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A new approximation to the Gaussian likelihood of a multivariate
locally stationary process is introduced. It is based on an approximation
of the inverse of the covariance matrix of such processes. The new quasi
likelihood is a generalization of the classical Whittle likelihood for station-
ary processes. Several approximation results are proved for the likelihood
function. For parametric models, asymptotic normality and efficiency of the
resulting estimator are derived for Gaussian locally stationary processes.

1. Introduction. Suppose we observe data X1� � � � �XT from some non-
stationary process and we want to fit a parametric model to the data. An exam-
ple is an autoregressive process with time varying coefficients where we model
the coefficient functions by polynomials in time. To estimate the parameters
of such a model we introduce in this paper a generalization of the Whittle
likelihood to nonstationary processes. For a lot of models the maximization
of the new likelihood has computational advantages over the maximization of
the exact Gaussian likelihood.

For univariate stationary processes with mean zero, Whittle (1953, 1954)
introduced

1
4π

∫ π
−π

{
log 4π2fθ�λ� +

IT�λ�
fθ�λ�

}
dλ�(1.1)

where

IT�λ� =
1

2πT

∣∣∣∣ T∑
t=1
Xt exp�−iλt�

∣∣∣∣2
is the periodogram as an approximation of the negative Gaussian likelihood.
This likelihood has been used over the years in many different situations.
Among the large number of papers on Whittle estimates we mention the
results of Dzhaparidze (1971) and Hannan (1973) for univariate time series,
Dunsmuir (1979) for multivariate time series and Hosoya and Taniguchi (1982)
for misspecified multivariate time series. A general overview over Whittle esti-
mates for stationary models may be found in the monograph of Dzhaparidze
(1986). We also mention the results of Mikosch, Gadrich, Klüppelberg and
Adler (1995) on Whittle estimates for linear processes where the innovations
have heavy tailed distributions, of Fox and Taqqu (1986) on Whittle estimates
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for long-range dependent processes and of Robinson (1995) on semiparametric
Whittle estimates for long-range dependent processes.

For nonstationary processes Dahlhaus (1997) used a modification of the
above likelihood where the periodogram was calculated over a time segment
and the resulting likelihood was averaged over the different segments. How-
ever, the use of a classical periodogram always contains some implicit
smoothing over time [see (1.2) below] resulting in an additional bias in the
nonstationary case.

For this reason we use in this paper a likelihood based on the preperi-
odogram which in the univariate case with mean zero takes the form

ĨT�u� λ� �=
1
2π

∑
k�1≤�uT+1/2±k/2
≤T

X�uT+0�5+k/2
X�uT+0�5−k/2
 exp�−iλk��

where u ∈ �0�1
 is the rescaled time. ĨT�t/T� λ� may be regarded as a local
version of the periodogram at time t. It was introduced by Neumann and
von Sachs (1997) as a starting point for a wavelet estimate of the time-varying
spectral density. The above form contains a small modification (time shift).

There exists a nice relation between the preperiodogram and the ordinary
periodogram:

IT�λ� =
1

2πT

∣∣∣∣ T∑
r=1
Xr exp�−iλr�

∣∣∣∣2

= 1
2π

T−1∑
k=−�T−1�

(
1
T

T−�k�∑
t=1

XtXt+�k�

)
exp�−iλk�

= 1
T

T∑
t=1

1
2π

∑
k:1≤�uT+1/2±k/2
≤T

X�t+0�5+k/2
�TX�t+0�5−k/2
�T exp�−iλk�

= 1
T

T∑
t=1
ĨT

( t
T
� λ
)
�

(1.2)

that is, the periodogram is the average of the preperiodogram over time.
Equation (1.2) means that the periodogram IT�λ� is the Fourier transform
of the covariance estimator of lag k over the whole segment while the preperi-
odogram ĨT�t/T� λ� just uses the pairX�t+0�5+k/2
X�t+0�5−k/2
 as a kind of “local
estimator” of the covariance of lag k at time t (note that �t+ 0�5+ k/2
 − �t+
0�5−k/2
 = k�. For this reason Neumann and von Sachs also called ĨT�t/T� λ�
the localized periodogram.

A classical kernel estimator of the spectral density of a stationary pro-
cess at some frequency λ0 therefore can be regarded as an average of the
preperiodogram over all time points and over the frequencies in the neigh-
bourhood of λ0. It is therefore plausible that averaging the preperiodogram
about some frequency λ0 and about some time point t0 gives an estimate of
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the time-varying spectrum f�to/T� λ� (e.g., in the framework of a locally sta-
tionary process).

