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EFFICIENT ESTIMATION OF A DENSITY IN A
PROBLEM OF TOMOGRAPHY

By Laurent Cavalier

Université Aix-Marseille I

The aim of tomography is to reconstruct a multidimensional function
from observations of its integrals over hyperplanes. We consider the model
that corresponds to the case of positron emission tomography. We have n
i.i.d. observations from a probability density proportional to Rf, where
Rf stands for the Radon transform of the density f. We assume that f is
anN-dimensional density such that its Fourier transform is exponentially
decreasing. We find an estimator of f which is asymptotically efficient; it
achieves the optimal rate of convergence and also the best constant for the
minimax risk.

1. Introduction. Tomography is a particular inverse problem where the
aim is to invert the Radon operator which maps a function into its integrals
over hyperplanes. This problem appears in different fields such as medical
image processing, nuclear medicine and radar theory. One of the first examples
where tomography appeared is the case of radiology by use of X-rays where
one wants to reconstruct the internal structure of a body. More details about
tomography may be found in Natterer (1986).

In this paper, we consider the problem of positron emission tomography
in a statistical setup. We suppose that we have n independent and identi-
cally distributed (i.i.d.) observations from a probability density proportional
to Rf, where Rf stands for the Radon transform of the density f. The prob-
lem is to estimate f. Positron emission tomography is discussed in detail in
Johnstone and Silverman (1990). Other statistical results for the problems of
X-ray tomography and positron emission tomography are given in Korostelev
and Tsybakov (1989, 1991, 1993), Donoho and Low (1992) and Donoho (1995).
These papers propose estimators which attain the optimal rates of conver-
gence, in minimax sense, on the Sobolev and Besov classes of functions. Beyond
the rate of convergence, it is interesting to consider the problem of finding
exact minimax constants and efficient estimators attaining these constants.

The problem of exact constants in a nonparametric minimax framework is a
difficult problem which has been studied by Pinsker (1980), Nussbaum (1985)
and Korostelev (1993) for the Gaussian white noise model and nonparametric
regression. They define estimators which are asymptotically efficient, that is,
attain the exact constants in the asymptotics of the minimax risk. Such a
problem has been studied in the inverse problem of convolution in Ermakov
(1989) and Efromovich (1997).
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Themathematical ideas here are close to Golubev and Levit (1996), Golubev,
Levit and Tsybakov (1996) and Guerre and Tsybakov (1998) which define effi-
cient estimators for the problem of estimating a univariate probability density
and its derivatives or nonparametric regression on the class of analytic func-
tions even in the case of pointwise estimation.

In this paper [as in Cavalier (1998) for the model of X-ray tomography], we
obtain results on exact constants in an N-dimensional inverse problem. We
consider a model of positron emission tomography and we study the class of
densities f admitting an exponentially decreasing Fourier transform. In this
class we define an estimator which is asymptotically efficient: it attains the
optimal rate and constant in asymptotics of the minimax risk.

Except for the definition of the class of functions, the N-dimensional set-
ting is not so different from the one-dimensional case. On the other hand, the
inverse problem of tomography is really different from models such as proba-
bility density, nonparametric regression or Gaussian white noise. The indirect
observations and the form of the Radon transform result in some difficulties,
especially in getting the lower bound on the minimax risks.

In Section 2, we define precisely the model and the class of densities. Then
we construct our estimator. Theorem 1 gives the rate of convergence and the
constant for the mean-squared error of the estimator and proves asymptotical
normality. In Theorem 2 we slightly modify the class of densities in order to
obtain a uniform result. Theorem 3 proves that our estimator is asymptotically
efficient. In Section 3 we give the proofs.

2. Problem statement and results. Let L � �N → �, be a probability
density, N ≥ 2. Define the Radon transform Rf of f as

Rf�s� u� =
∫
v��v� s�=u

f�v�dv�

where u ∈ �� s ∈ SN−1� SN−1 = 	v ∈ �N� 
v
 = 1� is the unit sphere in �N, 
v

is the Euclidean norm of v, and �·� ·� is the scalar product in �N. The function
Rf�s� u� is defined on the cylinder � = SN−1 × �. The set of points v ∈ �N

such that �v� s� = u is a hyperplane in �N, characterized by �s� u�. The Radon
transform is a suitable tool for the problem of tomography, because Rf�s� u�
represents the integral of f over the hyperplane 	v ∈ �N� �v� s� = u�. For
general properties of the Radon transform, we refer to Natterer (1986).

