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The expectation-maximization (EM) algorithm is a powerful compu-
tational technique for locating maxima of functions. It is widely used in
statistics for maximum likelihood or maximum a posteriori estimation in
incomplete data models. In certain situations, however, this method is not
applicable because the expectation step cannot be performed in closed form.
To deal with these problems, a novel method is introduced, the stochastic
approximation EM (SAEM), which replaces the expectation step of the EM
algorithm by one iteration of a stochastic approximation procedure. The
convergence of the SAEM algorithm is established under conditions that
are applicable to many practical situations. Moreover, it is proved that,
under mild additional conditions, the attractive stationary points of the
SAEM algorithm correspond to the local maxima of the function. presented
to support our findings.

1. Introduction. The EM algorithm [Dempster, Laird and Rubin (1977)]
is a very popular tool for maximum-likelihood (or maximum a posteriori) es-
timation. The common strand to problems where this approach is applicable
is a notion of incomplete data, which includes the conventional sense of miss-
ing data but is much broader than that. The EM algorithm demonstrates its
strength in situations where some hypothetical experiment yields (complete)
data that are related to the parameters more conveniently than the measure-
ments are. Problems where the EM algorithm has proven to be useful in-
clude, among many others, maximum likelihood estimation of the parameters
of mixture of densities [see, e.g., Titterington, Smith and Makov (1985)] and
of hidden Markov models [MacDonald and Zucchini (1997) and the references
therein], maximum a posteriori estimation in censored data models [Little and
Rubin (1987), Tanner (1993)]. The EM algorithm has several appealing proper-
ties. Because it relies on complete-data computations, it is generally simple to
implement: the E-step of each iteration only involves taking expectation over
complete-data conditional distribution; the M-step only involves complete data
maximum-likelihood estimation, which is often in simple closed form. More-
over, it is numerically stable, in the sense that it increases the incomplete
likelihood at each iteration. When either the maximization step (M-step) or
the expectation step (E-step) involves intricate or even infeasible computa-
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tions, the EM paradigm is no longer directly applicable. The problems raised
by the potentially difficult global maximization involved in the M-step have
recently been addressed successfully. A possible solution consists in replac-
ing the global optimization by a chain of simpler conditional maximization,
leading to the so-called ECM algorithm [see for example, Meng and Rubin
(1993), Liu and Rubin (1994)]. Another approach is to use a single iteration of
an approximate Newton’s method leading to the EM gradient algorithm [see
Lange (1995)]. On the contrary, only partial answers have been obtained to
deal with problems for which the expectation of the complete likelihood can-
not be done in closed form. A possible solution to cope with this problem has
been proposed by Wei and Tanner (1990) (see Section 2). The basic idea is to
compute the expectation in the E-step by means of a Monte Carlo method.
In this contribution, a stochastic version of the EM algorithm (referred to as
SAEM, standing for stochastic approximation EM) is presented, as an alter-
native to the MCEM algorithm. It makes use of a stochastic approximation
procedure for estimating the conditional expectation of the complete data log-
likelihood. Given the current approximation of the parameters, complete data
are simulated under the a posteriori density; these simulated complete data
are then used to update the current value of the conditional expectation of
the complete data likelihood. A (decreasing) step size is used to control the
allowed amount of update during the successive iterations of the algorithm
(Section 3). The convergence of the sequence of parameter estimates to a sta-
tionary point of the incomplete likelihood is established for a general class of
complete data likelihood functions. It is further demonstrated that only the
local maxima of the incomplete likelihood are attractive for the stochastic ap-
proximation algorithm; that is, convergence toward saddle points are avoided
with probability 1.

2. The EM and the MCEM algorithms. In this section, we shall review
the key properties of the EM algorithm that we shall need, as derived by
Dempster, Laird and Rubin (1977). Let µ be a σ-finite positive Borel measure
on R

l and let � = �f�z� θ�� θ ∈ �� be a family of positive integrable Borel
functions on R

l, where � is a subset of R
p. Define

g�θ� �=
∫

R
l
f�z� θ�µ�dz��(1)

l�θ� �= logg�θ��(2)

p�z� θ� �=
{
f�z� θ�/g�θ�� if g�θ� 	= 0�

0� if g�θ� = 0

(3)

Note that p�z� θ� defines a probability density function w.r.t. to the measure
µ. In the terminology introduced by Geyer (1994), � is a family of unnor-
malized density, � = �p�z� θ�� θ ∈ �� is the family of normalized density and
g
 �→ �0�∞� is the normalizing function for the family � . We wish to find
the value θ̂ ∈ � that maximizes g�θ� (conditions upon which such maximum
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exists are detailed later on). Many statistical inference problems fall into the
framework (1). In the standard missing data problem:

1. g�θ� is the incomplete data likelihood, that is, the likelihood of the observed
data y [the dependence of g�θ� w.r.t y is here implicit];

2. f�z� θ� is the complete data likelihood, that is, the likelihood of the complete
data x obtained by augmenting the observed data y with the missing data
z
 x = �y� z�,

3. p�z� θ� is the posterior distribution of the missing data z given the observed
data y (often referred to as the predictive distribution).

Other examples may be found in spatial statistics and stochastic geometry
[Geyer (1994, 1996)] or in Bayesian inference. We will find it convenient to
use in the sequel the classical terminology of the missing data problem, even
though the approaches developed here apply to a more general context. Define

Q�θ � θ′� =
∫

R
l
log f�z� θ�p�z� θ′�µ�dz�
(4)

The EM algorithm is useful in situations where maximization of θ→ Q�θ � θ′�
is much simpler than direct maximization of θ → l�θ�. Indeed, EM is an
iterative algorithm, which maximizes l�θ� by iteratively maximizing Q�θ � θ′�.
Each iteration may be formally decomposed into two steps: an E-step and a
M-step. At iteration k, the E-step consists of evaluating

Q�θ � θk� =
∫

R
l
log f�z� θ�p�z� θk�µ�dz�


In the M-step, the value of θ maximizing Q�θ � θk� is found. This yields the
new parameter estimate θk+1. This two-step procedure is repeated until con-
vergence is apparent. The essence of the EM algorithm is that increasing
Q�θ � θk� forces an increase of l�θ�.

In situations where global maximization of θ → Q�θ � θ′� is not in simple
closed form, alternate solutions can be contemplated. Possible solutions are
considered in Meng and Rubin (1993), where global maximization is replaced
by a cycle of simpler maximization problem and in Lange (1995), where the
M-step is replaced by a single iteration of a Newton’s method (see Section 8).
In certain situations, the expectation step can be numerically involved or even
intractable. To deal with these cases, Wei and Tanner (1990) [see also Tanner
(1993)] propose to replace the expectation in the computation of Q�θ � θk� by
a Monte Carlo integration, leading to the so-called Monte Carlo EM (MCEM
algorithm). Basically, the E-step at iteration k is replaced by the following
procedure.

Simulation step (S-step): generate m�k� realizations zk�j� (j = 1� 
 
 
 �
m�k�) of the missing data vector under the distribution function p�z� θk�,
Monte Carlo integration: compute the current approximation of Q�θ � θk�
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according to

Q̃k�θ� =m�k�−1
m�k�∑
j=1

log f�zk�j�� θ�
(5)

The maximization step remains unchanged [see Tanner (1993) for imple-
mentation details]. Simulation under the posterior density p�z� θ� is generally
easy when p�z� θ� is a product of low-dimensional marginal distributions; stan-
dard stochastic simulation methods such as importance sampling may in such
a case be used. When the posterior p�z� θ� cannot be decomposed, it is often
convenient to resort to Markov chain Monte Carlo simulation methods.

3. SAEM: The stochastic approximation EM algorithm. We propose
in this contribution an alternative scheme, which shares most of the attractive
behavior of the MCEM algorithm. Similar to the MCEM algorithm, the basic
idea is to split the E-step into a simulation step and an integration step.
Similar to the MCEM, the S-step consists of generating realizations of the
missing data vector under the posterior distribution p�z� θ�; the Monte Carlo
integration is substituted by a stochastic averaging procedure. The proposed
algorithm may thus be summarized as follows.

Simulation: generatem�k� realizations zk�j� (j = 1� 
 
 
 �m�k�) of the miss-
ing data under the posterior density p�z� θk�.
Stochastic approximation: update Q̂k�θ� according to

Q̂k�θ� = Q̂k−1�θ� + γk
(

1
m�k�

m�k�∑
j=1

log f�zk�j�� θ� − Q̂k−1�θ�
)
�(6)

where �γk�k≥1 is a sequence of positive step size.
Maximization: maximize Q̂k�θ� in the feasible set �, that is, find θk+1 ∈ �
such that

Q̂k�θk+1� ≥ Q̂k�θ� ∀ θ ∈ �

The SAEM algorithm shares some similarity with the stochastic EM (also

referred to as the probabilistic teacher) algorithm developed by Celeux and
Diebolt in a series of paper [see Celeux and Diebolt (1988, 1992), Diebolt and
Celeux (1993); see also Diebolt and Ip (1996)]. The main difference w.r.t to the
SEM approach is the use of a decreasing sequence of step size to approximate
(using stochastic approximation) the EM auxiliary function. In the SEM algo-
rithm, the stepsize is set to zero γk = 0 (no approximation) and the number
of simulations by iteration is constant [most often, m�k� = 1]; hence, under
mild assumptions, �θk�k≥0 is a homogeneous Markov chain. Under appropri-
ate conditions [see, e.g., Diebolt and Ip (1996)], it may be shown that this
Markov chain is geometrically ergodic and point estimate can be obtained, for
example, by computing ergodic averages. The behavior of the stationary distri-
bution of the chain has been characterized in some very simple scenarios; see
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Diebolt and Ip (1996). The SAEM algorithm is also related to the stochastic
approximation procedure developed by Younes [see Younes (1989, 1992)] for
incompletely observed Gibbsian fields (more on this later).

It should be noted that the stochastic approximation is used here in a
slightly unusual context, because the amount of data to process (i.e., the
incomplete data) is fixed. The convergence of the SAEM algorithm depends
on the choice of step sizes γk and/or the specification of m�k� used in the
stochastic approximation. It is inappropriate to start with small values for
step size γk and/or large values for the number of simulations m�k�. Rather,
it is recommended that one decrease γk and/or increasem�k� as the current ap-
proximation of the parameter vector moves closer to a stationary point. These
intuitions are formally developed in the next section, where convergence of the
sequence �θk�k≥0 is discussed. When the maximization step is straightforward
to implement and/or is, from the computational point of view, much faster than
the simulation step, one may set the number of simulations m�k� = 1 for all
the iterations.