If we replace IT�λ� in (1.1) by the above average of the preperiodogram
and afterwards replace the model spectral density fθ�λ� by the time-varying
spectral density fθ�u� λ� of a nonstationary model, we obtain the expression

1
4π

1
T

T∑
t=1

∫ π
−π

{
log 4π2fθ

( t
T
� λ
)
dλ+ ĨT�t/T� λ�

fθ�t/T� λ�
}
�

which is the univariate form of the likelihood (2.6) investigated in this paper.
If the model is stationary, that is, fθ�u� λ� = fθ�λ� then the above likelihood
is identical to the Whittle likelihood and we have a true generalization to
nonstationary processes.

First we investigate in Section 2 the properties of the above quasi likelihood.
It is shown that this likelihood can be derived from the Gaussian likelihood by
using a certain approximation of the inverse of the covariance matrix appear-
ing in the Gaussian likelihood and by using an extension of the Szegö formula
[cf. Grenander and Szegö (1958), Section 5.2] to the nonstationary case.

In Section 3 we prove consistency and asymptotic normality of the result-
ing estimator and investigate some modifications. The Appendix contains some
technical results on norms and matrix products of generalized Toeplitz
matrices.

2. The local likelihood approximation. We start with the definition of
a multivariate Gaussian locally stationary process. It is given in the form of a
time-varying spectral representation. The equivalent form of a time-varying
MA�∞�-representation is discussed below.

Definition 2.1. A sequence of Gaussian multivariate stochastic processes
Xt�T = �X�1�

t�T� � � � �X
�d�
t�T�′ �t = 1� � � � �T� is called locally stationary with trans-

fer function matrix Ao and mean function vector µ if there exists a represen-
tation

Xt�T = µ
( t
T

)
+
∫ π
−π

exp�iλt�Ao
t�T�λ�dξ�λ�(2.1)

with the following properties:

(i) ξ�λ� is a complex valued Gaussian vector process on �−π�π
 with ξa�λ� =
ξa�−λ��Eξa�λ� = 0 and

E�dξa�λ�dξb�µ�� = δabη�λ+ µ�dλdµ�

where η�λ� =∑∞
j=−∞ δ�λ+ 2πj� is the period 2π extension of the Dirac delta

function.
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(ii) There exists a constant K and a 2π-periodic matrix valued function
A: �0�1
 × �→ �d×d with A�u� λ� = A�u�−λ� and

sup
t� λ

∣∣∣Ao
t�T�λ�ab −A

( t
T
� λ
)
ab

∣∣∣ ≤KT−1(2.2)

for all a� b = 1� � � � � d and T ∈ �. A�u� λ� and µ�u� are assumed to be contin-
uous in u.

f�u� λ� �= A�u� λ�A�u� λ�′ is the time varying spectral density matrix of
the process.

Remark 2.2 (Time-varying MA�∞�-representations). There exists a close
connection between the above spectral representation and time-varying
MA-representations. Let

at�T�k �=
∫ π
−π
Ao
t�T�λ� exp�iλk�dλ�

ak�u� �=
∫ π
−π
A�u� λ� exp�iλk�dλ

and

εt �=
∫ π
−π

exp�iλt�dξ�λ�

[note that at�T�k and a�u�k� are matrices; the Fourier transform is calculated
componentwise]. Then Eεt = 0 and Eεsε′t = 2πδstId, that is the εt are uncor-
related (independent in the present Gaussian case). Since

Ao
t�T�λ� =

1
2π

∞∑
k=−∞

at�T�k exp�−iλk�

and

A�u� λ� = 1
2π

∞∑
k=−∞

ak�u� exp�−iλk�

we obtain

Xt�T = µ
( t
T

)
+ 1
2π

∞∑
k=−∞

at�T�kεt−k�(2.3)

Condition (2.2) implies

sup
t� k

∣∣∣{at�T�k − ak( tT)}bc
∣∣∣ = O�T−1�

for all b� c = 1� � � � � d. If we start conversely with an infinite MA-representation
(2.3) where the coefficients fulfill

sup
t

∞∑
k=−∞

∣∣∣{at�T�k − ak( tT)}bc
∣∣∣ = O�T−1�(2.4)
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for all b� c = 1� � � � � d, then it can be shown in the same way that a repre-
sentation (2.1) exists and (2.2) is fulfilled. Note that heteroscedastic εt and εt
with dependent components can be included by choosing other at�T�k in (2.3).
The complicated construction with different functions Ao

t�T�λ� and A�t/T� λ�
[at�T�k and ak�t/T�, respectively] is necessary since we need on the one hand
a certain smoothness in time direction [guaranteed by the functions A�u� λ�
and ak�u�] and on the other hand a class which is rich enough to cover
interesting applications. For example, the time varying AR(1)-process Xt�T =
φ�t/T�Xt−1�T + εt does not have a solution of the form Xt�T =∑∞
k=0 ak �t/T�εt−k but only of the formXt�T =

∑∞
k=0 at�T�kεt−k with (2.4) where

ak�u� = φ�u�k.