Now define the class of functions � N
γ �L�, where γ and L are positive con-

stants. We say that a function f on �N belongs to � N
γ �L� if and only if, f is

a density, f�v� > 0�∀v ∈ �N�f is continuous, and(
1
2π

)N ∫
�N


f̂�ω�
2 exp�2γ
ω
�dω ≤ L�(1)

where f̂ is the Fourier transform of the function f,

f̂�ω� =
∫
�N
f�v�ei�v�ω� dv�
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The class of functions � N
γ �L� is a multivariate generalization of the class

of real functions admitting a bounded analytical continuation into a certain
strip of the complex plane (the class of “analytic” functions). For more details
on this type of function in the case N = 1, see Achieser [(1967), page 251]
and Timan [(1963), page 137] Such a class of functions in the case N = 1,
was first considered in the context of statistical problems by Ibragimov and
Hasminskii (1983, 1984). Then Golubev and Levit (1996), Golubev, Levit and
Tsybakov (1996) and Guerre and Tsybakov (1998) proved that it is possible
to obtain exact constants on this class of functions for different problems of
estimation.

Consider now the model, which corresponds to the problem of positron emis-
sion tomography. We have that Rf (up to a certain constant) is a probability
density on the cylinder � = SN−1 × �. We have an unobservable probabil-
ity density f on �N, and we want to reconstruct it from i.i.d. observations
from a density proportional to Rf. More details on this type of models can be
obtained in Johnstone and Silverman (1990).

Let us give the precise definitions. Let f be a probability density on �N.
Suppose that �Si�Ui� are n i.i.d. observations from a probability density
�1/ρN�Rf�s� u� on � = SN−1 × �, where ρN is the surface area of the sphere
SN−1. Remark that �1/ρN�Rf�s� u� is a density since

∫
�Rf�s� u�du = ∫

�N

f�v�dv = 1.
We want to construct an estimator f∗

n�x� of f�x� at a fixed point x ∈ �N,
using the observations �Si�Ui�� i = 1� � � � � n.

The following lemma, which is an essential tool in tomography, can be found
in Natterer [(1986), page 11] and Korostelev and Tsybakov [(1993), page 238].

Lemma 1. Projection theorem. Let f ∈ L1��N� ∩L2��N�, then
R̂f�s� t� = f̂�ts�� t ∈ �� s ∈ SN−1�

where R̂f�s� t� is the Fourier transform of Rf�s� u� over the argument u only.

Define the function

Kδn
�u� = �2π�−NρN

∫ 1/δn

0
rN−1 cos�ur�dr� u ∈ ��(2)

where 1/δn = 1/2γ log n. Note that its Fourier transform is

K̂δn
�t� = �2π�1−NρN

2

t
N−1Iδn�t�� t ∈ ��(3)

where Iδn�t� is the indicator function of the set 	t � 
t
 ≤ 1/δn�.
The functionKδn

is used as a kernel of the estimator. One may remark that
Kδn

does not satisfy all the standard properties of kernels. For example, con-
ditions of the Bochner lemma [see Parzen (1962)] are not satisfied. In fact, this
function Kδn

is called a band-limited filter. This filter has already been used
in the context of tomography by Natterer (1986) and Korostelev and Tsybakov
(1991, 1993). It has a compactly supported Fourier transform. Using Lemma 1
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one may understand that the factor 
t
N−1 has been chosen in order to give
Kδn

the property to approximately invert the Radon transform.
Another interesting remark concerns the bandwidth δn. It is very large

compared to usual bandwidths which are polynomially decreasing as n→ ∞.
The reason is that the class � N

γ �L� contains very smooth functions and hence
the bandwidth should be chosen larger than usual.

Define the estimator

f∗
n�x� =

1
n

n∑
i=1
Kδn

��Si� x� −Ui�� x ∈ �N�

Let R# be the dual operator of R as defined in Natterer [(1986), page 14] for
any h ∈ L1���,

R#h�v� =
∫
SN−1

h�s� �s� v��ds� v ∈ �N�

then,

R#Rf�x� =
∫
SN−1

Rf�s� �s� x��ds�

In words, R#Rf�x� represents the integrals of f over all the hyperplanes
passing through point x. Observe that as f ∈ � N

γ �L��R#Rf�x� <∞ (see the
proof of Theorem 1). Note that R#Rf�x� > 0� ∀x�∀f ∈ � N

γ �L� since f > 0
everywhere on �N. The following theorem gives the rate of convergence and
the asymptotic constant for the estimator f∗

n of the function f.

Theorem 1. For any fixed x ∈ �N and any f ∈ � N
γ �L� we have, as n→ ∞,

Ef��f∗
n�x� − f�x��2� =

�2π�−2NπρN
2N− 1

(
1
2γ

)2N−1
R#Rf�x�

× �log n�2N−1

n
�1+ o�1���

(4)

Furthermore, �f∗
n�x� − f�x�� is asymptotically normal,

(
C∗R#Rf�x��log n�

2N−1

n

)−1/2
�f∗
n�x� − f�x��

�→ � �0�1�� n→ ∞�(5)

where C∗ = ��2π�−2NπρN�/�2N − 1��1/2γ�2N−1, and →� denotes the conver-
gence in distribution.