In comparison with the MCEM algorithm, the SAEM makes a more effi-
cient use of the imputed missing values. At each new iteration of the MCEM
algorithm, a whole set of missing values needs to be simulated and all the
missing values simulated during the previous iterations are dropped. In the
SAEM algorithm, all the simulated missing values contribute to the evalu-
ation of the auxiliary quantity Q̂k�θ�; they are gradually discounted, with a
forgetting factor inversely proportional to the step size. As a result, the SAEM
algorithm moves toward modal areas more quickly than the MCEM in terms
of the number of simulations. The computational advantage of the SAEM algo-
rithm over the MCEM algorithm is striking in problems where maximization
is much cheaper than simulation.

All the acceleration methods devised from the EM paradigm [such as the
method proposed by Louis (1982) or the modified scoring developed by Meili-
json (1989)] can be adapted to the SAEM algorithm following essentially the
same lines as Wei and Tanner (1990) for the MCEM algorithm. Note in partic-
ular that the gradient (the Fisher score function) and the Hessian (observed
Fisher information) of l�θ� can be obtained almost directly by using the values
of the simulated missing data zk�j�, 1 ≤ j ≤m�k�. Using the so-called Fisher
identity, the Jacobian of the incomplete data log-likelihood l�θ� is equal to the
conditional expectation of the complete data log-likelihood,

∂θl�θ� �= Eθ�∂θ log f�Z� θ���(7)

where ∂θ denotes the differential with respect to θ and

Eθ�ψ�Z�� �=
∫
ψ�z�p�z� θ�µ�dz�
(8)

Equation (7) suggests the following stochastic approximation scheme:

�k = �k−1 + γk
(

1
m�k�

m�k�∑
j=1

∂θ log f�zk�j�� θk� − �k−1

)

(9)
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Using Louis’s missing information principle [Louis (1982)], the Hessian of l at
θ, ∂2

θl�θ� (the observed Fisher information matrix) may be expressed as

− ∂2
θl�θ� = −Eθ�∂2

θ log f�Z� θ�� − Covθ�∂θ log f�Z� θ���(10)

where Covθ�ψ�Z�� �= Eθ��ψ�Z� − Eθ�ψ�Z����ψ�Z� − Eθ�ψ�Z���t�. Using this
expression, it is possible to derive the following stochastic approximation pro-
cedure to approximate ∂2

θl�θ�:

Gk = Gk−1 + γk
(

1
m�k�

m�k�∑
j=1

(
∂2
θ log f�zk�j�� θk�

+ ∂θ log f�zk�j�� θk�∂θ log f�zk�j�� θk�t
)
−Gk−1

)
�(11)

Hk = Gk − �k�tk

Provided the SAEM algorithm converges to a limiting value θ� (see Section 6)
and θ→ l�θ� is sufficiently smooth, Hk converges to −∂2

θl�θ��. When l�θ� is an
incomplete data likelihood function of a regular statistical experiment [see,
e.g., Ibragimov and Has’minski (1981)], the maximum likelihood estimator
[i.e., the value of θ that maximizes l�θ� over the feasible set �] is asymp-
totically normal and the inverse of the observed Fisher information matrix
−∂2

θl�θ�� converges to the asymptotic covariance of the estimator. Hence, the
limiting value of Gk can be used to assess the dispersion of the estimator.

4. Convergence of the EM algorithm for curved exponential fam-
ilies. The convergence of the EM algorithm has been addressed by many
different authors, starting with the seminal paper by Dempster, Laird and Ru-
bin (1977). Convergence under very general conditions has been established
by Wu (1983). Before embarking on the more subtle task of investigating the
convergence property of the SAEM algorithm, we briefly recall the basic in-
gredients needed to prove the convergence of the EM algorithm. We base our
discussion mainly on the recent work by Lange (1995). In the sequel, we re-
strict attention to models for which the unnormalized density f�z� θ� belongs
to the curved exponential family.

(M1) The parameter space � is an open subset of R
p. The complete data

likelihood function is given by

f�z� θ� = exp
{
−ψ�θ� +

〈
S̃�z�� φ�θ�

〉}
�(12)

where �·� ·� denotes the scalar product, S̃�·� is a Borel function on R
l

taking its values in an open subset � of R
m. Moreover, the convex hull

of S̃�Rl� is included in � , and, for all θ ∈ �,

∫
R
l
�S̃�z��p�z� θ�µ�dz� <∞
(13)
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The choice of S̃�z� is of course not unique. It is generally guided by consid-
erations on the practical implementation of the algorithm. This assumption is
often met in situations where the EM algorithm is employed. It implies that
the expectation step reduces to the computation of

Eθ�S̃�Z�� �=
∫

R
l
S̃�z�p�z� θ�µ�dz�


Note that Eθ�S̃�Z�� belongs to the convex hull of S̃�Rl� ⊂ � . To develop the
theory further, some regularity conditions are needed. Define L
 � × �→ R

as

L�s� θ� = −ψ�θ� + �s�φ�θ�� 
(14)

(M2) The functions, ψ�θ� and φ�θ� are twice continuously differentiable on �.
(M3) The function s̄
 �→ � defined as

s̄�θ� �=
∫

R
l
S̃�z�p�z� θ�µ�dz�(15)

is continuously differentiable on �.
(M4) The function l�θ� is continuously differentiable on � and

∂θ

∫
f�z� θ� µ�dz� =

∫
∂θf�z� θ�µ�dz�


(M5) There exists a function θ̂
 � → �, such that

∀θ ∈ �� ∀ s ∈ � � L�s� θ̂�s�� ≥ L�s� θ�

Moreover, the function θ̂�s� is continuously differentiable on � .

In many models of practical interest, the function θ→ L�s� θ� has a unique
global maximum, and the existence and the differentiability of s → θ̂�s� is a
direct consequence of the implicit function theorem. Using the notations in-
troduced above, the EM-reestimation functional Q�θ � θ′� may be expressed as

Q�θ � θ′� = L�s̄�θ′�� θ�
(16)

Using these assumptions, the iteration θk → θk+1 of the EM algorithm is
defined as

θk+1 = T�θk� = θ̂�s̄�θk��
(17)

Adaptations of the algorithm to situations where the maximum of L�s� θ� can-
not be computed explicitly will be considered in Section 8. The following prop-
erties are simple consequences of the basic properties of the EM algorithm:

θ → T�θ� = θ̂�s̄�θ�� is continuously differentiable on the feasible set �.
Moreover, l�T�θ�� ≥ l�θ�, with equality occurring only when θ is a fixed
point of T;
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The set of fixed points of T�θ� coincides with the set � of stationary points
of l�θ�:

� = �θ ∈ �� ∂θl�θ� = 0� = �θ ∈ �� θ = T�θ��
(18)

Note that � is closed. In the terminology of Dempster, Laird and Rubin
(1977), T�θ� is a continuous EM algorithm. The EM recursion may equiva-
lently be written in that case in terms of expectation of the complete data
sufficient statistics sk

�= s̄�θk−1� as

sk+1 = s̄�θ̂�sk�� �= G�sk��(19)

this form coming up more naturally in the analysis of the SAEM algorithm.
Under (M1–M5), G also is continuously differentiable on � . For the model
above, the convergence of the EM algorithm can be established upon the ad-
ditional condition that the sequence θk+1 = T�θk� stays within some compact
set in �. The following theorem is adapted from Lange (1995) [Propositions 4
and 5; see also Theorems 1, 2 and 4 in Wu (1983)]. For θ ∈ �, we denote � �θ�
the set of limit points of the sequence θk+1 = T�θk�, starting at θ0 = θ. We
denote clos�A� and int�A� the closure and the interior of the set A, and, when
A is a closed set, d�x�A� the distance of x to A.

Theorem 1. Assume that (M1)–(M5) hold. Assume in addition that for
any θ ∈ �, clos�� �θ�� is a compact subset of �. Then, for any initial point
θ0 = θ, the sequence l�θk� is increasing and limk→∞ d�θk�� �θ�� = 0.

Note that the compactness of the sequence �θk�k≥0 plays an essential role
in the proof. In Lange (1995) [see also Wu (1983)] this property is guaranteed
by assuming that l�θ� is continuous and lower compact in the sense that the
level set

�θ ∈ �
 − l�θ� ≤ c�(20)

is compact for any c ≥ 0.

5. General results on Robbins–Monro type stochastic approxima-
tion procedures. The SAEM algorithm is a Robbins–Monro type stochastic
approximation procedure. These procedures have received considerable atten-
tion in the literature [see, e.g., Kushner and Clark (1978), Duflo (1996), Kush-
ner and Yin (1997) and the references therein]. The most commonly used tool
for proving w.p.1 convergence for such algorithm is of far Theorem 2.3.1 of
Kushner and Clark (1978) [see Fort and Pagès (1996)]. However, some condi-
tions of this theorem prove intractable, because the mean field (see definition
below) associated with the SAEM algorithm is multimodal in many situations
of interest. In the sequel, we use an alternate technique to prove the conver-
gence, which extends results obtained earlier in Delyon (1996). The type of
assumptions on which these results are based are, of course, well suited for
the analysis of the SAEM algorithm. However, these results are applicable
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in a much wider context; this is why we present these results for a general
Robbins–Monro (RM) stochastic approximation procedure. We will apply these
results to the SAEM algorithm in the next section. Throughout this section,
we consider the following RM stochastic approximation procedure:

sn = sn−1 + γnh�sn−1� + γnen + γnrn�(21)

where �en�n≥1 and �rn�n≥1 are random processes defined on the same proba-
bility space taking their values in an open subset � ⊂ R

m; h is referred to as
the mean field of the algorithm; �rn�n≥1 is a remainder term and �en�n≥1 is
the stochastic excitation.

Theorem 2. Assume that:

(SA0) w.p.1, for all n ≥ 0, sn ∈ � ;
(SA1) �γn�n≥1 is a decreasing sequence of positive number such that∑∞
n=1 γn = ∞;
(SA2) The vector field h is continuous on � and there exists a continuously

differentiable function V
 � → R such that
(i) for all s ∈ � , F�s� = �∂sV�s�� h�s�� ≤ 0;

(ii) int�V�� �� = �, where �
�= �s ∈ � 
 F�s� = 0�;

(SA3) w.p.1, clos��sn�n≥0� is a compact subset of � ;
(SA4) w.p.1, limp→∞

∑p
n=1 γnen exists and is finite, limn→∞ rn = 0.

Then, w.p.1, lim supd�sn�� � = 0.