Processes with an evolutionary spectral representation were introduced and
investigated by Priestley (1965, 1981) and Granger and Hatanaka (1964).
The above definition is the multivariate generalization of the definition of
univariate local stationarity given in Dahlhaus (1997). As in nonparametric
regression the time parameter u = t/T in µ�u� and A�u� λ� is rescaled for a
meaningful asymptotic theory leading to the above triangular arrayXt�T. The
classical asymptotics for stationary sequences is contained as a special case (if
µ andA do not depend on t). A detailed discussion of this definition and a com-
parison with Priestley’s approach can be found in Dahlhaus (1996c). Another
definition of local stationarity has recently been given by Mallat, Papanico-
laou and Zhang (1998). We remark that the methods presented in this paper
do not depend on the special definition of local stationarity.

Examples of locally stationary processes in the univariate case can be
found in Dahlhaus (1996a). For the multivariate case we give the following
examples.

Example 2.3. (i) Suppose Yt is a multivariate stationary process, µ�·� is
a vector function and "�·� is a matrix function. Then

Xt�T = µ
(
t

T

)
+ "

(
t

T

)
Yt

is locally stationary. If Yt is an iid sequence we have the situation of multi-
variate nonparametric regression.

(ii) SupposeXt�T is a time-varying multivariate ARMA-model, that is,Xt�T

is defined by the difference equations
p∑
j=0

$j

(
t

T

)[
Xt−j�T − µ

(
t− j
T

)]
=

q∑
j=0

&j

(
t

T

)
"ε
(
t− j
T

)
εt−j�

where εt are iid with mean zero and variance–covariance matrix Id and
$o�u� ≡ &o�u� ≡ Id. For z ∈ � let $�u� z� = ∑p

j=0$j�u�zj and &�u� z� =∑q
j=0&j�u�zj. If det $�u� z� �= 0 for all �z� ≤ 1 + c with c > 0 uniformly

in u and all entries of $j�u� and &j�u� are continuous is u then it can be
shown similarly to the univariate case [Dahlhaus (1996a), Theorem 2.3] that
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the solution of these difference equations has an infinite time-varying MA-
representation, that is, the solution is locally stationary of the form (2.1). The
time-varying spectral density of the process is

f�u� λ� = 1
2π
$�u� eiλ�−1&�u� eiλ�"ε�u�&�u� e−iλ�′$�u� e−iλ�′−1�

We omit details of the derivation. However, we remark that in this case the
functions Ao

t�T�λ� and A�t/T� λ� again do not coincide. They only fulfill (2.2).

In the following we look at parametric locally stationary models. An exam-
ple is the case where the curves in the above examples are parametrized
in time, for example by polynomials [for an example, see Dahlhaus (1997),
Section 6]. As an estimator for the parameters we consider

θ̂T �= argmin
θ∈*

�T�θ��(2.5)

where

�T�θ� =
1
T

T∑
t=1

1
4π

∫ π
−π

{
log
[
�2π�2d detfθ

(
t

T
� λ

)]

+ tr
[
fθ
(
t/T� λ

)−1
Ĩ
µθ
T

(
t/T� λ

)]}
dλ

(2.6)

and

Ĩ
µ
T�u�λ�ab �=

1
2π

∑
k:1≤�uT+1/2±k/2
≤T

[
X

�a�
�uT+0�5+k/2
�T−µ�a�

( �uT+0�5+k/2

T

)]

×
[
X

�b�
�uT+0�5−k/2
�T−µ�b�

( �uT+0�5−k/2

T

)]
exp�−iλk�

(2.7)

is the multivariate version of the preperiodogram. Here �x
 denotes the largest
integer less or equal to x; * is assumed to be compact.

In the univariate case and for µθ = 0 this is the likelihood we have already
discussed in the introduction. If the mean is not zero and one is not interested
in modelling the mean, one may use Ĩµ̂T�u� λ� instead of ĨµθT �u� λ� where µ̂ is
the arithmetic mean or some kernel estimate (if the mean is not believed to
be constant over time).

In certain situations the first term reduces to a simpler form and the fre-
quency integral may be replaced by a sum over the Fourier frequencies; see
Remark 3.5 for details.
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In the main theorem of this paper (Theorem 3.1) we prove θ̂T →� θ0
and a central limit theorem for

√
T�θ̂T − θ0� where θ0 is the true parame-

ter. If the model is misspecified the same holds with

θ0 �= argmin
θ∈*

� �θ��(2.8)

where

� �θ� �= 1
4π

∫ 1

0

∫ π
−π

{
log��2π�2ddetfθ�u� λ�
 + tr�fθ�u� λ�−1f�u� λ�


}
dλdu

+ 1
4π

∫ 1

0
�µθ�u� − µ�u��′f−1θ �u�0��µθ�u� − µ�u��du

(2.9)

is the limit of �τ�θ� (see Theorem 2.8 below). In the case where the model is
correctly specified, that is, A�u� λ� = Aθ∗�u� λ� and µ�u� = µθ∗�u� with some
θ∗ ∈ *, one can show that θ0 = θ∗.