Remark 1. This result proves that f∗
n�x� converges to f�x�with the “almost

parametric” rate
(�log n�2N−1/n

)1/2and with the given asymptotic constant. In
the case of direct observations, Golubev and Levit (1996) obtained a rate of
convergence of the form log n/n. Thus, the smooth nature of the functions
confines the loss due to indirect observations to powers of the logarithm.
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Remark 2. Due to the definition of � N
γ �L� we obtain the exact constant of

the estimator and not only the rate of convergence. Indeed, the main property
here is that the bias term will be of smaller order than the stochastic term
and then will vanish in the asymptotic of the risk (see proof of Theorem 1). As
a consequence we may remark that the estimator f∗

n�x� does not depend on
the constant L of the class� N

γ �L� since this constant appears only in the bias
term. Thus, we may choose L arbitrary large to enlarge the class of functions.

Now consider uniform result. In Theorem 1, the function f and then
R#Rf�x� are all fixed. In the case of uniform result over the class � N

γ �L�,
one may construct in � N

γ �L� a sequence of functions 	fi� such that R#Rfi�x�
tends to zero too fast as i→ ∞. Thus, it is possible to obtain a uniform result
only if we slightly modify the definition of the class to avoid the case of den-
sities f for which R#Rf�x� is small. Define

� N
γ �L�αn� = 	f ∈ � N

γ �L�� R#Rf�x� ≥ αn��(6)

where limn→∞ αn = 0 and limn→∞�αn�log n�1/3� = ∞. Define also

ψn�f�x� =
(
�2π�−NπρN
2N− 1

(
1
2γ

)2N−1
R#Rf�x��log n�

2N−1

n

)1/2

�(7)

Thus, with this new definition of the class of functions, we have the following
result.

Theorem 2. For any fixed x ∈ �N, we have

lim
n→∞ sup

f∈� N
γ �L�αn�

Ef

[(
f∗
n�x� − f�x�
ψn�f�x�

)2]
= 1�

Remark 3. This result proves that f∗
n�x� converges uniformly to f�x� with

the normalization ψn�f�x�. The term conditions on αn in (6) ensure that when
the sup is taken over � N

γ �L�αn� the bias of f∗
n�x� will remain asymptotically

negligible with respect to the stochastic term and that the normalized stochas-
tic term will tend to 1 (see the proof of Theorem 2).

The remaining part of the study concerns what we call the lower bound.
We prove that the normalization (7) is asymptotically exact, and thus f∗

n is an
asymptotically efficient estimator. This is shown by the following theorem.

Theorem 3. For a fixed x ∈ �N, we have

lim inf
n→∞ inf

fn
sup

f∈� N
γ �L�αn�

Ef

[(
f̄n�x� − f�x�
ψn�f�x�

)2]
≥ 1�

where inf f̄n denotes the infimum over all the estimators of f�x�.
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Thus, we have constructed an estimator f∗
n�x� of the density f for the prob-

lem of positron emission tomography, which is not only rate optimal but also
asymptotically efficient.

One of the main interests of this study is that the method used could be
generalized to other inverse problems, say the class of homogeneous operator
K defined in Donoho (1995) and the deconvolution. In fact, the main point is
to have some relation between the Fourier transform of Kf and of f as we
have here in Lemma 1.

Another comment is about the use of the class of “analytical” functions
� N
γ �L�. Since we have no restrictions on γ, functions in the class � N

γ �L�
may be in some sense as nonsmooth as we want. The main drawback is not
the form of the class � N

γ �L� but the fact that γ is supposed fixed. Thus a
natural improvement of the study would be to construct adaptive estimators
in the spirit of Lepski and Levit (1998) and possibly to obtain adaptive efficient
estimators.

3. Proofs.

Proof of Theorem 1. In nonparametric estimation, the usual way is to
decompose the risk of a kernel estimator into a bias term and a stochastic term.
Then, the bandwidth is chosen in order to balance these two terms and thus
one obtains the optimal rate of convergence. Here the problem is different since
the bias term and the variance cannot be balanced. This difference comes from
the exponential term in the definition of � N

γ �L� instead of usual polynomial
term. Thus, we choose a large bandwidth and the bias will disappear compared
to the stochastic term.

