ix� − 1

and

lim
N→∞

N−1 exp�ix� − 1
exp�ix/�N+ 1�� − 1

= exp�ix� − 1
ix

	

we have

exp�ix� − 1
ix

= lim
N→∞

N−1 exp�ix� − 1
exp�ix/�N+ 1�� − 1

= lim
N→∞

N−1
N∑
j=0

exp�ij�x/�N+ 1���

= lim
N→∞

1
2π

N−1
∫ π

−π

N∑
t	 s=0

exp�it�x/�N+ 1� + u�� exp�−isu�du
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= 1
2π

lim
N→∞

N−1
∫ π

−π

[
exp�i�x+ �N+ 1�u�� − 1
exp�ix/�N+ 1� + u� − 1

exp�−i�N+ 1�u� − 1
exp�−iu� − 1

]
du

= 1
2π

∫ ∞

−∞
lim
N→∞

���u� ≤ π�N+ 1��N−1

×
[
�N+ 1�−1 exp�i�x+ u�� − 1

exp�i�x+ u�/�N+ 1�� − 1
exp�−iu� − 1

exp�−iu/�N+ 1�� − 1

]
du

= 1
2π

∫ ∞

−∞
exp�i�x+ u�� − 1

i�x+ u�
exp�−iu� − 1

−iu du
 ✷

Hence relations (2.17), (6.12) and (6.13) imply the convergence (2.21) of
�T1	N	 
 
 
 	Tk∗	N�. To prove the convergence (2.22) involving VN, we shall use
Corollary 5.1 of Giraitis and Taqqu (1998), in the form of the following propo-
sition.

Proposition 6.2. Suppose that each quadratic form

Q
�i�
N =

N∑
t	 s=1

bi�t− s�Hmi	ni
�Xt	Xs�	 i = 1	 
 
 
 	 k

satisfies the assumptions

∞∑
t=−∞

�r�t��p <∞	
∞∑

t=−∞
�bi�t��qi <∞	 i=1	 
 
 
 	 k �p	q1	 
 
 
 	 qk≥1�(6.15)

and

min�mip
−1	1� + min�nip−1	1� + 2q−1

i ≥ 3
(6.16)

Then, as N→ ∞, the CLT holds:

N−1/2�Q�1�
N 	 
 
 
 	Q

�k�
N � ⇒ �Z�1�	 
 
 
 	Z�k��	(6.17)

where �Z�1�	 
 
 
 	Z�k�� is the Gaussian vector with zero mean and cross-
covariances

σi	j ≡ EZ�i�Z�j�

�= ∑
l1	 l2	 t∈Z

bi�l1�bj�l2�Cov�Hmi	ni
�Xt	Xt+l1�	Hmj	nj

�X0	Xl2
��
(6.18)

We apply this Proposition 6.2 to

VN =N−1/2 ∑
0≤m	n�m+n>k∗

N∑
t	 s=1

vm	n�t− s�Hm	n�Xt	Xs�	(6.19)

letting bi’s be the vm	n’s. There are only a finite number of summands in (6.19)
because G is polynomial and hence vm	n = 0 for large m and n.

Since vm	n�t� is absolutely summable by (6.6), we can set qi = 1 in (6.16).
Thus, to check (6.16), it is sufficient to show that

min�mp−1	1� + min�np−1	1� ≥ 1
(6.20)
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In view of Lemma 4 in Fox and Taqqu (1986), relations (1.1) and (2.7) imply

r�t� = O��t�α−1+ε�	 t→ ∞(6.21)

for every ε > 0, in particular 2ε < 1 − α, and thus
∑∞

t=−∞ �r�t��p < ∞ for
p = �1 − α− 2ε�−1. Clearly, (6.20) must be proved only in the case mp−1 <
1	 np−1 < 1. But then

min�mp−1	1� + min�np−1	1� =mp−1 + np−1 = �m+ n�p−1

= �m+ n��1 − α� − �m+ n�2ε > 1	

for small enough ε > 0. Indeed, by definition of k∗, k∗ < 1/�1 − α� < k∗ + 1,
and hence we have �m+n��1−α� ≥ �k∗ +1��1−α� > 1. Thus (6.20) holds and
therefore, Proposition 6.2 applies to �S�m	n�

N �0≤m	n�m+n>k∗ . Since VN involves a
sum over different pairs �m	n� and since the bivariate Hermite polynomials
are orthogonal, we obtain

VN ⇒N�0	Dk∗�	

where the entries of the matrix Dk∗ equal

d�i	 j� = ∑
0≤m1	 n1	m2	 n2�m1+n1=m2+n2>k

∗
�m1!n1!m2!n2!�−1

× ∑
t	 s1	 s2	∈Z

ȧ
�i�
θ0
�s1�ȧ�j�

θ0
b�s2�

×E�G�m1��X0�G�n1��Xs1
�	E�G�m2��X0�G�n2��Xs2

�	
× Cov�Hm1	 n1

�Xt	Xt+s1
�	Hm2	 n2

�X0	Xs2
��


(6.22)

Here ȧ
�j�
θ0

�s� �= �∂/∂θj�aθ�s��θ=θ0
, j = 1	 
 
 
 	 p. Observe that by (6.1), d�i	 j�

can also be expressed as

d�i	 j� = ∑
t∈Z

∑
s1	 s2	∈Z

ȧ
�i�
θ �s1�ȧ�j�

θ �s2�

×
[
Cov�G�Xt�G�Xt+s1

�	G�X0�G�Xs2
��

− ∑
0≤m1	 n1	m2	 n2�1≤m1+n1=m2+n2≤k∗

�m1!n1!m2!n2!�−1

×E�G�m1��X0�G�n1��Xs1
�	E�G�m2��X0�G�n2��Xs2

�	

× Cov�Hm1	 n1
�Xt	Xt+s1

�	Hm2	 n2
�X0	Xs2

��
]



(6.23)

This concludes the proof of Theorem 2.3. ✷
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6.3. Proof of Theorem 2.4. The proof of (2.24) is the same as that of (2.21).
To verify (2.25), recall that Tk∗	N involves sums S

�m	n�
N = ∑N

t	 s=1 vm	n�t −
s�Hm	n�Xt	Xs� such that m + n = k∗. The Fourier transform v̂m	n�x� of the
weights vm	n�t� is bounded. Thus �v̂m	n�x�� ≤ C�x�−β	 �x� ≤ π with β = 0.
Since k∗ = 1/�1 − α�, the parameter γ = 2β+d+

m�α� +d+
n �α� = d+

m�α� +d+
n �α�

in (2.12) of Giraitis, Taqqu and Terrin (1998), becomes γ = 1, correspond-
ing to the boundary case between CLT �γ < 1� and non-CLT �γ > 1� for
the S

�m	n�
N ’s. Using the techniques of that paper, one can verify that (2.25)

holds. [Here are some details. Referring to the labeling and notation of
Giraitis, Taqqu and Terrin (1998), we have to show that (3.15) can be replaced
by N−γ∗ VarQN�r�j�N	4� < const., where γ∗ = 1+ ε. The proof of Proposition 4.1
applies almost verbatim with hE ≡ 0. The only difference is in rN	4, which
should be renormalized by N−γ∗ instead of �NγL∗�N�	−1. Fix K and bound
f�x� by C�x�−α−ε′ , ε′ > 0. (Our ε is then a function of ε′ and is small if ε′ is
small.) Since γ∗ > 1, the argument of the paper applies and yields N−γ∗rN	4 ≤
const.] ✷

7. Proof of Theorem 3.1. We shall apply Theorem 2.3 and show that the
contribution of the first term in the expansion (2.20) is negligible. This first
term involves

N−�1−α�/2L1/2�N�T1	N = 2N−1S
�0	1�
N

by (2.17) and S
�0	1�
N = S

�1	0�
N . If we can prove that

N−1S
�0	1�
N = OP�N−1+δ/2� = oP�N−1/2�	(7.1)

then this term remains negligible even when multiplied by the normalization
factor N�1−α�L−1�N� when 1/2 < α < 1 and N1/2 when 0 < α < 1/2.