A deeper investigation of �τ�θ� shows that it can be derived from the
Gaussian log-likelihood by using a certain approximation of the inverse of
the covariance matrix. Since this approximation also plays a key role in our
proofs, we have to discuss it in some detail.

LetX = �X′
1�T� � � � �X

′
T�T�′� µ = �µ�1/T�′� � � � � µ�T/T�′�′, and "T�A�B� and

UT�φ� be T×T block matrices whose �r� s� block is

"T�A�B�r� s =
∫ π
−π

exp�iλ�r− s��Ao
r�T�λ�Bos�T�−λ�′ dλ(2.10)

and

UT�φ�r� s =
∫ π
−π

exp�iλ�r− s��φ
(
1
T

[r+ s
2

]∗
� λ

)
dλ(2.11)

�r� s = 1� � � � �T� where Ao
r�T�λ��Bor�T�λ� and φ�u� λ� are d × d-matrices and

�x
∗ = �x
 denotes the largest integer less or equal to x (we have added here
the ∗ to discriminate the notation from brackets). Direct calculation shows
that

�T�θ� =
1
4π

1
T

T∑
t=1

∫ π
−π

log
[
�2π�2d detfθ

(
t

T
� λ

)]
dλ

+ 1
8π2T

�X− µθ�′UT�f−1θ ��X− µθ��
(2.12)

Furthermore, the logarithm of the exact Gaussian likelihood is

�̃T�θ� �=
d

2
log�2π� + 1

2T
log det"θ +

1
2T

�X− µ
θ
�′"−1θ �X− µ

θ
��(2.13)

where "θ = "T�Aθ�Aθ�. We set

θ̃T �= argmin
θ∈*

�̃T�θ��(2.14)

In Proposition 2.4 below we now prove that UT��1/4π2�f−1θ � is an approx-
imation of "−1θ . Together with the generalization of the multivariate Szegö
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identity (Proposition 2.5) this implies that �τ�θ� is an approximation of �̃T�θ�
(see Theorem 2.8). If the model is stationary, then Aθ is constant in time and
"θ = "T�Aθ�Aθ� is the Toeplitz matrix of the spectral density fθ�λ� = �Aθ�2
while UT��1/4π2�f−1θ � is the Toeplitz matrix of �1/4π2�f−1θ . This is the clas-
sical matrix approximation leading to the Whittle likelihood [cf. Dzhaparidze
(1986)]. UT��1/4π2�f−1θ � is a better approximation of "−1θ than the approxima-
tion used in Dahlhaus (1996a) which consisted of overlapping block Toeplitz
matrices. This can be seen from the rate of approximation in Proposition 2.4
below and the corresponding rate in Lemma 4.7 of Dahlhaus (1996a). As a
consequence this also leads to a better rate of the likelihood approximation.

The technical parts of the following proofs consist of the derivation of prop-
erties of products of matrices "T�A�B�� "T�A�A�−1 and UT�φ�. These prop-
erties are derived in the Appendix. In particular, Lemmas A.1, A.5, A.7 and
A.8 are of relevance for the following proofs.

For convenience we refer in the following proposition to Assumption A.3
in the Appendix concerning the smoothness of the transfer function and the
mean. These conditions are fulfilled under Assumption 2.6 below. By �A� and
|A| we denote the spectral norm and the Euclidean norm of a matrix A [see
(A.1) and (A.2)].

Proposition 2.4. Suppose the matricesA and φ fulfill the smoothness con-
ditions of Assumption A.3(i)–(iii) (Appendix) with existing and bounded deriva-
tives �∂2/∂u2��∂/∂λ�A�u� λ�ab and eigenvalues of φ�u� λ� which are bounded
from below uniformly in u and λ. Then we have for each ε > 0,

1
T

|"T�A�A�−1 −UT��4π2AA
′�−1�|2 = O�T−1+ε�(2.15)

and

1
T

|UT�φ�−1 −UT��4π2φ�−1�|2 = O�T−1+ε��

Proof. Let "T = "T�A�A� and UT = UT��4π2AA
′�−1�. We obtain with

Lemma A.1(b) and Lemma A.5,

1
T

|"−1T −UT|2 ≤ 1
T

|I− "1/2T UT"
1/2
T |2�"−1T �2

≤K
(
d− 2

T
tr�UT"T� +

1
T
tr�UT"TUT"T�

)
�

Lemma A.7(i) now implies the result. The second result is obtained in the
same way with Lemma A.8. ✷

By using the above approximation it is possible to prove the following gen-
eralization of the Szegö identity [cf. Grenander and Szegö (1958), Section 5.2]
to multivariate locally stationary process.
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Proposition 2.5. Suppose A fulfills Assumptions A.3(i), (ii), with bounded
derivatives �∂2/∂u2��∂/∂λ�A�u� λ�ab. Then we have with f�u� λ� = A�u� λ�
A�u�−λ�′ for each ε > 0,

1
T
log det"T�A�A� =

1
2π

∫ 1

0

∫ π
−π

log��2π�d detf�u� λ�
dλdu+O�T−1+ε��

If A = Aθ depends on a parameter θ and fulfills the smoothness conditions of
Assumption 2.6(iii), (iv), then the O�T−1+ε� term is uniform in θ.