The risk of the estimator is decomposed in two parts, a bias and a stochastic
term,

�8�
Ef
[�f∗

n�x� − f�x��2
] = �Ef�f∗

n�x�� − f�x��2

+Ef
[�f∗

n�x� − Ef�f∗
n�x���2

] = b2n�x� + σ2
n�x��

The bias bn�x� is equal to

bn�x� = Ef�f∗
n�x�� − f�x� =

1
ρN

∫
SN−1

∫
�
Kδn

��s� x� − u�Rf�s� u�dvds− f�x��

Due to the properties of the inverse Fourier transform and of the convolution,

∫
�
Kδn

��s� x� − u�Rf�s� u�du = �2π�−1
∫
�
K̂δn

�t�R̂f�s� t�e−it�s� x� dt�(9)
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where R̂f�s� t� is a Fourier transform of Rf�s� u� over the argument u only.
Using Lemma 1 (Projection theorem), (3) and (9) we get

�10�

1
ρN

∫
SN−1

∫
�
Kδn

��s� x� − u�Rf�s� u�dvds

=
∫
SN−1

�2π�−N
2

∫
�

t
N−1Iδn�t�f̂�ts�e−it�s� x� dtds

= �2π�−N
∫
�N
Iδn�
ω
�f̂�ω�e−i�ω�x� dω�

Now we need the following technical lemma (given without proof) which con-
cerns functions in the class � N

γ �L�.

Lemma 2. Let f ∈ � N
γ �L�. Then


f̂�ω�
 ≤ 1 ∀ω ∈ �N�(11) ∫
�N


f̂�ω�
dω ≤ Q�(12)

for every v ∈ �N we have the inverse Fourier transform

f�v� =
(

1
2π

)N ∫
�N
f̂�ω�e−i�v�ω� dω(13)

and

sup
f∈� N

γ �L�
R#Rf�x� ≤ ρN +Q

π
�(14)

where Q is a positive constant which depends only on γ�L�N.

Therefore, using (10) and (13) of Lemma 2 we obtain

bn�x� = �2π�−N
∫
�N
Iδn�
ω
�f̂�ω�e−i�ω�x� dω− f�x�

= �2π�−N
∫
�N
I

(

ω
 > 1

δn

)
f̂�ω�e−i�ω�x� dω�

Thus, by the Cauchy–Schwarz inequality,


bn�x�
2 ≤ �2π�−2N
∫
�N


f̂�ω�
2e2γ
ω
 dω ·
∫
�N
I

(

ω
 > 1

δn

)
e−2γ
ω
 dω�

Since f ∈ � N
γ �L�, we have (1), and∫

�N
I

(

ω
 > 1

δn

)
e−2γ
ω
 dω =

∫
SN−1

∫ ∞

0
tN−1I

(
t >

1
δn

)
e−2γt dtds

≤ c1
(
1
δn

)N−1
e−2γ�1/δn��1+ o�1���
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as ε→ 0, where c1 is a positive constant. We obtain


bn�x�
2 ≤ c2
�log n�N−1

n
�1+ o�1�� as n→ ∞�(15)

where c2 is a positive constant and 1/δn = 1/2γ log n.
The variance term is

�16�

σ2
n�x� = Ef

[(
1
n

n∑
i=1
Kδn

��Si� x� −Ui�

− 1
ρN

∫
SN−1

∫
�
Kδn

��s� x� − u�Rf�s� u�duds
)2]

= 1
n
VarKδn

��S�x� −U�

= 1
n
Ef
[
K2
δn
��S�x� −U�]

− 1
n

(
Ef
[
Kδn

��S�x� −U�])2�
where �S�U� is a random variable on � with the density �1/ρN�Rf�s� u�.
However,

�Ef�Kδn
��S�x� −U���2 =

(
1
ρN

∫
SN−1

∫
�
Kδn

��s� x� − u�Rf�s� u�duds
)2

= �2π�−2N
( ∫

Iδn�
ω
�f̂�ω�e−i�ω�x� dω
)2

�

as shown in (10). Thus, as n→ ∞,

�17�
�E�Kδn

��S�x� −U���2 ≤ �2π�−2N
∫
�N
Iδn�
ω
�e−2γ
ω
 dω

×
∫
�N


f̂�ω�
2e2γ
ω
 dω = O�1��

where O�1� is uniform in f ∈ � N
γ �L�. Now study

E�K2
δn
��S�x� −U�� = 1

ρN

∫
SN−1

∫
�
K2
δn
��s� x� − u�Rf�s� u�duds�(18)

Fix s ∈ SN−1 and consider Rsf�u� = Rf�s� u� as a function of u. Denote

G�u� = 2N− 1
π

( ∫ 1

0
rN−1 cos�ur�dr

)2

�

By use of the Parseval equality and (3), we have
∫
�G�u�du = 1. We can

remark, using integration by parts in the definition of G�·�, that, as u→ ∞,

G�u� ≤ c3
u2
�(19)

where c3 is a positive constant. Denote Gδ�u� = �1/δ�G�u/δ� for δ > 0.
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Lemma 3. For all f ∈ � N
γ �L� we have∫

SN−1

Rf�s� u� −Rf�s� y�
ds ≤ ρN + 2Q

2π

u− y
 a.e. u�y ∈ ��

where Q is the positive constant defined in Lemma 2, which depends only on
γ�L and N.