The proof of this theorem is given in Appendix A. Note that this theo-
rem shares most of the assumptions of Theorem 2.3.1 of Kushner and Clark
(1978) and Theorem 2.1 in Kushner and Yin (1997). The main difference lies in
assumption (SA2), which replaces the following recurrence assumption: “the
sequence �sk�k≥0 is w.p. 1 (or with a probability greater than or equal to ρ)
infinitely often in some compact set in the domain of attraction of an asymptot-
ically stable point s� (in the sense of Lyapunov) of h.” [Note that a stationary
point of the vector field h is a point s� such that h�s�� = 0. The domain of
attraction of s� is the set D�s�� ⊂ � � such that for every x ∈ D�s�� the ODE
ds�t�/dt = h�s�t��, with initial condition s�0� = x has a solution for t ≥ 0
verifying limt→∞ s�t� = s�.] This assumption is almost impossible to verify in
situations where there are more than one stationary point (which is by far
the most common situation when dealing with likelihoods). The boundedness
of the sequence �sk�k≥0 does not imply in that case that �sk�k≥0 is infinitely
often in a compact subset of the domain of attraction of a stationary point.
Assumption (SA3) implies that, along every trajectory of (21), the sequence
�sk�k≥0 stays in a compact subset (depending upon the trajectory) of � . This
assumption (compactness) is often difficult to check, because the behavior of
the logarithm of the normalizing function l�θ� on the boundary of the feasible
set is most often pathological. This assumption can be replaced by a recurrence
condition, provided there exists a Lyapunov function controlling the excursion
outside the compact sets of � .
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Lemma 1. Assume (SA0)–(SA2). Assume in addition:

(STAB1) There exists a continuously differentiable function W
 � → R and
a compact set � ⊂ � such that

(i) For all c ≥ 0, the level set �s ∈ � 
 W�s� ≤ c� is a compact
subset of � , and for c < c′, �s ∈ � 
 W�s� ≤ c� ⊂ int��s ∈ � 
 W�s� ≤ c′��;

(ii) �∂sW�s�� h�s�� < 0, for all s ∈ � \� ;
(STAB2) For any positive integer M, the sequence �εn�n≥1 defined as

εn =
n∑
k=1

γkek ��W�sk−1� ≤M�

converges w.p.1 to a finite limit. In addition, w.p.1,

lim sup
k→∞

�rk� ��W�sk−1� ≤M� = 0�

(STAB3) w.p.1, the sequence �sk�k≥0 admits a limit point in � .

Then lim supW�sk� <∞ w.p.1 and assumptions (SA3) and (SA4) are satisfied.

The proof of this result may be adapted from the proof of Theorem 1 in
Delyon (1996) (it is omitted for brevity). The function W does not necessarily
coincide with the Lyapunov functionV used in Theorem 2 [assumption (SA2)].
The condition (STAB3) is a recurrence condition: w.p.1, the sequence �sk�k≥0
returns infinitely often in a compact set. In some cases, the recurrence con-
dition (STAB3) is not verified. A possible solution to overcome this problem
consists in implementing an explicit stabilization device. To that purpose, we
will present a simple modification of (21), adapting the procedure presented
in Chen, Guo and Gao (1988) [see also Andradottir (1995)]. The procedure
consists in truncating the original RM recursion (21): every time sk is outside
a specific set, it is re-initialized at a point chosen at random in a compact set
of � . In the technique proposed by Chen, Guo and Gao (1988), the truncation
bounds are random functions of the recursion index k. The advantage of this
approach is that the truncation does not modify the mean field (and hence, the
set of stationary points of the recursion) of the original RM recursion; this is
in contrast with the traditional projection or truncation approach, where the
truncation set is fixed. This is also advantageous from the practical point of
view, because the truncation set is selected automatically. The procedure goes
as follows. Choose a sequence of compact subsets such that

�n ⊂ int��n+1�� � =
∞⋃
n=0

�n
(22)

Every time sk wanders out of the compact subset �nk
, the sequence is reset

at an arbitrary point inside �0, and the index nk is increased (nk is thus the
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number of projections up to the kth iteration). More precisely,

ŝk = sk−1 + γkh�sk−1� + γkek + γkrk�

if ŝk ∈�nk−1


{
sk = ŝk�
nk = nk−1�

(23)

if ŝk /∈�nk−1


{
sk = s′k�
nk = nk−1 + 1�

where �s′k�k≥0 is an arbitrary sequence of random variables taking their values
in �0.

The modified recursion (23) automatically satisfies the recurrence condition
(STAB3), because by construction, all the sequences that do not stay in a
compact set of � are infinitely often in the set �0 and hence have a limit
point in that set, since that set is compact. We have the following convergence
result.

Theorem 3. Consider �sk�k≥0 as given by the truncated RM procedure (23)
and assume that (SA0)–(SA2) and (STAB1) and (STAB2) hold. Then, w.p.1,
limd�sk�� � = 0.

5.1. Rate of convergence, step size selection and averaging of iterates. The
difficulty of selecting an appropriate step size sequence has long been consid-
ered as a serious handicap for practical applications. In a path-breaking paper,
Polyak (1990) [see also Polyak and Juditski (1992)] showed that if the step size
γn goes to zero slower than 1/n (yet fast enough to ensure convergence at a
given rate), then the averaged sequence, defined as n−1∑n

i=1 si converges to its
limit at an optimum rate (see the comments below). This result implies that
we should use large step size (larger than γn = 1/n; typically γn = n−2/3) and
an off-line averaging controls the increased noise effect. The practical value of
the averaging method has been reported for many different stochastic approx-
imation procedures [see Kushner and Yin (1997), Chapter 11, for a thorough
investigation of the averaging method; see also Delyon and Juditski (1992)].
In particular, it happens that this approach tends to robustify the overall pro-
cedure, in the sense that the primary approximation algorithm (which uses
large step size) is less likely to get stuck at an early stage in a local minimum
and more likely to have a faster initial convergence.

The use of an averaging procedure makes sense when the stochastic ap-
proximation procedure converges to a regular stable stationary point, defined
as follows.

Definition. We say that s� is a regular stable stationary point of the
stochastic approximation procedure (21), if (i) h�s�� = 0, (ii) h is twice dif-
ferentiable in a neighborhood of s� and (iii) H�s��, the Jacobian matrix of h at
s�, is a Hurwitz matrix; that is, the real parts of the eigenvalues of H�s�� are
negative.
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As evidenced by Kushner and Yin (1997), averaging improves the asymp-
totic convergence whenever sn converges to s� with a given rate of conver-
gence. We say that the rate of convergence of sn about s� is γ1/2

n if the sequence
γ
−1/2
n �sn − s�� is bounded in probability, that is,

lim
M→∞

lim sup
n→∞

P
(
γ−1/2
n �sn − s���

(
lim
n→∞�sn − s�� = 0

)
≥M

)
= 0
(24)

To that purpose, we need to strengthen the assumptions made on the step size
sequence �γn�n≥1 and on the disturbance processes �en�n≥1, �rn�n≥1. Denote
� = ��n� n ≥ 1�, the increasing family of σ-algebra generated by s0� e1� 
 
 
 �

en� r1� 
 
 
 � rn. For ρ > 0, we define en�ρ� �= en���sn−1 − s�� ≤ ρ�. The process
�en�ρ�� is adapted to � .

(AVE1) For some ρ > 0 such that �s ∈ � 
 �s − s�� ≤ ρ� ⊂ � , there exists
a constant C�ρ� <∞, such that, for any deterministic sequence of
matrices �αk�k≥1, and any n ≥ 1, we have

E

(∥∥∥∥
n∑
k=1

αkek�ρ�
∥∥∥∥

2)
≤ C�ρ�

n∑
k=1

�αk�2
(25)

In addition, w.p.1, limp→∞
∑p
n=1 γnen�ρ� exists and is finite.

(AVE2) w.p.1, lim supn→∞ γ
−1/2
n �rn���limn→∞ �sn − s�� = 0� <∞;

(AVE3(α)) �1/2 < α < 1� �γn�n≥1 is a nonincreasing sequence of positive real
numbers; in addition, limn→∞ nαγn = γ� and γn+1/γn = 1+O�n−1�.

If �ek�k≥1 is a L2-martingale increment (w.r.t � ), then �ek�ρ��k≥0 also is a L2-
martingale increment and (AVE1) is verified with C�ρ� = supk≥0E��ek�ρ��2�,
provided that supk≥0E��ek�ρ��2� <∞. Assumption (AVE1) is also verified for
a large class of weak dependent disturbance process �ek� (including Markov
chains), by application of Rosenthal’s inequality [see, e.g., Doukhan (1994)].

Under these assumptions, it may be shown that γ−1/2
n �sn−s����limn→∞ �sn−

s�� = 0� is bounded in probability, provided s� is a regular stable stationary
point (see Lemma 6). Next, we define the averaged version of the algorithm,

sn = sn−1 + γnh�sn−1� + γnen + γnrn�
s̄n = s̄n−1 + n−1�sn−1 − s̄n−1��

(26)

where s̄0 = 0. The basic result for the convergence of the average of the iterates
is given below. We denote →P and →� the convergences in probability and in
distribution, and � �µ�7� the multivariate normal distribution with mean µ
and covariance matrix 7.

Theorem 4. Assume that (AVE1)–(AVE3(α)) hold, with 1/2 < α < 1. As-

sume in addition that s� is a stable regular stationary point. Then, γ
−1/2
n �sn−s��



106 B. DELYON, M. LAVIELLE AND E. MOULINES

��limn→∞ �sn − s�� = 0� is bounded in probability and

√
n

(
s̄n − s� + n−1

n∑
k=1

νk

)
�
(

lim
n→∞�sn − s�� = 0

)
→P 0�(27)

where νk
�= ek + rk. If, in addition,

1/
√
n

n∑
k=1

νk �
(

lim
n→∞�sn − s�� = 0

)
→� � �0� S� �

(
lim
n→∞�sn − s�� = 0

)
�(28)

then

√
n�s̄n − s�� �

(
lim
n→∞�sn − s�� = 0

)
→� � �0�H�s��−1SH�s��−1� �

(
lim
n→∞�sn − s�� = 0

)



(29)

Remark 1. As shown in Chickin and Poznyak (1984) and Chickin (1988),
the rate obtained in (29) is the best asymptotic rate of convergence. This rate
may be achieved using a Gauss–Newton type stochastic approximation algo-
rithm; however, in this latter case, knowledge of H�s�� is needed; this is not
required when the averaging of iterates is used.

Remark 2. The central limit theorem is checked under a wide variety of
conditions. We apply the result in the case where �en�n≥0 is a martingale
increment; the CLT is thus verified under standard Lindeberg’s type conditions
[see Hall and Heyde (1980)].

Remark 3. When coupled with the stabilization device ((23)), the averag-
ing procedure should be modified. The modification consists in resetting to
zero the averaged value at every time instants the primary stochastic approx-
imation algorithm is restarted and computing averages from that point. As
shown in Theorem 3, the number of times the algorithm is restarted is finite
w.p.1; (27) still holds for the modified algorithm.