To see that Theorem 2.3 and Relation (7.1) then yield the result, observe
that if 1/2 < α < 1, we have k∗ ≥ 2 and hence the determining term is T2	N
which converges to ρ2I2. If 0 < α < 1/2, then 1 ≤ k∗ < 2, that is, k∗ = 1. In this
case, the determining term is VN, which converges to N�0	D1�. The entries
d�i	 j� of the variance-covariance matrix D1 are given by (6.22) or (6.23), but
in view of Lemma 7.1 below, they have the simpler expression (3.4) which is
used in Theorem 3.1.

Thus, to prove the theorem, it is sufficient to establish (7.1). We must then
estimate

S
�0	1�
N =

N∑
t	 s=1

v0	1�t− s�Xt =
N∑

t	 s=1

�EĠ�Xt�G�X0�	∇aθ0
�t�Xt


To evaluate EĠ�Xt�G�X0�, it is easier to use univariate expansion in Hermite
polynomials. Let k0 ≥ 1 denote the Hermite rank of G, that is, the index at
which the expansion (4.5) of G in univariate Hermite polynomials effectively
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starts. Thus,

G�Xt� =
∑
k≥k0

J�k�
k!

Hk�Xt�	(7.2)

where J�k0� �= 0.
First we obtain an expression of the spectral density of the sequence

�G�Xt��t∈Z. Since the Hermite polynomials are orthogonal, it follows from
(7.2) that

E G�Xt�G�Xs� =
∑
k≥k0

J�k�2

k!2
EHk�Xt�Hk�Xs�

= ∑
k≥k0

J�k�2

k!
rk�t− s�

=
∫ π

−π
eix�t−s�sθ0

�x�dx	

where sθ0
�x� = σ2

0gθ0
�x� denotes the spectral density of G�Xt�. Expressed in

terms of the spectral density f�x� of Xt, it equals

sθ0
�x� = σ2

0gθ0
�x� = ∑

k≥k0

J�k�2

k!
f�∗k��x�	 �x� ≤ π	(7.3)

where

f�∗k��y� =
∫
�−π	π	k−1

f�y− x1 − · · · − xk−1�f�x1� · · ·f�xk−1�dx1 · · ·dxk−1(7.4)

is the kth �k ≥ 1� convolution. (We assume that f and all spectral densities
are periodically extended to R with period 2π.)

A similar argument together with the differentiation rule Ḣm�x� =
mHm−1�x�	 m ≥ 1, implies

EG�Xt�Ġ�Xs� = EĠ�Xt�G�Xs� =
∑

k	 k′≥k0

J�k�
k!

J�k′�
k′!

k′EHk�Xt�Hk′−1�Xs�

= ∑
k≥k0

J�k�J�k+ 1�
k!

rk�t− s� =
∫ π

−π
ei�t−s�h0	1�x�dx	

where

h0	1�x� =
∑
k≥k0

J�k�J�k+ 1�
k!

f�∗k��x�
(7.5)

If

�f�x�� ≤ C�x�−µ	 �x� ≤ π	 0 < µ < 1	

then, for k ≥ 1,

f�∗k��x� ≤ C�x�−d+
k �µ�	 �x� ≤ π(7.6)
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as long as dk�µ� �= 0 [obvious for k = 1; for k ≥ 2 see, e.g., Lemma 5.2 in
Giraitis and Taqqu (1997)]. Therefore the assumption f�x� = �x�−αL�1/�x�� ≤
C′�x�−α−ε′	 ε′ > 0, and the relations (7.3) and (7.5) easily imply that for any
fixed ε > 0,

gθ0
�x� ≤ C�x�−d+

k0
�α�−ε	

h0	1�x� ≤ C�x�−d+
k0
�α�−ε


(7.7)

In fact, in view of (1.3), one has

d+
k0
�α� = αG�θ0�(7.8)