By use of the inverse Fourier transform properties and of Lemma 1 we
obtain the lemma. ✷

The following lemma is similar to the Bochner lemma [see Parzen (1962)].

Lemma 4. We have, as δ→ 0,∫
SN−1

�Gδ ∗Rsf���s� x��ds =
∫
SN−1

Rf�s� �s� x��ds�1+ o�1�� +O�δ1/3��

where o�1� and O�·� are uniform in f ∈ � N
γ �L� and ∗ denotes the convolution.

Proof. Since
∫
�G�u�du = 1, we have

�20�

∣∣∣ ∫
SN−1

∫
�
Gδ�u�Rf�s� �s� x� − u�duds−

∫
SN−1

Rf�s� �s� x��ds
∣∣∣

≤
∫
SN−1

∫
�
Gδ�u�

∣∣∣Rf�s� �s� x� − u� −Rf�s� �s� x��∣∣∣duds
≤
∫
sN−1

∫

u
≤+

Gδ�u�
∣∣∣Rf�s� �s� x� − u� −Rf�s� �s� x��∣∣∣duds

+
∫
sN−1

∫

u
>+

Rf�s� �s� x� − u�

u



u

δ
G
(u
δ

)
duds

+
∫
sN−1

∫

u
>+

Rf�s� �s� x��Gδ�u�duds�

for any + > 0. From Lemma 3 we have∫
sN−1

∫

u
≤+

Gδ�u�
∣∣∣Rf�s� �s� x� − u� −Rf�s� �s� x��∣∣∣duds

=
∫

u
≤+

Gδ�u�
∫
SN−1

∣∣∣Rf�s� �s� x� − u� −Rf�s� �s� x��∣∣∣dsdu
≤ ρN + 2Q

2π

∫

u
≤+

Gδ�u�
u
du ≤ ρN + 2Q
2π

+→ 0 as +→ 0�

Since G�u� ≤ c3u−2� u→ ∞ and Rf is integrable we obtain∫
sN−1

∫

u
>+

Rf�s� �s� x� − u�

u



u

δ
G

(
u

δ

)
duds

≤ ρN
+

sup

u
>+/δ


uG�u�
 ≤ c3ρNδ

+2
→ 0 as δ→ 0�
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Moreover since G ∈ L1��N�, using (14) of Lemma 2 we have as δ→ 0,∫
SN−1

∫

u
>+

Rf�s� �s� x��Gδ�u�duds ≤
∫
SN−1

Rf�s� �s� x��ds
∫

u
>+/δ

G�u�du

≤ ρN +Q
π

∫

u
>+/δ

G�u�du→ 0�

Using these results with + = δ1/3 and taking the limit in (20) we obtain the
lemma. ✷

Remark that

�21�

1
ρN

∫
�
K2
δn
��s� x� − u�Rf�s� u�du

= �2π�−2NρN
π

2N− 1

(
1
δn

)2N−1
�Gδn ∗Rsf���s� x���

Together (18), (21) and Lemma 4 yield

E
[
K2
δn

((
S�x

)−U)] = �2π�−2NρN
π

2N− 1
R#Rf�x�

(
1
δn

)2N−1

× �1+ o�1�� +O
((

1
δn

)2N−4/3)
�

as δn → 0. Thus, as n→ ∞, by use of (16) and (17), we have

σ2
n�x� = C∗R#Rf�x��log n�

2N−1

n
�1+ o�1�� +O

((
�log n�2N−4/3

n

))
�(22)

where o�1� and O�·� are uniform in f ∈ � N
γ �L�.

Finally, using (8), (15) and (22) we obtain (4).
Equation (5) concerning the asymptotic normality of the estimator f∗

n�x� fol-
lows from (15), (22) and the Liapounov condition [see Loève (1977), page 287].

Let Xi = n−1Kδn
��Si� x� −Ui�. Then we have s2n = ∑n

i=1 Var�ξi� = σ2
n�x�.

Using (2), observe that


Xi
 ≤
ρNδ

−N
n

�2π�NNn = c3
�log n�N
n

�(23)

where c3 is a positive constant. Thus, the Liapounov ratio tends to zero for
α > 0,

s
−1−�a/2�
n

n∑
i=1

E
Xi
2+α → 0 as n→ ∞�

Therefore, from Loève (1977) we have that as n→ ∞,

s−1n
n∑
i=1

�Xi − EXi�
�→ � �0�1��
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Note that

s−1n
n∑
i=1

�Xi − EXi� =
f∗
n�x� − E�f∗

n�x��
σn�x�

= f∗
n�x� − f�x�
σn�x�

− bn�x�
σn�x�

�

Using (15) and (22) we obtain the asymptotic normality of f∗
n�x�.