The proof of Theorem 4 is given in Appendix B. It should be stressed that
our result is obtained under much less stringent conditions than those used
in Delyon and Juditski (1992) (this contribution deals uniquely with gradient
type algorithms; moreover, assumption (A3) of this contribution involves con-
ditions on the growth of the Lyapunov function and of the mean field outside
the compact sets of � ). It also weakens some of the assumptions of Theorem
3.1, page 338, in Kushner and Yin (1997); in particular, it avoids the tight-
ness condition (A3.1), which is most often difficult to check (see Remark 4 in
Appendix B).
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6. Convergence of the SAEM algorithm. To avoid cumbersome nota-
tions, we set m�k� = 1. The kth iteration of the SAEM algorithm boils down
to

Sk = Sk−1 + γk�S̃�Zk� −Sk−1�� θk = θ̂�Sk��(30)

where �Zk�k≥1 is the missing value simulated at step k, under the poste-
rior density p�z� θk−1� [see (4)]. It is assumed that the random variables (r.v.)
S0, Z1, Z2� 
 
 
 are defined on the same probability space �9�� �P�; we de-
note � = ��n�n≥0 the increasing family of σ-algebra generated by the r.v.
S0�Z1�Z2� 
 
 
 �Zn. In addition, we assume that:

(SAEM1) For all k > 0, 0 ≤ γk ≤ 1,
∑∞
k=1 γk = ∞ and

∑∞
k=1 γ

2
k <∞;

(SAEM2) l
 �→ R and θ̂
 � → � are m times differentiable;
(SAEM3) For all positive Borel function φ,

E�φ�Zk+1� � �k� =
∫
φ�z�p�z� θk�µ�dz��

(SAEM4) For all θ ∈ �,
∫ �S̃�z��2p�z� θ�µ�dz� <∞, and the function

7�θ� �= Covθ�S̃�Z��(31)

is continuous w.r.t θ.

Since the convex hull of S̃�Rl� ⊂ � , (SAEM1) implies that, for all k ≥ 0,
Sk ∈ � . Assumption (SAEM3) is equivalent to saying that given θ0� 
 
 
 � θk�
the simulated missing observations Z1� 
 
 
 �Zk are conditionally independent.
This assumption can be relaxed to allow for Markovian dependence, a situa-
tion which is typical when the Markov chain Monte Carlo method is used for
simulation. We may express the recursion (30) into the Robbins–Monro form
[Kushner and Clark (1978)],

Sk = Sk−1 + γkh�Sk−1� + γkEk�(32)

where h�s� stands for the mean field of the algorithm and Ek is a random
perturbation

h�s� = Eθ̂�s��S̃�Z�� − s = s̄�θ̂�s�� − s�(33)

Ek = S̃�Zk� −E�S̃�Zk� � �k−1� = S̃�Zk� − s̄�θ̂�Sk−1��
(34)

Proving the convergence amounts to verifying that the assumptions of Theo-
rem 2 are satisfied.

Lemma 2. Assume that (M1)–(M5) and (SAEM2) hold. Then (SA2) is sat-
isfied with V�s� = −l�θ̂�s��. Moreover,

�s ∈ � 
 F�s� = 0� = �s ∈ � 
 ∂sV�s� = 0��(35)

θ̂��s ∈ � 
 F�s� = 0�� = �θ ∈ �
 ∂θl�θ� = 0� = � �(36)

where F�s� �= �∂sV�s�� h�s��.



108 B. DELYON, M. LAVIELLE AND E. MOULINES

Proof. Under (M3), s̄�θ�� is continuously differentiable on �. Under
(SAEM2), θ̂�s� is (m times) continuously differentiable on � and h�s� =
s̄�θ̂�s�� − s is continuously differentiable on � . Hence, h�s� is bounded on
every compact subset of � . Under assumption (M5), for all s in � , the func-
tion θ̂�s� satisfies ∂θL�s� θ̂�s�� = 0, thus

− ∂θψ�θ̂�s�� + st∂θφ�θ̂�s�� = 0�(37)

where the superscript t denotes the transposition. Under (M2)–(M5), we may
differentiate the relation ∂θL�s� θ̂�s�� = 0 with respect to s,

∂2
θL�s� θ̂�s�� ∂sθ̂�s� = −φ�θ̂�s��t�(38)

where ∂2
θ denotes the second-order derivative w.r.t. θ. On the other hand, for

all θ ∈ �, assumption (M4) implies

∂θl�θ� = −∂θψ�θ� + s̄�θ�t ∂θφ�θ�

Plugging (37) into the previous expression yields

∂θl�θ̂�s�� =
(−s+ s̄�θ̂�s��)t∂θφ�θ̂�s��

= h�s�t ∂θφ�θ̂�s��
= −h�s�t ∂sθ̂�s�t ∂2

θL�s� θ̂�s���
∂sl�θ̂�s�� = −h�s�t ∂sθ̂�s�t ∂2

θL�s� θ̂�s�� ∂sθ̂�s�


Since, under (M5), ∂2
θL�s� θ̂�s�� ≤ 0, we have

F�s� �= �∂sV�s�� h�s�� = −
〈
∂sl�θ̂�s��� h�s�

〉
= h�s�t ∂sθ̂�s�t ∂2

θL�s� θ̂�s�� ∂sθ̂�s�h�s� ≤ 0�
(39)

which proves (SA2i). Note that obviously �s
 ∂sV�s� = 0� ⊂ �s
 F�s� = 0�.
On the other hand, let s� ∈ � be such that F�s�� = 0, since under (M5)
∂2
θL�s�� θ̂�s��� is a nonpositive matrix, (39) implies that ∂θl�θ̂�s��� = 0, and thus
∂sV�s�� = 0, showing the reverse inclusion �s
 F�s� = 0� ⊂ �s
 ∂sV�s� = 0�. By
(M4) and (M5), function V is m times continuously differentiable. Sard’s the-
orem [Brocker (1975)] implies that V��s
 ∂sV�s� = 0�� = 0 has zero Lebesgue
measure, showing (SA2ii). ✷

We may now formulate a theorem which is the stochastic counterpart of
basic convergence Theorem 1 for a continuous EM algorithm.

Theorem 5. Assume that the assumptions (M1)–(M5) and (SAEM1)–
(SAEM4) hold. Assume in addition, that w.p.1, (A) clos��Sk�k≥1� is a com-
pact subset of � . Then, w.p.1, limk→∞ d�Sk� �s ∈ � 
 ∂sV�s� = 0�� = 0 and
limk→∞ d�θk�� � = 0.
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Proof. (SA0) is verified under (M1) and (SAEM1) because 0 < γk < 1
and the convex hull of S̃�Rm� is included in � . (SA1) is implied by (SAEM1)
and (SA3) by (A). Note that under (A), there exists w.p.1 a compact set � ,
such that Sk ∈ � for all k ≥ 0. Denote Mn =

∑n
k=1 γkEk. Then �Mn�n≥1 is a

� -martingale which satisfies, under (SAEM1)–(SAEM3),
∞∑
n=1

E��Mn+1 −Mn�2 � �n�

≤
∞∑
n=1

γ2
n+1

∫
�S̃�z��2p�z� θ̂�Sn��µ�dz� <∞ w.p.1

since, by (A(i)–A(ii)) and (M5), w.p.1 θ̂�Sn� is in a compact set θ̂�� � of �. This
property implies that w.p.1, limn→∞Mn exists [see Hall and Heyde (1980),
Theorem 2.15, page 33), proving (SA4). Finally, Lemma 2 shows that (SA2) is
satisfied and Theorem 2 holds. Since the function θ̂
 � → � is continuous,
the proof is concluded by applying Lemma 2, equation (35). ✷

Note that, since the function θ̂
 � → � is continuous, Theorem 5 and
Lemma 2, equation (35), imply that

d�θk�� � = d�θ̂�Sk�� θ̂��s ∈ � 
 F�s� = 0��� → 0 w.p.1
(40)

In certain models, the compactness condition (A) of Theorem 5 is trivially
satisfied. This is the case when the complete data are bounded and the unnor-
malized density is well behaved. In others situations, checking (A) may prove
intractable; we apply in these cases the stabilization procedure presented in
Section 5. The truncated SAEM algorithm takes the form:

Ŝk = Sk−1 + γk�S̃�Zk� −Sk−1��

if Ŝk ∈�nk−1


{
Sk = Ŝk� θk = θ̂�Sk��
nk = nk−1�

(41)

if Ŝk /∈�nk−1


{
Sk = S′k� θk = θ̂�Sk��
nk = nk−1 + 1�

where ��n�n≥0 is a sequence of compact sets, such that

�n ⊂ int��n+1� and
∞⋃
n=0

�n = �(42)

and S′k is an arbitrary sequence of random variables taking their values in �0.
The convergence of the truncated SAEM algorithm follows from Theorems 3
and 6.

7. Convergence to local maxima. The results obtained in the previous
section demonstrate that, under appropriate conditions, the sequence �θk�k≥1
[defined in (30) or (41)] converges to a connected component of the set �
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of stationary points of l�θ�. Assume that the connected components � are
reduced to points � = ⋃�θ��, so that θk → θ�. Depending upon the values
of the Hessian of l, these stationary points may correspond either to local
maxima, local minima or saddle points. Of course, it would be of interest to find
conditions upon which the convergence toward local maxima is guaranteed.
Such conditions are worked out in this section.

(LOC1) The stationary points of l�θ� are isolated: any compact subset of �
contains only a finite number of such points.

(LOC2) For every stationary point θ� ∈ � , the matrices

Eθ�
[
∂θL�S̃�Z�� θ��t∂θL�S̃�Z�� θ��

]
and ∂2

θL�Eθ��S̃�Z��� θ��
are positive definite.

Assumption (LOC1) is of course satisfied if the Hessian of l�θ� at θ� is
nonsingular. Under the conditions of Theorems 5 or 3, the sequence �θk�k≥1
converges w.p.1 to a compact and connected subset of � . Under (LOC1), the
connected components of � are reduced to points so that the sequence �θk�k≥1
converges (w.p.1) pointwise to some point θ� ∈ � . We may associate to θ� the
point in � ,

s� = s̄�θ�� = Eθ�
[
S̃�Z�

]



Heuristically, since θk → θ�, the missing data Zk (for large enough k) are all
simulated under approximately the same posterior distribution p�z� θ��, it is
expected that �Sk�k≥1 converges w.p.1 to s�.

Theorem 6. Under the assumptions of Theorem 5 and (LOC1), the se-
quence �Sk�k≥1 defined by (30) converges to s� = s̄�θ��, where θ� = limk→∞ θk.
Then θ� and s� are fixed points of the EM-mappings T
 � → � (17) and
G
 � → � (19).

Proof. Denote δk = Sk − s�. We have

δk+1 = �1− γk+1�δk + γk+1�S̃�Zk+1� − s���(43)

= δk − γk+1δk + γk+1�s̄�θk� − s�� + γk+1Ek+1�(44)

where Ek+1 = S̃�Zk+1� − s̄�θk�. Since �θk�k≥1 converges w.p.1, the sequence
�θk�k≥1 is w.p.1 bounded and w.p.1, the martingale

∑n
k=0 γkEk converges. On

the other hand, the continuity of s̄�
� implies that

lim
k→∞

s̄�θk� − s� = 0


The sequence �δk� converges to zero w.p.1 by application of Theorem 2 with
the Lyapunov function V�x� = −�x�2. This proves the convergence of Sk to s�.
The relation θk = θ̂�Sk� implies that θ� = θ̂�s�� and since s̄�θ�� = s�, θ� and s�

are fixed points of T and G. ✷
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A similar result can be obtained for the stabilized version of the SAEM
algorithm. The regularity of the stationary points (see the definition above) is
connected with the stability of the EM mappings T
 �→ � and G
 � → �
at θ� ∈ � and s� = s̄�θ��.