The proof can be found in the Appendix.
In certain situations the right-hand side can be written in terms of the one

step prediction error at each time point which often leads to a simpler form
of the likelihood; see Remark 3.5(i) for details.

We now discuss the properties of the likelihood �T�θ�. We set ∇i = ∂/∂θi
and ∇2

ij = ∂2/∂θi∂θj. The results are proved under the following assumptions.

Assumption 2.6. (i) We observe a realization X1�T� � � � �XT�T of a d-
dimensional locally stationary Gaussian process with true mean function vec-
tor µ, transfer function matrix Ao and covariance matrix " = "T�A�A�. We
fit a class of locally stationary Gaussian processes with mean function vector
µθ, transfer function matrix Ao

θ and covariance matrix "θ = "T�Aθ�Aθ�� θ ∈
* ⊂ �p�* compact.

(ii) θ0 = argmin� �θ� exists uniquely and lies in the interior of *.
(iii) The components of Aθ�u� λ� are differentiable in θ and u and λ with

uniformly continuous derivatives ∇2
ij�∂2/∂u2��∂/∂λ�Aθ�u� λ�ab.

(iv) All eigenvalues of fθ�u� λ� = Aθ�u� λ�Aθ�u�−λ�′ are bounded from
below by some constant C > 0 uniformly in θ, u and λ.

(v) The components ofA�u� λ� are differentiable in u and λ with uniformly
bounded derivatives �∂/∂u��∂/∂λ�A�u� λ�ab.

(vi) The components of µθ�u� and µ�u� are differentiable in θ and u with
uniformly continuous derivatives ∇2

ij�∂/∂u�µ�θ�a and �∂/∂u�µ�u�a.

First we need equicontinuity of the likelihoods and their derivatives. We call
a sequence of random variables ZT�θ�� θ ∈ * equicontinuous in probability, if
for each η > 0 and ε > 0 there exists a δ > 0 with

lim supT→∞P� sup
�θ1−θ2�≤δ

�ZT�θ1� −ZT�θ2�� > η� < ε�

Lemma 2.7. Suppose Assumption 2�6 holds. Then the components of �T�θ�,
∇�T�θ��∇2�T�θ�� �̃T�θ��∇�̃T�θ��∇2�T�θ� are equicontinuous in probability.
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Proof. We prove equicontinuity of �T�θ� and ∇2
ij�τ�θ� (which is needed

for the asymptotic properties of θ̂T in the proof of Theorem 3.1). Equicontinuity
of the other quantities follows in the same way. We have with a mean value θ̄,

�T�θ2� −�T�θ1� = �θ2 − θ1�′∇�T�θ̄��

where

∇i�T�θ� =
1
4π

1
T

T∑
t=1

∫ π
−π

tr
{
fθ

( t
T
� λ
)
∇ifθ

( t
T
� λ
)−1}

dλ

+ 1
8π2T

�X− µ
θ
�′UT�∇if−1θ ��X− µ

θ
�(2.16)

− 1
4π2T

�∇iµθ�
′UT�f−1θ ��X− µ

θ
�

= 1
8π2T

�X− µ�′UT�∇if−1θ ��X− µ�

+ 1
4π2T

∇i
{
�µ− µ

θ
�′UT�f−1θ �

}
�X− µ� + const�(2.17)

with a constant independent of X (but dependent on θ and T). With the
Cauchy–Schwarz inequality and Lemma A.1(b) we get

1
T
�∇iµ

θ
�′UT�f−1θ ��X− µ

θ
�

≤ 1
T

{
�∇iµ

θ
�′UT�f−1θ ��∇iµ

θ
� · �X− µ

θ
�′UT�f−1θ ��X− µ

θ
�
}1/2

≤
{
1
T

|∇iµθ|2
}1/2{ 2

T
|X|2 + 2

T
|µ

θ
|2
}1/2

�UT�f−1θ ���

which by Assumption 2.6 and Lemma A.5 is uniformly bounded byK+K�1/T�
|X|2. Similarly, we can estimate the other terms in (2.16) leading to

sup
�θ1−θ2�≤δ

��T�θ2� −�T�θ1�� ≤Kδ
(
1+ 1

T
X′X

)

with some constantK. Since E�1/T�X′X = �1/T�tr�"�+�1/T�|µ|2 converges
to
∑d
a=1
∫ 1
0 �
∫ π
−π faa�u� λ�dλ+µa�u�2 du� and Var�1/T�X′X = �2/T2�tr�"2� ≤