Proof of Theorem 2. The proof of Theorem 2 is similar to that of
Theorem 1. We only mention the point where there is some difference. Using
(7), (8), (15) and (22) we find

Ef

[(
f∗
n�x� − f�x�
ψn�f�x�

)2]
= σ2

n�x�
ψ2
n�f�x�

+ b2n�x�
ψ2
n�f�x�

= �1+ o�1�� +O
(

1
�log n�1/3

)
1

R#Rf�x�

+O
(

1
�log n�N

)
1

R#Rf�x� as n→ ∞�

where o�1� and O�·� are uniform in f ∈ � N
γ �L�αn�. It remains to remark that

the definition of αn in (6) implies that

sup
f∈� N

γ �L�αn�

1
�log n�1/3R#Rf�x� → 0 as n→ ∞�

Proof of Theorem 3. The idea of the proof is standard. We define a hard-
est parametric subfamily in � N

γ �L�αn�. Then, we use the Van Trees inequal-
ity to get the lower bound for this family. The main problem in the context of
tomography is to get this parametric subfamily and to be sure that it belongs
to � N

γ �L�αn�.
Let

Ha�u� = �2π�−N
∫ ∞

0

rN−1

1+ a−1 sinh2 γr cos�ur�dr� u ∈ ��(24)

where a = an = nα, with 0 < α < 1. Then, the Fourier transform

Ĥa�t� =
�2π�1−N

2

t
N−1

1+ a−1 sinh2 γt� t ∈ ��(25)

Let

ga�v� =
�2π�1−2N

2

∫
�N


w
N−1

1+ a−1 sinh2 γ
w
 cos��v�w��dw� v ∈ �N�(26)

Then

ĝa�w� =
�2π�1−N

2

w
N−1

1+ a−1 sinh2 γ
w
 � w ∈ �N�(27)
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Thus, if ha�v� = ga�x− v�, we have
Rha�s� u� =Ha��s� x� − u��(28)

Equation (28) is obtained, for example, by use of Lemma 1, (25) and (27). In
fact, Ha is close from Kδn

with 1/δn = log a/2γ.
Introduce the probability density

f0�v� =
κ

�β2 + 
v− x
2�ν ∀v ∈ �N�(29)

where ν = �N + 1�/2� β > 0 is arbitrary and κ > 0 is a normalizing factor
such that

∫
�N f0�v�dv = 1. Standard properties of the Bessel kernel [see, e.g.,

Adams and Hedberg (1996), page 11] yield

f̂0�w� = e−β
w
ei�x�w�� w ∈ �N�(30)

Thus, for β > γ large enough, f0 ∈ � N
γ �L/4�.

Consider now the following family of functions:

fc�v� = f0�v� + cha�v��
where c is a real parameter. We know that f0 belongs to � N

γ �L/4�, thus for
fc ∈ � N

γ �L� we need

�31�
c2
∫
�

ĥa�ω�
2e2γ
ω
 dw = c2 �2π�

2−2N

4
ρN

∫ ∞

0

t3N−3

�1+ a−1 sinh2 γt�2 e
2γt dt

≤ �2π�NL
4

�

We will need the following lemma which is close to the one in Golubev and
Levit (1996).

Lemma 5. We have, for m ≥ 0,∫ ∞

0

tme2γt

�1+ a−1 sinh2 γt�2dt ≤ c
′
1a�log a�m�∫ ∞

0

tm

1+ a−1 sinh2 γtdt ≤ c
′
2�log a�m�

∫ ∞

0
tm
∣∣∣∣ 1

�1+ a−1 sinh2 γt�2 − I
(
t ≤ log a

2γ

)∣∣∣∣dt ≤ c′3�log a�m�∫ ∞

0
tm
∣∣∣∣ 1

1+ a−1 sinh2 γt − I
(
t ≤ log a

2γ

)∣∣∣∣dt ≤ c′4�log a�m�
where c′1� c

′
2� c

′
3 and c

′
4 are positive constants.
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By use of Lemma 5 and (31), we have that fc satisfies the property (1) for
all c such that


c
 ≤ Ca =
ρ√

a�log a��3N−3�/2(32)

for some sufficiently small ρ > 0. Clearly fc is continuous. Using (26), (32)
and Lemma 5, observe that for any fixed v ∈ �N we have


cha�v�
 ≤ Ca
ha�v�
 → 0 as a→ ∞�(33)

Thus, since f0�v� > 0 we have that as a→ ∞� fc�v� > 0 when v belongs to any
compact interval in �N. Furthermore, using results similar to (4) and (5) in
Golubev and Levit (1996) based on formulas 3.981.1 and 3.983.1 in Gradshteyn
and Ryzhik (1980), we can remark that ha�v� is exponentially decreasing as

v
 → ∞. By definition of f0 in (29), we have that f0 decreases as a polynomial
as 
v
 → ∞. Thus for a large enough, for all c such that 
c
 ≤ Ca�fc is a strictly
positive function on �N. Moreover, fc is a density for all c such that 
c
 ≤ Ca
since ∫

�N
fc�v�dv =

∫
�N
f0�v�dv+ c

∫
�N
ha�v�dv = 1+ cĝa�0� = 1�

by use of (27). Thus, fc ∈ � N
γ �L�, for all 
c
 ≤ Ca.