Lemma 3. Assume that (M1)–(M5) and (LOC1) and (LOC2) hold. Let θ�

be any fixed point of T and let s� = s̄�θ��. Then:

(i) s� is a fixed point of the mapping G;
(ii) ∂θT�θ�� is diagonalizable and its eigenvalues are positive real numbers;

(iii) the fixed point θ� is stable if it is a proper maximizer of the normalizing
function l�θ�. It is hyperbolic if it is a saddle point of l�θ�. It is unstable if it
is a proper local maximizer of l�θ�;

(iv) s� is a regular stable stationary point if and only if θ� is a proper
maximizer of θ→ l�θ�.

Proof. (i) Follows from

G�s�� = s̄�θ̂�s̄�θ���� = s̄�T�θ��� = s�

(ii) The differential of the mapping T at θ� is given by [see Lange (1995),

equation 7],

∂θT�θ�� = ∂2
θL�s�� θ��−1∂2

θL�s�� θ�� − ∂2
θl�θ����(45)

∂2
θl�θ�� − ∂2

θL�s�� θ�� = θ�
[
∂θL�S̃�Z�� θ��t∂θL�S̃�Z�� θ��

]

(46)

Because matrices −∂2
θL�s�� θ�� and ∂2

θl�θ�� − ∂2
θL�s�� θ�� are positive definite,

∂θT�θ�� is diagonalizable with strictly positive eigenvalues.
(iii) Here ∂θT�θ�� has the same eigenvalues (counting multiplicities) as the

matrix A��

A� = I+B�� B� = �−∂2
θL�s�� θ���−1/2∂2

θl�θ���−∂2
θL�s�� θ���−1/2


The proof is concluded by applying the Sylvester law of inertia [Horn and
Johnson (1985)], showing that B� has the same inertia (number of positive,
negative and zero eigenvalues) as ∂2

θl�θ��.
(iv) Using definitions (17) and (19) of the mappings T and G, we have

∂θT�θ�� = ∂sθ̂�s��∂θs̄�θ��� ∂sG�s�� = ∂θs̄�θ��∂sθ̂�s��
(47)

It follows from Theorem 1.3.20 in Horn and Johnson (1985) that ∂sG�s�� has
the same eigenvalues as ∂θT�θ�� counting multiplicities, together with addi-
tional �m − p� eigenvalues equal to 0. The proof is concluded by noting that
∂sh�s�� = ∂sG�s�� − I. ✷

Hence, θ� is a stable stationary point of T if and only if θ� is a proper
maximizer of l. Otherwise, θ� is hyperbolic or unstable. This is why most often
the EM sequences do not converge toward saddle points or local minima [see
Murray (1977)]. Of course, in the stochastic context, such ill-convergences are
avoided automatically; roughly speaking, the stochastic approximation noise
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prevents the convergence toward hyperbolic or unstable points. The following
additional assumption is needed.

(LOC3) The minimum eigenvalue of the covariance matrix

R�θ� = Eθ
[�S̃�Z� − s̄�θ���S̃�Z� − s̄�θ�t�]

is bounded away from zero for θ in any compact subset � ⊂ �.

By application of Brandiere and Duflo (1996), the sequence �θk� converges
w.p.1 to a proper maximizer of l�θ�, under the assumptions of Theorem 5 and
(LOC1)–(LOC3).

In the situations where the Sk converge to a regular stable stationary point
[which is guaranteed under (LOC1)–(LOC3)], it makes sense to use an aver-
aging procedure. In the application considered here, it is more interesting to
compute the average on the parameters themselves. The averaging procedure
takes the form

Sk = Sk−1 + γk�S̃�Zk� −Sk−1�� θk = θ̂�Sk��(48)

θ̄k+1 = θ̄k + k−1�θk − θ̄k��(49)

where γk is a sequence such that limk→∞ kαγk = γ� and γk/γk+1 = 1+O�k−1�,
for some 1/2 < α < 1. Adaptations of the procedure for the stabilized algorithm
are along the same lines. To apply Theorem 4, we need to strengthen the
assumptions on the stochastic perturbation �Ek�. Under (SAEM3), �Ek�k≥1 is
a martingale increment; CLT for martingale increments hold under Lyapunov
type assumptions.

(SAEM4′) For some α > 0, θ ∈ �, Eθ��S̃�Z��2+α� <∞ and 7�θ� �= Covθ�S̃�Z��
is a continuous function of θ.

Under (SAEM1) and (SAEM4′), n−1/2∑n
k=1Ek →� � �0� 7�θ���, and, by a

direct application of Theorem 4, it holds that
√
n�θ̄n − θ�� →� � �0� >�θ����(50)

>�θ�� = ∂sθ̂�s��H�s��−17�θ��H�s��−1∂sθ̂�s��t�(51)

where H�s�� = ∂sh�s��. Some insight may be gained by working out the pre-
vious expression. To that purpose, note that, by application of (38) and (45),

∂sθ̂�s��H�s��−1 = ∂sθ̂�s��
(
∂θs̄�θ��∂sθ̂�s�� − I

)−1
�

= (∂sθ̂�s��∂θs̄�θ�� − I)−1
∂sθ̂�s���

= −�∂2
θl�θ���−1∂2

θL�s�� θ��∂sθ̂�s���
= �∂2

θl�θ���−1∂θφ�θ��t

Note that, by (46),

Covθ��∂θL�S̃�Z�� θ��� = ∂θφ�θ��tCovθ��S̃�Z��∂θφ�θ���(52)

= ∂2
θl�θ�� − ∂2

θL�s�� θ���(53)
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which finally implies that

>�θ�� = �∂2
θl�θ���−1�∂2

θl�θ�� − ∂2
θL�s�� θ����∂2

θl�θ���−1
(54)

In the missing data terminology, the asymptotic covariance of the averaged
estimate is thus related to the missing information, the difference between
the incomplete versus complete data Fisher information matrix. Note that an
estimate of >�θ�� can be recursively obtained from (11). We may summarize
the above results as follows.

Theorem 7. Assume that (SAEM1)–(SAEM4′) and (LOC1)–(LOC3) hold.
Then, the sequence �θn� converges to some proper maximizer θ� of θ → l�θ�.
If in addition, limk→∞ kαγk = γ� and γk/γk+1 = 1 + O�k−1�, then

√
n�θ̄n −

θ����limn→∞ �θn − θ�� = 0� has a limiting distribution,

√
n�θ̄n− θ���

(
lim
n→∞�θn− θ

��=0
)
→� � �0� >�θ����

(
lim
n→∞�θn− θ

��=0
)
�(55)

where >�θ�� = �∂2
θl�θ���−1�∂2

θl�θ�� − ∂2
θL�s�� θ����∂2

θl�θ���−1.

In situations where the dispersion of the estimator θ� is given by ∂2
θl�θ��

[this quantity can be approximated by (11)], the expression (55) gives a prac-
tical stopping rule, consisting of comparing an estimate of the simulation
variance >�θ��/n (where n is the number of stochastic approximation cycles)
with ∂2

θl�θ��.

8. Extensions and discussions.

8.1. A stochastic approximation version of the ECM algorithm. It has long
been noticed that there is a variety of problems where the maximum of θ→
L�s� θ� is hard to compute. In many cases, however, the maximum of L�s� θ�
restricted to particular subsets of � are in closed form and relatively easy to
obtain. Motivated by this observation, Meng and Rubin (1993) have proposed
a modified version of the EM algorithm, named ECM, which maintains the
E-step but replaces the M-step by a cycle of conditional maximizations (CM)-
steps. For c = 1� 
 
 
 � C and s ∈ � and η ∈ �, define θ̃c�s� as the value of θ that
maximizes θ→ L�s� θ� subject to the constraint gc�θ� = gc�η� (it is admitted
at this point that such value exists and is unique). A full-cycle of CM-step is
recursively defined by composing the conditional maximization: starting from
a point �s� θ� ∈ � ×�, this iteration takes the form for 1 ≤ c ≤ C�

θ̂c�s� θ� �= θ̃c�s� θ̂c−1�s� θ��� θ̂0�s� θ� = θ
(56)

We denote θ̂′�s� θ� �= θ̂C�s� θ�; that is, the value of θ after a full cycle of condi-
tional maximization. From a global point of view, we have replaced the M-step
consisting of the determination of the global maximum θ̂�s� of the function
L�s� θ� by a cycle of conditional maximizations, which, starting from some
point; �s� θ� ∈ � × � leads us to some point θ̂′�s� θ� ∈ �. Note that, contrary
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to θ̂′�s� θ�, θ̂�s� does not depend on the starting point; this simplifies the anal-
ysis of the EM algorithm. Not surprisingly, this has some implications for the
specification and for the convergence analysis of the stochastic version of the
EM algorithm. The ECM algorithm for the curved exponential model may be
compactly written as

θk+1 = T′�θk� = θ̂′�s̄�θk�� θk�
(57)

The ECM algorithm belongs to the class of generalized EM algorithms. The
ECM algorithm is monotone in the sense that at each step the incomplete data
likelihood function is increased: l�θk+1� ≥ l�θk�. The convergence of the ECM
has been thoroughly analyzed by Meng (1994); it is shown in these contribu-
tions that the ECM sequence is convergent as soon as the set of constraints
verify a space-filling property; at any point θ, the convex hull of all feasible
directions determined by the constraint spaces is the whole Euclidean space
R
p (the resulting maximization by repeated conditional maximizations is over

the whole space and not a subspace of it). This space-filling condition in fact
guarantees that the sequence of iterates θ̂�i��s� θ�, defined recursively as

θ̂�i��s� θ� = θ̂′�s� θ̂�i−1��s� θ��� θ̂�0��s� θ� = θ�(58)

converges to θ̂�s�, and that the order of convergence is linear. To state the
results in full generality, we start from this property, rather than from the
space-filling assumption. We will consider the following assumptions.

(MAX1) For all s ∈ � , θ → L�s� θ� has a unique global maximum on �,
denoted θ̂�s�; moreover, θ̂�s� is continuously differentiable on � .

(MAX2) There exists a function θ̂′
 � ×�→ �, a function C
 � ×�→ �0�∞�
and a function ρ
 � → �0�1�, such that, for all �s� θ� ∈ � × �, and
all i ∈ N�

�θ̂�i��s� θ� − θ̂�s�� ≤ C�s� θ�ρ�s�i�(59)

where �θ̂�i��s� θ�� are the iterates of θ̂�s� θ� defined recursively as

θ̂�i��s� θ� = θ̂′�s� θ̂�i−1��s� θ�� for i > 0� θ̂�0��s� θ� = θ
(60)

Moreover, for all i ≥ 0, the functions θ̂�i�
 � ×�→ � are continuous
and the functions C and ρ are bounded on the compact subsets of
� ×� and � , respectively.