[see also the proof of Lemma 5.2 in Giraitis and Taqqu (1997)]. Then, according
to the definitions (1.7) and (1.5),

v0	1�t� = v1	0�t� = �EĠ�Xt�G�X0�	∇aθ0
�t�

=
∫ π

−π
eit�x+y�h0	1�x�∇g−1

θ0
�y�dxdy

=
∫ π

−π
eituv̂0	1�u�du	

where

v̂0	1�u� =
∫ π

−π
∇g−1

θ0
�u− x�h0	1�x�dx


Now (2.8) and the assumption of the theorem imply

ρ1 = 2
∑
t

�EĠ�Xt�G�X0�	∇aθ0
�t� = 0
(7.9)

But the Fourier transform of EĠ�Xt�G�X0� is h0	1 ∈ Lp for some p > 1 by
(7.7), and that of ∇aθ�t� is ∇g−1

θ0
∈ L∞. Thus, by Theorem VII.6.11 of Zygmund

[(1979), Vol. I], Parseval’s equality holds and

2π
∫ π

−π
h0	1�x�∇g−1

θ0
�x�dx = ∑

t

�EĠ�Xt�G�X0�	∇aθ0
�t� = 0	(7.10)

so that v̂0	1�0� = 0. Since gθ0
�x� = gθ0

��x��, we have

v̂0	1�u� = v̂0	1�u� − v̂0	1�0� =
∫ π

−π
h0	1�x��∇g−1

θ0
�u− x� − ∇g−1

θ0
�x��dx


Since powers are monotone functions, we obtain, by the mean value theorem,

�v̂0	1�u�� ≤ C
∫ π

−π
�h0	1�x���∇g−1

θ0
�u− x� − ∇g−1

θ0
�x��1−δ dx

≤ C�u�1−δ
∫ π

−π
�h0	1�x�� sup

�u−x�≤�y�≤�x�

∣∣∣∣ ddx∇g−1
θ0
�y�

∣∣∣∣
1−δ

dx


(7.11)
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Using (2.6), (7.7) and (7.8), we get, that for δ > 0,

�v̂0	1�u�� ≤ C�u�1−δ
∫ π

−π
��u− x��αG�θ0�−1−ε��1−δ�

+ �x��αG�θ0�−1−ε��1−δ���x�−αG�θ�−ε dx

≤ C�u�1−δ
∫ π

−π
��u− x�−1+γ + �x�−1+γ�dx ≤ C�u�1−δ

(7.12)

uniformly in �u� ≤ π, when δ > 0	 ε > 0 are chosen such that γ = δ�1 + ε −
αG�θ0�� − 2ε > 0. Observe that the argument applies also for αG = 0. (The
constants C change from line to line.) Hence

�v̂0	1�u�� ≤ C�u�1−δ ≤ C�u�−β	(7.13)

where β = −�1 + α − δ�/2, when δ > 0 is chosen small enough, and α is
the long-memory parameter in (1.1). From (7.13) and (1.1) [see the proof of
Theorem 2.2 in Giraitis, Taqqu and Terrin (1998)] it follows that

E�S�0	1�
N �2 = E

[ N∑
t	 s=1

v0	1�t− s�Xt

]2

≤ CNγ	

where γ ≤ 2β + α + 1 = δ. Hence N−1S
�0	1�
N = OP�Nγ−1� = oP�N−1/2�, which

proves (7.1). This concludes the proof of the theorem. ✷

The preceding proof used the following lemma.

Lemma 7.1. If ρ1 = 0 and α < 1/2, then k∗ = 1 and the d�i	 j� in (6.22)
can be expressed as (3.4).