It follows from (28) that

Rfc�s� u� = Rf0�s� u� + cHa��s� x� − u��
Using Lemma 1, (30) and the inverse Fourier transform, we obtain

�34�
Rf0�s� u� =

(
1
2π

)∫
�
R̂f0�s� t�e−itu dt=

(
1
2π

)∫
�
f̂0�ts�e−itu dt

=
∫
�
exp �−β
t
� exp �−it�u−�s� x���dt = β

π

1
�u−�s� x��2+β2

�

Thus,

Rfc�s� u� =
β

π

1
�u− �s� x��2 + β2

+ cHa��s� x� − u��(35)

Using (35) we have for all 
c
 ≤ Ca,
Rc�x� = R#Rfc�x� =

∫
SN−1

Rfc�s� �s� x��ds = R0 + cρNHa�0��

where R0 = ρN/�π β�. Note that Rc�x� does not depend on x. We denote
therefore Rc�x� = Rc. We obtain by use of (24), Lemma 5 and definition of Ca
in (32),

sup

c
≤Ca


cρNHα�0�
 = o�1� as a→ ∞�

Thus, Rc = R#Rfc�x� = R0�1 + o�1�� ≥ αn, for n→ ∞. We conclude that for
a large enough, fc belongs to � N

γ �L�αn��∀
c
 ≤ Ca. Moreover, we have

ψn�fc� x� = ψn�f0� x��1+ o�1�� ∀
c
 ≤ Ca� as n→ ∞�(36)
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Furthermore, R0 > 0 and Rc > 0, and it is easy to see that

sup

c
≤Ca

∣∣∣∣ 1Rc − 1
R0

∣∣∣∣ = o�1� as a→ ∞�(37)

The lower bound for estimating f�x� will be based on the Van Trees inequal-
ity [Van Trees (1968), page 72] and Gill and Levit (1995).

Let λ0�c� be a probability density on the interval �−1�1� with a finite Fisher
information

I0 =
∫ 1

−1
�λ′0�c��2
λ0�c�

dc�

such that λ0�−1� = λ0�1� = 0 and λ0�c� is continuously differentiable for 
c
 < 1.
The density λ�c� = λa�c� = C−1

a λ0�C−1
a c� defined on the interval �−Ca�Ca�, is

a prior density with Fisher information I�λ� = I0C−2
a . Finally, denote I�c� the

Fisher information of the family of densities �1/ρN�Rfc on SN−1 × �.
We have by use of Van Trees’ inequality [see Van Trees (1968)],

inf
f̄n

sup
f∈� N

γ �L�αn�
Ef
[�f̄n�x� − f�x��2] ≥ inf

f̄n

sup

c
<Ca

Efc
[�f̄n�x� − fc�x��2]

≥ inf
f̄n

∫ Ca
−Ca

Efc
[�f̄n�x� − fc�x��2]λ�c�dc ≥ �∫ Ca−Ca��∂fc�x��/∂c�λ�c�dc�2

n
∫ Ca
−Ca I�c�λ�c�dc+ I�λ�

�

Thus here we obtain, using (36) and (37),

�38�
inf
f̄n

sup
f∈� N

γ �L�αn�
Ef

[(
f̄n�x� − f�x�
ψn�f�x�

)2]

≥
�∫ Ca−Ca��∂fc�x��/∂c�λ�c�dc�2

n
∫ Ca
−Ca I�c�λ�c�dc+ I�λ�

�ψn�f0� x��1+ o�1���−2�

where o�1� tends to zero uniformly on 
c
 ≤ Ca as a→ ∞. After some calcula-
tions based on (26) and Lemma 5, we obtain as a→ ∞,

∂fc�x�
∂c

= ga�0� = C∗�log a�2N−1�1+ o�1���(39)

Lemma 6. The Fisher information of the family of densities 	�1/ρN�Rfc is
as a → ∞�,

I�c� = C∗

ρ2N
�log a�2N−1

∫
SN−1

1
Rfc�s� �s� x��

ds�1+ o�1���(40)
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Proof. The Fisher information of the family
(�1/ρn�Rfc)
c
≤Ca is