�2/T��"�2 ≤ K/T (Lemmas A.1, A.5 and A.7) T−1X′X is bounded in proba-
bility. This implies equicontinuity. The proof of equicontinuity of ∇2

ij�T�θ� is a
bit more involved since we do not want to assume third-order differentiability
of Aθ�u� λ� with respect to θ in Assumption 2.6(iii).
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We obtain from (2.16),

∇2
ij�T�θ� = − 1

4π
1
T

T∑
t=1

∫ π
−π

tr
{
fθ

(
t

T
� λ

)
∇2
ijfθ

(
t

T
� λ

)−1}
dλ

− 1
4π

1
T

T∑
t=1

∫ π
−π

tr
{
∇ifθ

(
t

T
� λ

)
∇jfθ

(
t

T
� λ

)−1}
dλ

+ 1
8π2T

�X− µ
θ
�′UT�∇2

ijf
−1
θ ��X− µ

θ
�

+ 1
4π2T

�∇iµθ�
′UT�f−1θ ��∇jµθ�(2.18)

− 1
4π2T

�∇iµθ�
′UT�∇jf−1θ ��X− µ

θ
�

− 1
4π2T

�∇jµθ�
′UT�∇if−1θ ��X− µ

θ
�

− 1
4π2T

�∇2
ijµθ�

′UT�f−1θ ��X− µ
θ
��

Equicontinuity of ∇2
ij�� �θ� follows if we prove equicontinuity for all terms

separately. The first and second term are deterministic and uniformly con-
tinuous in θ and therefore also equicontinuous in probability. The remaining
terms of (2.18) can all be written as sums of expressions of the form

1
T
X′UθX�

1
T
ν′θUθX or

1
T
ν′1θUθν2θ(2.19)

with Uθ being equal to UT�f−1θ �� UT�∇if−1θ � or UT�∇2
ijf

−1
θ � and νθ being

equal to µ
θ
� ∇iµθ or ∇2

ijµθ. The last expression is also deterministic and uni-
formly continuous. For the second term we obtain, with the Cauchy–Schwarz
inequality,∣∣∣∣ 1Tν′θ1Uθ1

X− 1
T
ν′θ2Uθ2

X

∣∣∣∣
≤ 1
T

∣∣�νθ1 − νθ2�′Uθ1
X
∣∣+ 1

T

∣∣ν′θ2�Uθ1
−Uθ2

�X∣∣
≤ 1
T

{|νθ1 − νθ2|2|X|2}1/2�Uθ1
� + 1

T

{|νθ2|2|X|2}1/2�Uθ1
−Uθ2

��

Lemma A.5(iii) implies that for all ε > 0 there exists a T0 and a δ such that

sup
�θ1−θ2�≤δ

�Uθ1
−Uθ2

� ≤ ε for all T ≥ T0

for all choices of Uθ. Furthermore, δ can be chosen such that sup�θ1−θ2�≤δ�1/T�
|νθ1 − νθ2|2 ≤ ε. Since �Uθ� is uniformly bounded and �1/T�|X|2 is bounded
in probability this implies equicontinuity of �1/T�ν′θUθX. Equicontinuity of
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�1/T�X′UθX follows in the same way and we therefore obtain equicontinuity
in probability of ∇2

ij�T�θ�. ✷

Theorem 2.8. Suppose Assumption 2.6 holds. Then we have for k = 0�1�2,
(i)

sup
θ∈*

�∇k��T�θ� − �̃T�θ��� �→ 0�

(ii)

sup
θ∈*

�∇k��T�θ� −� �θ��� �→ 0�

(iii)

sup
θ∈*

�∇k��̃T�θ� −� �θ��� �→ 0�

Proof. Of course (i) and (ii) imply (iii). To prove (i) and (ii) we will show
that ∇k�T�θ� and ∇k ˜�T�θ� consist of sums of quadratic forms whose expec-
tations and variances can be calculated by using Lemma A.7. This leads to
pointwise consistency and then with the equicontinuity result of Lemma 2.7
to uniform consistency.