In many models of practical interests, the function L is for a given s ∈ �
strictly convex w.r.t. θ, and the feasible set � also is convex. In that case,
(MAX1) is generically verified, while (MAX2) holds, under mild assumptions,
for a large variety of iterative maximization procedures, including generalized
coordinate ascent methods (as above), steepest ascent methods and/or Gauss–
Newton type algorithms. In the latter case, θ̂�i��s� θ� are the iterates of the
function θ̂ ′�s� θ� defined as

θ̂ ′�s� θ� = θ+ α�s� θ�d�s� θ�� d�s� θ� �= �∂2
θL�s� θ��−1∂θL�s� θ��(61)
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where α�s� θ� maximizes α → L�s + αd�s� θ�� on the interval �0�1�. Gauss–
Newton type iterates have been considered, in incomplete data problems by
Lange (1995), who proposed a gradient-type algorithm equivalent to the EM
algorithm using basically (61).

In such a context, the SAEM algorithm may be adapted as follows:

Sk = Sk−1 + γk�S̃�Zk� −Sk−1�� θk = θ̂�Sk� θk−1��(62)

where �Zk� is simulated under p�z� θk−1� conditionally to θk independently
from the past. The previous equation may be reexpressed [see (33) and (33)] as

Sk = Sk−1 + γkh�Sk−1� θk−1� + γkEk�(63)

where

h�s� θ� = Eθ�S̃�Z�� − s = s̄�θ� − s�(64)

Ek = S̃�Zk� −Eθk−1
�S̃�Z�� = S̃�Zk� − s̄�θk−1�
(65)

Note that the mean field h�s� of the original SAEM algorithm [see (33)] is

given by h�s� �= h�s� θ̂�s��. Because of the dependence in θ, (63) is not in the
standard RM form, and the results obtained previously cannot be directly ap-
plied. We will use, to prove the convergence of this scheme, a state perturbation
approach. Define, for �s� θ� ∈ � ×� and m ≥ n ≥ 0�

vn�m�s� θ� �=
m∑
i=0

γi+n+1�h�s� θ̂�i��s� θ�� − h�s��(66)

and denote vn�s� θ� = limm→∞ vn�m�s� θ� (the convergence of the series is shown
in Lemma 7). Define now the perturbed state as

S̃n = Sn + vn�Sn� θn�
(67)

By the definitions of (63) and (66), the perturbed state algorithm may be writ-
ten as

S̃k = S̃k−1 + γkh�Sk−1� θk−1� + γkEk + vk�Sk� θk� − vk−1�Sk−1� θk−1�
(68)

The last term on the right can be expanded as

vk�Sk� θk� − vk−1�Sk−1� θk−1�
= −γk�h�Sk−1� θk−1� − h�Sk−1�� + vk�Sk� θk�
− vk�Sk−1� θ̂�Sk−1� θ̂�Sk−1� θk−1���


(69)

Using this latter expression, we may express the perturbed state equation
(68) as

S̃k = S̃k−1 + γkh�S̃k−1� + γkEk + γkRk�(70)
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where the remainder term Rk is defined as follows:

Rk=h�Sk−1�−h�S̃k−1�+γ−1
k

[
vk�Sk� θk�−vk�Sk−1� θ̂�Sk−1� θk−1���

]

(71)

This form illustrates the value of the perturbed state approach. The use of
the perturbation removes h�Sk−1� θk−1� and replaces it by h�S̃k−1�. If we may
prove that Rk = o�1�, then the perturbed state equation will have the same
mean field as the original SAEM algorithm and will thus converge to the same
set of stationary points. Then, by adapting Theorem 6.2 (using Theorem 5.1),
we will show that

lim
n→∞d�S̃n� �s ∈ � 
 ∂sV�s� = 0�� = 0 w.p.1
(72)

This property will in turn imply the convergence of �Sn�, because Lemma 7
implies that S̃n−Sn = O�γn� w.p.1 (under the compactness assumption). The
discussion is summarized in the following theorem.

Theorem 8. Assume that assumptions (M1)–(M4), (SAEM1)–(SAEM4) and
(MAX1)–(MAX2) hold. Assume in addition that w.p.1, (A) clos��Sk�k≥1� is a
compact subset of � . Then, w.p.1, limk→∞ d�Sk� �s ∈ � 
 ∂sV�s� = 0�� = 0 and
limk→∞ d�θ̂�Sk��� � = 0.

The proof is in Appendix C. All the issues on the stability, the convergence
and the control of the algorithm can be adapted (using the state perturbation
approach). We do not pursue this discussion here.

8.2. Stochastic approximation EM versus stochastic gradient approaches.
One of the oldest and most widely known methods for maximizing a function
of several variables is the method of steepest ascent (often referred to as the
gradient method). The method of steepest ascent is defined by the iterative
algorithm,

θk = θk−1 + αkgk� gk = ∂θl�θk−1��(73)

where αk is a nonnegative scalar [generally chosen as the maximum of the
function l�θk+αgk�]. In the incomplete data models, the basic steepest ascent
method (73) cannot be directly applied, because ∂θl�θ� is not in closed form
and/or is hard to compute. A stochastic approximation version of the steepest
ascent has been proposed for incomplete data models by Younes (1989, 1992);
the basic version of this algorithm may be written as

θk = θk−1 + γk ∂θ log f�Zk� θk−1��(74)

where the missing data Zk is imputed from the current predictive distribution
p�z� θk−1� [conditionally to θk−1 independently from the past; see (SAEM3)].
Algorithm (74) shares with the SAEM algorithm the same imputation step. It
differs however in the way this imputation step is used to update the param-
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eters. Algorithm (74) may be written in RM form as

θk = θk−1 + γkh�θk−1� + γkEk�(75)

with the following definitions:

h�θ� = Eθ�∂θ log f�Z� θ���
Ek = ∂θ log f�Zk� θk−1� − h�θk−1�


Note that (under the stated assumptions),Ek is a martingale difference. Under
standard regularity assumptions, we have

h�θ� = ∂θl�θ��(76)

a relation which is often referred as Fisher’s identity. In that sense, algorithm
(74) is a stochastic gradient algorithm, since its mean field is nothing but the
gradient of the objective function to maximize. The analysis of the stochastic
gradient algorithm (74) can be done using the tools presented in this contri-
bution. The Lyapunov function V�θ� [needed to check (SA2)] trivially is the

negated incomplete data log-likelihood V�θ� �= −l�θ�,
�∂θV�θ�� h�θ�� = −�∂θl�θ��2


The set of stationary points of (74), �θ ∈ �
 �∂θV�θ�� h�θ�� = 0�� coincides
with the set of stationary points of the incomplete data log-likelihood: � =
�θ ∈ �
 ∂θl�θ� = 0�. By application of Sard’s theorem, int�l�� �� = � provided
that l
 � → R is p times continuously differentiable. A basic convergence
theorem similar to Theorem 5 can be adapted from Theorem 2. The other
issues (stability, reprojection, rate of convergence 
 
 
) can be addressed along
the same lines as above.

When the stationary points of θ→ l�θ� are isolated, the procedure (74) con-
verges pointwise to a proper maximizer of θ→ l�θ�, under mild assumptions
[similar to (LOC1)–(LOC3)]. In such a case, it makes sense to consider the
averaged sequence

θ̄n = θ̄n−1 + n−1�θn − θ̄n−1��(77)

where θn is given by (74), the step size sequence �γk� being chosen in such
a way that limk→∞ kαγk = γ� and γk/γk+1 = 1 + O�k−1�. It follows under
basically the same assumptions as Theorem 7 that

√
n�θ̄n − θ��� lim �θn −

θ�� = 0� has a limiting distribution. This limiting distribution can be deduced
almost directly from Theorem 4. Note that ∂θh�θ�� = ∂2

θl�θ��; (46) implies that
Covθ��∂θL�S̃�Z�� θ��� = ∂2

θl�θ��−∂2
θL�s�� θ�� and thus the asymptotic covariance

of the averaged estimates is identical to (54). Thus, the averaged version of
the MCEM algorithm and of the gradient algorithm have the same asymptotic
rate of covariance

√
n and the same asymptotic covariance matrix. The choice

between these two algorithms is dictated by about the same considerations as
for their deterministic counterparts.
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APPENDIX A

Convergence of stochastic approximation.

Proof of Theorem 2. We prove the results on a sample path by sam-
ple path basis. In all the statements below, the qualifier “w.p.1” is implicit.
The function F is upper semicontinuous and nonpositive; the set �

�= �s ∈
� 
 F�s� = 0� is closed. Define

s′n = sn +
∞∑

i=n+1

γiei


Rewriting (21) yields

s′n = s′n−1 + γnh�sn−1� + γnrn
(78)

Condition (SA3) implies that there exists a compact set � ⊂ � such that
sn ∈� , for all n ≥ 0 (note that this compact set depends upon the trajectory).
For α > 0, define �α = �s ∈ R

m
 d�s�� � ≤ α�, where d�s�� � denotes the
distance from s to � . Since � is an open set, there exists ρ > 0 such that
�ρ ⊂ � . Since (i) under (SA4),

∑∞
i=n+1 γiei→ 0� and rn→ 0; (ii) under (SA2),

the mean field h is bounded on � , this implies

�s′n − s′n−1� = O�γn�(79)

and the segment �s′n� s′n−1� ⊂ �ρ, for n sufficiently large. Under (SA2), the
Lyapunov function V is continuously differentiable on � . For n sufficiently
large, there exists s′′n−1 ∈ �s′n� s′n−1� such that

V�s′n� = V�s′n−1� + �∂sV�s′′n−1�� �s′n − s′n−1��
= V�s′n−1� + γnF�s′n−1� + γnr′n

with

r′n = �∂sV�s′n−1�� h�sn−1� − h�s′n−1�� + �∂sV�s′′n−1� − ∂sV�s′n−1�� h�sn−1��
+ �∂sV�s′′n−1�� rn� 


Since h and ∂sV�s� is continuous on �ρ and �ρ is compact h and ∂sV�s� are
uniformly continuous on �ρ; thus, r′n = o�1� and

V�s′n� = V�s′n−1� + γnF�s′n−1� + o�γn�
(80)

Note that the function F is bounded on �ρ and (80) in particular implies that
there exists CV <∞ such that for n sufficiently large,∣∣V�s′n� −V�s′n−1�

∣∣ ≤ CVγn
(81)

The proof proceeds in two steps: we first show that the sequence �V�s′n��n≥0
converges to some point of V�� � (Step 1). We then show that the sequence
�s′n�n≥0 converges to � (Step 2).
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Step 1. For α > 0, define �α = �x ∈ R
 d�x�V�� ∩ �ρ�� ≤ α�. Here
V�� ∩�ρ� is a compact subset of R and �α is compact; �α is a finite union
of disjoint closed intervals (of length greater than 2α),

�α =
Nα⋃
i=1

[
a�i�α � b

�i�
α

]
where a�1�α < b�1�α < a�2�α < · · · < b�Nα�
(82)

Set �α = V−1�int��α��. Since V is continuous, �α is an open neighborhood of
the set � ∩�ρ. Since F is upper semicontinuous (any upper semicontinuous
function reaches its maximum on any compact set), there exists εα > 0 such
that for n sufficiently large,

s′n−1 ∈�ρ \�α "⇒ F�s′n−1� ≤ −2εα
(83)

This implies, using (80) and (81),

V�s′n� ≤ V�s′n−1� − γnεα + γn�CV + εα��V�s′n−1� ∈ int��α��(84)

Since
∑
γn = ∞, (84) implies that �V�s′n�� is infinitely often in �α. Here �α is

a finite union of disjoint intervals, thus �V�s′n�� is infinitely often in a given
interval of the partitition (82), say �aα� bα� (the superscript is implicit).