I�c� =
∫
SN−1

∫
�

(
∂ log�1/ρn�Rfc�s� u�

∂c

)2 1
ρN
Rfc�s� u�duds

= 1
ρN

∫
SN−1

∫
�

H2
a��s� x� − u�
Rfc�s� u�

duds(41)

= 1
ρN

∫
SN−1

∫
�

H2
a�u�

Rfc�s� �s� x� − u�
duds�

Denote for t ∈ �,

D�t� = 1
Rfc�s� �s� x� − t�

− 1
Rfc�s� �s� x��

−
(
∂

∂u

1
Rfc�s� u�

)
u=�s� x�

t�

Thus, if
(�∂2/∂u2��1/Rfc�s� u��)u=�s� x�−t is bounded uniformly in t thenD�t�t−2

is bounded too. We have∣∣∣∣( ∂2∂u2 1
Rfc�s� u�

)
u=�s� x�−t

∣∣∣∣ ≤
∣∣∣∣Rfc′′�s� �s� x� − t�Rfc�s� �s� x� − t�2

∣∣∣∣
+
∣∣∣∣Rf′

c�s� �s� x� − t�2
Rfc�s� �s� x� − t�3

∣∣∣∣�
(42)

where Rf′
c and Rfc

′′ denote the derivative with respect to the second argu-
ment only. Observe that (34) implies

Rf0�s� �s� x� − t� =
β

π

1
t2 + β2

�(43)

Note that if t belongs to a compact interval, we can directly bound ��∂2/∂u2�
�1/Rfc�s� u���u=�s� x�−t since by use of (24), (32) and Lemma 5 we have for a
fixed t ∈ �,

sup

c
≤Ca


cHa�t�
 → 0 as a→ ∞�

and the same result for the derivatives of Ha. Thus, we can replace Rfc by
Rf0 in (42) to obtain the bound.

For 
t
 → ∞ we use the fact that Ha and its derivatives are exponentially
decreasing. Thus, Rfc�s� �s� x� − t� (resp. Rf′

c�Rfc
′′) is of order 
t
−2 (resp.


t
−3� 
t
−4).
Applying this, we obtain as a→ ∞�∀t ∈ �,∣∣∣∣( ∂2∂u2 1

Rfc�s� u�
)
u=�s� x�−t

∣∣∣∣ ≤ c4 ∀
c
 ≤ Ca�
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where c4 is a positive constant. Hence D�t�t−2 is bounded and therefore using
the Taylor formula we obtain since H2

a is symmetric,∣∣∣∣ ∫
�

H2
a�u�

Rfc�s� �s� x� − u�
du− 1

Rfc�s� �s� x��
∫
�
H2
a�u�du

∣∣∣∣
=
∣∣∣∣ ∫

�
D�u�u−2u2H2

a�u�du
∣∣∣∣(44)

≤ c5
∫
�
u2H2

a�u�du = O
(( ∫

�
Ĥ′
a�t�dt

)2)
�

where Ĥ′
a is the weak derivative of Ĥa and c5 is a positive constant. After

calculation of Ĥ′
a and the use of Lemma 5 we obtain∫
�
u2H2

a�u�du = O(�log a�2N−2) as a→ ∞�(45)

Finally, using (45) and (44) we obtain∫
�

H2
a�u�

Rfc�s� �s� x� − u�
du = 1

Rfc�s� �s� x��
∫
�
H2
a�u�du

+O(�log a�2N−2) as a→ ∞�
(46)

From Plancherel’s equality, (25) and Lemma 5 we obtain as a→ ∞,∫
�
H2
a�u�du = �2π�1−2N

4

∫
�


t
2N−2

�1+ a−1 sinh2 γt�2 dt

= �2π�−2Nπ
2N− 1

(
1
2γ

)2N−1
�log a�2N−1�1+ o�1���

and then using (46) and (41) we obtain the lemma. ✷

By definition of Rfc in (35) and (37), observe that Rfc�s� �s� x�� does not
depend on s ∈ SN−1 and∫

SN−1

1
Rfc�s� �s� x��

ds = ρ2N
R0

�1+ o�1�� as a→ ∞�

Thus, using definitions of a� I�λ��C∗, (32), (38), (39) and Lemma 6, we obtain

inf
f̄n

sup
f∈� N

γ �L�αn�
Ef

[(
f̄n�x� − f�x�
ψn�f�x�

)2]

≥
(
C∗α2N−1�log n�2N−1�1+ o�1��)2ψ−2

n �f0� x��1+ o�1��(
C∗α2N−1�1/R0�n�log n�2N−1�1+ o�1��)+ ρ−2I0nα�log n�3N−3 �

as n→ ∞, which implies the result since α can be chosen arbitrarily close to 1.
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