Proof. In view of (6.1), by adding and subtracting

d≤�i	 j� =
∑
t∈Z

∑
s1	 s2∈Z

∑
0≤m1	 n1	m2	 n2

1≤m1+n1=m2+n2≤k∗

ȧ
�i�
θ0
�s1�ȧ�j�

θ0
�s2��m1!n1!m2!n2!�−1

×E�G�m1��X0�G�n1��Xs1
�	E�G�m2��X0�G�n2��Xs2

�	
× Cov�Hm1	 n1

�Xt	Xt+s1
�	Hm2	 n2

�X0	Xs2
��

to (6.22), we will get (3.4), provided that we can prove that d≤�i	 j� = 0. Here
d≤ is defined as limT→∞

∑
�t�≤T

∑
s1	 s2

.
Because α < 1/2, we have k∗ = 1, and therefore

d≤�i	 j� =
∑
t

∑
s1	 s2

v�i��s1�v�j��s2��r�t� + r�t− s2� + r�t− s1� + r�t+ s1 − s2�		

where

v�j��s� = ȧ
�j�
θ0

�s��EĠ�X0�G�Xs�	 = ȧ
�j�
θ0

�s��EĠ�Xs�G�X0�		 j = 1	 
 
 
 	 p
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As in (7.10), ρ1 = 0 implies ∑
s

v�j��s� = 0


Therefore d≤�i	 j� reduces to

d≤�i	 j� =
∑
t

[ ∑
s1	 s2

v�i��s1�v�j��s2�r�t+ s1 − s2�
]



Since
∑

t �r�t�� = ∞, one has to be careful about the order of summation.
Heuristically, the term in brackets is a convolution with Fourier transform

ŵ�x� = v̂�i��x�v̂�j��x�f�x�	(7.14)

and therefore d≤�i	 j� should equal to 2πŵ�0� = 0. This short argument
glosses over many difficulties. To be precise, we consider first

R�t� = ∑
s2

v�j��s2�r�t− s2�


Since, as in (7.13), we have for some small ε > 0,

�v̂�j��x�� ≤ C�x�1−ε	 �x� ≤ π	

bounded, and g ∈ Lp, for some p > 1, we can apply the Parseval equality to
R�t� and get

R�t� = 2π
∫ π

−π
eitxv̂�j��x�f�x�dx


Using also (1.1),

�v̂�j��x�f�x�� ≤ C�x�1−ε�x�−α−ε = C�x�1−α−2ε	 �x� ≤ π	

is also bounded and therefore we can apply the Parseval inequality again and
get

d≤�i	 j� =
∑
t

[∑
s1

v�i��s1�R�t+ s1�
]
= ∑

t

�2π�2
∫ π

−π
eitxv̂�i��x�v̂�j��x�f�x�dx


Let w�t� = ∫ π
−π e

itxŵ�x�dx, where ŵ�x� was introduced in (7.14). Then

d≤�i	 j� = �2π�2 ∑
t

w�t�


We can apply the previous inequalities to verify that ŵ�0� = 0. The delicate
part is to check that ∑

t

w�t� = 2πŵ�0�	

that is, that the Fourier series
∑

t e
−itxw�t� converges to 2πŵ�x� at x = 0.

From Theorem II.10.7 of Zygmund [(1979), Vol. I], it is sufficient to show that

ŵ�0 + y� − ŵ�0� = O�� log �y��−1� as y→ 0(7.15)
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and

w�t� = O�t−δ� for some δ > 0
(7.16)

The first relation follows immediately from the previous inequalities. To verify
the second, apply a similar argument as in (7.11) and (7.12) to get �v̂�j��u2� −
v̂�j��u1�� ≤ C�u2 −u1�1−ε and then use Theorem II.4.7 of Zygmund (1979), Vol.
I, to obtain �v�j��s�� = O��s�−1+ε� as s→ ∞. Since r�t� = O��t�α−1+ε� as t→ ∞
by (6.21), we have

�R�t�� ≤ ∑
s1

�v�j��s2�r�t− s2�� ≤ C
∑
s2

�s2�−1+ε�t− s2�α−1+ε ≤ C�t�α−1+2ε	

�w�t�� ≤ ∑
s1

�v�i��s1�R�t+ s1�� ≤ C
∑
s1

�s1�−1+ε�t+ s1�α−1+2ε ≤ C�t�α−1+3ε	

establishing (7.16) and hence the lemma.
This completes the proof of Theorem 3.1. ✷
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