(i) We obtain for k = 0 with Proposition 2.5 and BT �= "T�Aθ�Aθ�−1 −
UT��4π2Aθ

�A′
θ�−1� for each ε > 0,

�T�θ� − ˜�T�θ� =
1
2T

�X− µ
θ
�′BT�X− µ

θ
� +O�T−1+ε��

Since
1
T
�X− µ

θ
�′BT�X− µ

θ
�

= 1
T
�X− µ�′BT�X− µ� + 2

T
�X− µ�′BT�µ− µθ�

+ 1
T
�µ− µ

θ
�′BT�µ− µθ��

(2.20)

we obtain with " = "T�A�A� and Lemma A.7 (note the remark below Lemma
A.7),

E��T�θ� − ˜�T�θ�� =
1
2T

tr�BT"� +
1
2T

�µ− µ
θ
�′BT�µ− µθ� +O�T

−1+ε�

= O�T−1+ε�
and due to Gaussianity,

Var��T�θ� − ˜�T�θ�� =
1

2T2
tr�BT"BT"� +

1
T2

�µ− µ
θ
�′BT"BT�µ− µθ�

= O�T−2+ε��
This implies for each ε > 0,

�T�θ� − ˜�T�θ� = Op�T1−ε��(2.21)
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Together with the equicontinuity of �T�θ� and ˜�T�θ� (Lemma 2.7) this implies
uniform convergence.
For k = 1 we obtain with Lemma A.8, BT as above and

CT �= −"T�Aθ�Aθ�−1
{
"T�∇jAθ�Aθ� + "T�Aθ�∇jAθ�

}
"T�Aθ�Aθ�−1

−UT�∇j�4π2AθĀ
′
θ�−1��

∇j�T�θ� − ∇j ˜�T�θ�

= 1
2T

�X− µ
θ
�′CT�X− µ

θ
� − 1

T
�∇jµθ�

′BT�X− µ
θ
� +O�T−1+ε��

Analogously to the above we obtain with Lemma A.8,

E�∇j�T�θ� − ∇j ˜�T�θ�� = O�T−1+ε�

and

Var�∇j�T�θ� − ∇j ˜�T�θ�� = O�T−2+ε��

which gives

∇�T�θ� − ∇ ˜�T�θ� = Op�T−1−ε�(2.22)

and, with Lemma 2.7, uniform convergence. For k = 2 the result follows in
the same way.

(ii) follows similarily. For k = 0 use BT = UT�f−1θ � in the above derivation
and apply Lemma A.7 and Proposition 2.5 to get

E�T�θ� = �T�θ� +O�T−1+ε�

and

Var�T�θ� = O�T−1��

which implies with the equicontinuity of �T�θ� and the uniform continuity of
� �θ� the result. For k = 1 we use (2.17) and the Gaussianity of X to obtain

Var�∇i�T�θ�� =
1

32π4T2
tr�UT�∇if−1θ0 �"UT�∇if−1θ0 �"�

+ 1
16π4T2

[∇i{�µ− µθ�′UT�f−1θ �}]"[∇i{UT�f−1θ ��µ− µ
θ
�}]

= O�T−1� by Lemma A.7.
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Furthermore, we obtain with (2.16), (2.20) and Lemma A.7,

E∇i�T�θ� =
1
4π

1
T

T∑
t=1

∫ π
−π

tr
{
fθ

(
t

T
� λ

)
∇ifθ

(
t

T
� λ

)−1}
dλ

+ 1
8π2T

tr�UT�∇if−1θ0 �"�

+ 1
8π2T

�µ− µ
θ
�′UT�∇f−1θ ��µ− µ

θ
�

− 1
4π2T

�∇iµθ�
′UT�f−1θ ��µ− µ

θ
�

= ∇i� �θ� +O�T−1+ε��

(2.23)

which implies, with the equicontinuity, the result. For k = 2 it follows from
(2.18) that

∇2
ij�T�θ� =

1
8π2T

�X− µ�′UT�∇2
ijf

−1
θ ��X− µ�

+ 1
4π2T

∇2
ij��µ− µθ�

′UT�f−1θ ��X− µ� + const.

and therefore

Var�∇2
ij�T�θ�� =

1
32π4T2

tr
{
UT�∇2

ijf
−1
θ �"UT�∇2

ijf
−1
θ �"}

+ 1
16π4T2

[∇2
ij��µ− µθ�

′UT�f−1θ ��]"[∇2
ij�UT�f−1θ ��µ− µθ��

]
�

Lemma A.7 shows that this is of order O�T−1�. To calculate E∇2
ij�T�θ� we

consider all terms separately and prove with Lemma A.7 convergence to the
corresponding terms of ∇2

ij� �θ�. As above this implies the result. ✷

Remark 2.9. Theorem 2.8(iii) gives the asymptotic Kullback–Leibler
information divergence of two Gaussian multivariate locally stationary pro-
cesses: If Xt�T�X̃t�T� are multivariate locally stationary with spectral densi-

ties f = A�A′�f̃ = Ã�A�, mean functions µ�µ̃� and Gaussian densities g�g̃�,
then we obtain for the information divergence