Let δ > 0 be such that �aα − 2δ� bα + 2δ� ∩ �α = �aα� bα� (such δ exists
because �α is a finite union of closed disjoints intervals), and let NV be such
that, for all n ≥ NV, γn ≤ δ/CV. Finally, let N be the first index greater
than NV such that V�s′N� ∈ �aα� bα� [such index exists because V�s′n� is i.o. in
�aα� bα�]. Equation (84) implies that, for all n ≥ N, V�s′n� ∈ �aα − δ� bα + δ�.
Hence, δ being arbitrary, the set of limit points 	 of the sequence �V�s′n��n≥0
is included in the interval �aα� bα�. Take now α′ < α. Proceeding as above,
we may show that 	 ⊂ �aα′� bα′ �, where �aα′� bα′ � is a given element of the
partition (82) of �α′ . Of course, we must have �aα′� bα′!� ⊂ �aα� bα�. Applying
the above result with a nonincreasing sequence αn → 0, we may show that
	 is included in the intersection of a decreasing sequence of closed intervals,
and 	 is thus itself a closed interval. Since all the intervals �aαn� bαn� are
included in �αn

and
⋂
n�αn

= V�� ∩�ρ�, 	 also is a subset of V�� ∩�ρ�.
The set V�� ∩�ρ� has an empty interior, and the connected components of
V�� ∩�ρ� are reduced to points. Since 	 is connected, it must be reduced to a
point, which implies that limn→∞V�s′n� exists. The proof of Step 1 is concluded
by noting that limn→∞V�s′n� = limn→∞V�sn�.

Step 2. Let � be an arbitrary open neighborhood of � . By (80), (83),
there exists ε� > 0 such that for n sufficiently large,

V�s′n� ≤ V�s′n−1� − γnε� + γn�CV + ε� ���s′n−1 ∈ � �
(85)

Since V�s′n� converges and γn = o�1�, for any τ > 0, there exists Nτ <∞ such
that

�V�s′n� −V�s′p�� ≤ τ� Nτ ≤ n ≤ p and γk < τ/ε� �Nτ ≤ k
(86)
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Equations (85) and (86) imply that

ε�

p∑
k=n+1

γk − �CV + ε� �
p∑

k=n+1

γk��s′k−1 ∈ � � ≤ τ� Nτ ≤ n ≤ p
(87)

Choose n > Nτ and let p�n� be the first integer larger than n such that

τ

ε�
<

p�n�∑
k=n+1

γk ≤ 2
τ

ε�



Equation (87) implies that there exists k�n� ∈ �n�p�n�� such that s′k�n� ∈ � .
By (79), there exists a finite constant K such that, for all n ≥ 1� �s′n− s′n−1� ≤
Kγk, which implies

�s′k�n� − s′n� ≤K
k�n�∑
l=n+1

γl ≤K
p�n�∑
l=n+1

γl ≤ 2K
τ

ε�



By construction, s′k�n� ∈� , and the later relation implies that d�s′n� clos�� ��≤
2τK/ε� . Since τ is arbitrary, this implies that

lim
n→∞d�s

′
n�� � = 0


Since � is arbitrary, �s′n� tends to � and so does �sn�. The set of limit points
of �sn� is compact because it is bounded and closed; it is connected because
by (79), �sn+1 − sn� → 0. ✷

Proof of Theorem 3. The truncated RM procedure (23) can be written in
the RM form (21),

sk = sk−1 + γkh�sk−1� + γkek + γnr′k�(88)

where the remainder term r′k is defined as

if ŝk ∈�nk−1


{
r′k = rk�
nk = nk−1�

(89)

if ŝk /∈�nk−1


{
r′k = γ−1

k �s′k − sk−1� − h�sk−1� − ek�
nk = nk−1 + 1


(90)

We use Lemma 1 to check that the assumptions of Theorem 2 are satisfied.
Note that the stochastic approximation procedure defined (88) satisfies (SA0)–
(SA2), (STAB1) (because the projected algorithm has the same mean field
h as the original procedure) and also (STAB3) (because the algorithm is by
construction recurrent in a compact subset). Also, the first condition (STAB2)
is directly verified; we have only to check that, for any integer M,

lim
k→∞

�r′k���W�sk−1� ≤M� = 0
(91)
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If ŝk ∈�nk−1
� then r′k = rk, and (89) shows that

lim sup
k→∞

�r′k����W�sk−1� ≤M����ŝk ∈�nk−1
� = 0


Thus, we must show that ��ŝk /∈ �nk−1
���W�sk−1� ≤ M� = 0 for all but a

finite number of indexes k. Since �s
W�s� ≤ �M+1�� is a compact subset and⋃
�n = � , there exists NM < ∞ such that �s
 W�s� ≤ �M + 1�� ⊂ �n for

all n ≥ NM. Under the stated assumptions, �s
 W�s� ≤M� is a compact set;
thus, there exists w.p.1 an index KM such that, for all k ≥KM,

W�sk−1� ≤M → W�ŝk� > �M+ 1�

Since, for all n ≥ NM, we have �s 	∈ �n� ⊂ �W�s� > �M + 1��, the previous
relation implies that, w.p.1, for all k ≥KM and all n ≥NM,

W�sk−1� ≤M� → ŝk 	∈�n�

Thus, w.p.1, nk ≤NM and ���ŝk /∈�nk−1

���W�sk−1� ≤M� = 0 only for a finite
index number. This completes the proof of (91). ✷

APPENDIX B

Rate of convergence and averaging of estimates. This Appendix is
devoted to some technical results needed to derive the limiting distribution
of the averaging estimates. These topics are intimately related, because ba-
sically, the averaging procedure can be fruitfully applied as soon as the pri-
mary algorithm converges to a regular stationary point with a given rate of
convergence. Rates of convergence and averaging of estimates are extensively
studied in Kushner and Yin (1997), Chapter 10 and 11 (see also the references
therein). Our main contribution is to weaken some of the assumptions used in
this reference and in particular the tightness condition [(A3.1), Kushner and
Yin (1997), Chapter 11, page 336]. The improvement mainly stems from the
decomposition of the error used in Lemma 6, (92) and (93). We preface this
Appendix by some additional notations, definitions and technical results.

Definitions and notation. For A a square matrix, denote �A�2 the
spectral norm. Let �an�n≥0 be a sequence of positive real numbers. We say that
Xn = OP�an� if a−1

n Xn is bounded in probability and Xn = oP�an� if a−1
n Xn

converges to zero in probability. We say that Xn = Oq�an� (where q > 0) if
supn∈N �a−1

n Xn�q < ∞. We say that Xn = O�an� w.p.1. [resp., Xn = o�an�
w.p.1] if supn∈N a

−1
n �Xn� is finite w.p.1 (resp., lim supa−1

n �Xn� = 0). Similarly,
let Yn be a sequence of random variables. We say that Xn = O�Yn� w.p.1 if
Y−1
n Xn = O�1� w.p.1.

The two following lemmas play a key role in the sequel (proofs are omitted
for brevity).
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Lemma 4. Let �γk�k≥0 be a positive sequence such that limk→∞ γk = 0,

limk→∞ γ
−1
k − γ−1

k−1 = 0. Let �εk�k≥0 be a nonnegative sequence. For b > 0 and
p ≥ 0� define

σn =
n∑
i=1

γ
p+1
i exp�−bγ̄�i� n��εi�

where γ̄�i� n� =∑n
j=i+1 γj for 0 ≤ i < n. Then, lim supγ−pk σk ≤ b−1 lim sup εk.

Lemma 5. Let �Ak�k≥0 be a sequence of square matrix such that limk→∞
�Ak − A�2 = 0 where A is a Hurwitz matrix. Let �γk�k≥0 be a sequence of
positive number such that limk→∞ γk = 0. Then there exist β > 0 and a constant
Cβ <∞, such that, for all m > n ≥ 0� it holds that

∥∥∥∥
n∏

k=m+1

�I+ γkAk�
∥∥∥∥

2
≤ Cβ exp�−βγ̄�m�n��


The crux for obtaining results on the rate of convergence and on the aver-
aged sequence is to approximate the original nonlinear difference equation by
a linear one and to bound the error incurred by the linearization. This is the
purpose of the following lemma.

Lemma 6. Assume that (AVE1), (AVE2) and (AVE3(α)) hold for some 0 <
α < 1, and let s� be a regular stable stationary point. Define νn = en + rn and

µn = �I+ γnH�s���µn−1 + γnνn� µ0 = 0�(92)

ρn = sn − s� − µn
(93)

Then

µn�
(

lim
n→∞�sn − s�� = 0

)
=w
p
1O�γ1/2

n �O2�1� and ρn=w
p
1O�γn�O1�1�
(94)

Remark 4. The expression µn��limn→∞ �sn − s�� = 0� = O�γ1/2
n �O2�1�

w.p.1 is a shorthand for �µn� ≤ XYn where X is a (nonnegative) random
variable w.p.1 finite and �Yn�n≥0 is a sequence of r.v. bounded in L2. The same
notational convention holds for ρn. Note that µn can be seen as a leading term
in the expansion of the error sn − s�, whereas ρn is a remainder term.

Proof Lemma 6. By Taylor’s expansion at s� and since h�s�� = 0, it holds,
for n sufficiently large,

sn − s� = sn−1 − s� + γnH��sn−1 − s�� + γnνn + γnεn�
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where H� �=H�s�� and εn
�= �εn�1� 
 
 
 � εn�m�t is defined component-wise as

εn� i =
m∑

k� l=1

Rn� i�k� l��sn−1� k − s�k��sn−1� l − s�l��

Rn� i�k� l� =
∫ 1

0

�1− t�2
2!

∂2hi
∂sk∂sl

�sn−1 + t�s� − sn−1�dt


Using definition (92), we have

ρn = �I+ γnH��ρn−1 + γnεn = �I+ γnHn�ρn−1 + γnε′n�
where Hn = ��Hn�i� j���1≤i� j≤m and ε′n = �ε′n�1� 
 
 
 ε′n�m�t are, respectively,
defined as

Hn�i� j� �=H��i� j� +
m∑
k=1

(
2Rn� i�j� k�µn−1� k +Rn� i�j� k�ρn−1� k

)
�

ε′n� i
�=

m∑
k� l=1

Rn� i�k� l�µn−1� kµn−1� l


Denote for n > k, ψ��n�k� = �I + γnH�� · · · �I + γk+1H
�� (ψ��n�n� = I and

ψ��n�k� = 0 if k > n). By Lemma 5, there exists β > 0 and C′�H��β� < ∞,
such that, for all n ≥ k ≥ 0,

�ψ��n�k��2 ≤ C′�H��β� exp�−βγ̄�n�k��


Decompose µn [see (92)] as µn = µ�0�n + µ�1�n � where

µ
�0�
n =

n∑
k=1

γkψ��n�k�ek�ρ��(95)

µ
�1�
n =

n∑
k=1

γkψ��n�k�r′k�(96)

where ek�ρ� = ek���sk−1 − s�� ≤ ρ� and r′k = rk + ek���sk−1 − s�� > ρ�. Note
that r′k verifies (AVE2). Under (AVE1), we have

[
E��µ�0�n �2�]1/2 ≤ C′�H��β�C1/2�ρ�

( n∑
k=1

γ2
k exp�−2βγ̄�k�n��

)1/2

(97)

and thus µ�0�n = O2�γ1/2
n �, by application of Lemma 4. An application of the

Abel’s transform shows that

µ
�0�
n = ψ��n�1�E�n�1� +

n∑
k=2

γkψ��n�k�H�E�n�k��(98)

where E�n�k� �=∑n
j=k γjej�ρ� for k ≤ n, E�n�k� = 0 otherwise. Let δ be such

that α < δ < 1. Under (AVE1), it holds that, w.p.1, sup�n�k�∈N×N �E�n�k�� <∞
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and limn→∞ supn−�nδ�≤k≤n �E�n�k�� = 0. Under (AVE3(α)), we have

n−�nδ�∑
k=1

γk�ψ��n�k�� ≤C′�H��β��n− �nδ�� exp�−β�nδ�γn−�nδ��

and thus, w.p.1,

∥∥∥∥
n−�nδ�∑
k=1

γkψ��n�k�H�E�n�k�
∥∥∥∥→ 0 as n→∞�

∥∥∥∥
n∑

k=n−�nδ�+1

γkψ��n�k�H�E�n�k�
∥∥∥∥

≤ sup
n−�nδ�≤k≤n

�E�n�k�� �H��2

n∑
k=1

γk exp�−βγ̄�k�n�� → 0 as n→∞�

showing that µ�0�n − o�1� w.p.1. Similarly, we have

�µ�1�n � ≤ C′�H��β�
n∑
k=1

γ
3/2
k exp�−βγ̄�k�n��γ−1/2

k �r′k�(99)

and, by application of Lemma 4, µ�1�n ��limn→∞ �sn − s�� = 0� = O�γ1/2
n � w.p.1.

Equations (97) and (99) together imply that µn��limn→∞ �sn − s�� = 0� =
O2�γ1/2

n � +O�γ1/2
n � w.p.1.

Define ψ�n�k� = �I + γnHn� · · · �I + γk+1Hk+1� for n > k [ψ�n�n� = I,
ψ�n�k� = 0, for n < k]. Since µn��limn→∞ �sn − s�� = 0�o�1� w.p.1, we have
�Hn −H�s���2��limn→∞ �sn − s�� = 0�o�1� w.p.1. By Lemma 5, there exist
β > 0 and a w.p.1 finite r.v. C�H�β� <∞, such that, for all 0 ≤ k ≤ n,

�ψ�n�k��2�
(

lim
n→∞�sn − s�� = 0

)
≤ C�H�β� exp�−βγ̄�k�n�� w.p.1
(100)

Notice that

ρn =
n∑
k=1

γkψ�n�k�ε′k + ψ�n�0�s0

and ε′k��limn→∞ �sn − s�� = 0� = O��µk−1�2� w.p.1; by applying (100) there
exists a r.v. K�β� ρ� w.p.1 finite such that, for all n ≥ 1,

�ρn��
(

lim
n→∞�sn − s�� = 0

)

≤K�β� ρ�
n∑
k=1

γk exp�−βγ̄�k�n���µk−1�2�
(

lim
n→∞�sn − s�� = 0

)

+K�β� ρ� exp�−βγ̄�0� n���s0 − s���
(

lim
n→∞�sn − s�� = 0

)



(101)
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By application of Lemma 4, we have

E

( n∑
k=1

γk exp�−βγ̄�k�n���µ�0�k−1�2
)
= O�γn��(102)

n∑
k=1

γk exp�−βγ̄�k�n���µ�1�k−1�2�
(

lim
n→∞�sn − s�� = 0

)
=w
p
1 O�γn��(103)

exp�−βγ̄�0� n���s0 − s���
(

lim
n→∞�sn − s�� = 0

)
=w
p
1 O�γn�(104)

which concludes the proof. ✷

Remark 5. This lemma serves for Theorem 4 the same purpose as As-
sumptions (A3.1)–(A3.8) for Theorem 3.1 in Kushner and Yin [(1997), pages
336–338]. Note that the relation (94) does not imply (A3.1) [restated with
our notations, (A3.1) requires that �sn − s�����sn − s�� ≤ ρ� = O2�γ1/2

n �]. The
assumptions used in the previous lemma are weaker than those required to
show (A3.1).

Proof of Theorem 4. Write sn−s� = µn+ρn where µn and ρn are defined
in (92) and (93), respectively. Note that s̄n − s� = µ̄n + ρ̄n, where µ̄n and ρ̄n
denote Cesaro’s mean of µn and ρn,

µ̄n
�= n−1

n∑
k=1

µk and ρ̄n� �= n−1
n∑
k=1

ρk


The proof is in two steps: (i) we show that
√
nρ̄n = oP�1� and (ii) we then

show that
√
n�µ̄n − H�s��−1ν̄n� = oP�1�, where ν̄n is Cesaro’s mean of νn,

ν̄n
�= n−1∑n

k=1 νk.

(i) Applying Lemma 6, (94), there exist a nonnegative w.p.1 bounded r.v.
X and a sequence of nonnegative r.v.’s �Yn�n∈N, such that Yn = O1�1� and
ρk = γkXYk w.p.1. Property (i) follows from

√
nρ̄n ≤w
p
1 X

(
n−1/2

n∑
i=1

γiYi

)
= O�1�O1�n1/2−α�


(ii) Using (92), we may write, for n ≥ 1, µn−1 =H�s��−1�γ−1
n �µn−µn−1�−νn�.

Thus,

µ̄n =H�s��−1
(
−n−1

n∑
k=1

νk+1 + n−1
n∑
k=1

γ−1
k+1�µk+1 − µk�

)

=H�s��−1
(
−n−1

n∑
k=1

νk+1 − n−1γ−1
2 µ1 + n−1γ−1

n+1µn+1

+ n−1
n∑
k=2

�γ−1
k − γ−1

k+1�µk
)
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The proof is concluded by showing that n−1/2∑n
k=2�γ−1

k − γ−1
k+1�µk = oP�1�.

Using Lemma 6, (94), there exists a nonnegative r.v. X and a sequence of non-
negative r.v.’s �Yn� such that Yn = O2�1� and, for all k ≥ 1, �µk� = γ1/2

k XYk
w.p.1. Under (AVE3(α)), γ1/2

k �γ−1
k −γ−1

k+1� ≤ Cγkα/2−1, for some constant Cγ <∞.
Thus

n−1/2
n∑
k=2

�γ−1
k − γ−1

k+1��µk� ≤w
p
1 CγXn
−1/2

n∑
k=2

kα/2−1Yk

and the proof is concluded by noting that n−1/2∑n
k=2 k

α/2−1Yk = O1�n�α−1�/2� =
oP�1�. ✷

APPENDIX C

Miscellaneous results.

Lemma 7. Assume (M1)–(M4) and (MAX1)–(MAX2). Then, for all �s� θ� ∈
� ×�,

∑∞
i=0 γi+n+1�h�s� θ̂�i��s� θ�� − h�s�� <∞ and

�vn�s� θ�� ≤ C�s� θ��1− ρ�s��−1 sup
�θ′∈�
 �θ′−θ̂�s��≤C�s�θ��

�∂θs̄�θ��2γn+1�(105)

where vn�s� θ� = limm→∞ vn�m�s� θ�. Moreover, the set of functions �γ−1
n vn

�s� θ��n≥0 is equicontinuous, that is, for any compact subsets �� ⊂ � and
�� ⊂ � and for any ε > 0, there is δ > 0, such that for all n ≥ 0,

sup
�s� s′∈�� � �s−s′�≤δ�

sup
�θ� θ′∈��� �θ−θ′�≤δ�

[
γ−1
n �vn�s� θ� − vn�s′� θ′��

] ≤ ε
(106)

The proof of this lemma is straightforward and is omitted.

Proof of Theorem 8. As mentioned above, we need to prove that (i) the
remainder term Rn = o�1� w.p.1. Under the compactness assumption (A(i)–
(ii)), there exists w.p.1 a compact set �� ⊂ � � such that the sequence �Sn�
is in �� for all n (note that this compact set depends on the trajectory). As-
sumptions (MAX1) and (MAX2) then imply that there exists w.p.1 a compact
set �� ⊂ � such that �θn�n∈N ⊂ ��. Under (SAEM1)–(SAEM3),

∑n
k=0 γkEk

converges w.p.1 (see Theorem 6.2). This implies that, w.p.1,

Sn −Sn−1 = o�1��(107)

θn − θ̂�Sn−1� θn−1� = θ̂�Sn� θn−1� − θ̂�Sn−1� θn−1� = o�1�
(108)

Using Lemma 7, we thus have under (MAX2) that vn�sn� θn� = O�γn� w.p.1,
which implies, under (M3) and (MAX1) h�Sn� − h�S̃n� = O�γn� w.p.1 [h�s�
is continuously differentiable on � ]. The proof of (i) then follows from the
equicontinuity of the set of functions �γ−1

n vn�s� θ��n∈N (Lemma 7). Equa-
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tions (107) and (108) together with (106) indeed imply that

γ−1
n �vn�Sn� θn� − vn�Sn−1� θ̂�Sn−1� θn−1��� = o�1��

which concludes the proof. ✷
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CNRS-URA 820
46, rue Barrault
75634 Paris CEDEX 13
France
E-mail: moulines@sig.enst.fr