D�f̃� µ̃� f�µ� = lim
T→∞

1
T
Eg log

g

g̃

= 1
4π

∫ 1

0

∫ π
−π
�log det�f̃�u� λ�f�u� λ�−1


+ tr �f̃�u� λ�−1f�u� λ� − I
�dλdu

+ 1
4π

∫ 1

0
�µ̃�u� − µ�u��′f̃�u�0�−1�µ̃�u� − µ�u��du�

This is the time average of the Kullback–Leibler divergence in the stationary
case [cf. Parzen (1983) for the univariate stationary case with mean zero].
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Remark 2.10. There is another important aspect of the above likelihood
approximation: the likelihood is of the form

�T�θ� =
1
T

T∑
t=1
7T

(
θ�
t

T

)
with

7T

(
θ�
t

T

)

= 1
4π

∫ π
−π

{
log
[
�2π�2d det fθ

(
t

T
� λ

)]
+ tr

[
fθ

(
t

T
� λ

)−1
Ĩ
µθ
T

(
t

T
� λ

)]}
dλ�

that is, �T�θ� has a similar form to the negative log-likelihood function of iid
observations where 7T�θ� t/T� is the negative log-likelihood at time point t.
Heuristically 7T�θ� t/T� may still be regarded as the negative log-likelihood
at time point t which now in addition contains the full information on the
dependence (correlation) structure of Xt�T with all the other variables. This
was the reason for choosing the notation “local likelihood.” 7T�θ� t/T� may be
used for nonparametric estimation of θ�u� by considering 7T�θ� t/T� in some
neighbourhood �t/T − u� ≤ δ. Suppose we have a locally stationary model
which is parametrized by one or several curves θ�u� in time. By using the
local likelihood we may define:

1. A kernel estimate by

θ̂�u� = argmin
θ

1
bTT

T∑
t=1
K

(
u− t/T
bT

)
7T

(
θ�
t

T

)
�

2. A local polynomial fit of θ�u� by

ĉ�u� = argmin
c

1
bTT

T∑
t=1
K

(
u− t/T
bT

)
7T

( d∑
j=0

cj

(
t

T
− u

)j
�
t

T

)
�

3. An orthogonal series estimator (e.g., wavelets) by

ᾱ = argmin
α

1
T

T∑
t=1
7T

( J∑
j=i
αjψj

(
t

T

)
�
t

T

)
�

together with some shrinkage of ᾱ.

In the case of several parameter curves (a vector of curves) θ, the cj and the
αj are also vectors. It is obvious that the properties of these estimators have
to be investigated in detail. In Dahlhaus and Neumann (2000) this has been
done for the wavelet estimator from (3). It has been shown that the usual rates
of convergence in Besov smoothness classes are attained up to a logarithmic
factor by the estimator.
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3. Asymptotic properties of local likelihood estimates. In this
section we discuss the asymptotic properties of the estimator θ̂T. As a by-
product we also obtain the asymptotic properties of the MLE θ̃T. In the uni-
variate case with µ = µθ = 0, the latter were already proved in Dahlhaus
(1996b). We now state our main result.

Theorem 3.1. Suppose that Assumption 2.6 holds. Then we have
√
T�θ̂T − θo�

�→ � �0� ;−1V;−1� and
√
T�θ̃T − θ0�

�→ � �0� ;−1V;−1�
with

;ij =
1
4π

∫ 1

0

∫ π
−π

tr��f− fθ0�∇ijf−1θ0 �dλdu

− 1
4π

∫ 1

0

∫ π
−π

tr��∇ifθ0��∇jf−1θ0 ��dλdu

+ 1
4π

∫ 1

0
∇2
ij

{�µ�u� − µθ0�u��′f−1θ0 �u�0��µ�u� − µθ0�u�� }du
and

Vij =
1
4π

∫ 1

0

∫ π
−π

tr�f�∇if−1θ �f�∇jf−1θ ��dλdu

+ 1
2π

∫ 1

0

∫ π
−π
�∇i��µ�u� − µθ0�u��′f−1θ0 �u�0��
f�u�0�

× �∇j�f−1θ0 �u�0��µ�u� − µθ0�u���
du�

Proof. We start by proving consistency of θ̂T. We have

�T�θ̂T� ≤ �T�θ0�
�→ � �θ0� ≤ � �θ̂T��

Theorem 2.8 implies �T�θ̂T� −� �θ̂T�→� 0 and therefore also � �θ̂T� −� �θ0�
→� 0. Compactness of * and the uniqueness of θ0 then imply θ̂T→� θ0. For θ̃T
the proof is the same. Furthermore, we obtain with the mean value theorem,

∇i�T�θ̂T� − ∇i�T�θ0� = �∇2�T�θ�i�T ��θ̂T − θ0��i
with �θ�i�T − θ0� ≤ �θ̂T − θ0��i = 1� � � � � p�. If θ̂T lies in the interior of * we
have ∇LT�θ̂T� = 0. If θ̂T lies on the boundary of *, then the assumption that
θ0 is in the interior implies �θ̂T − θ0� ≥ δ for some δ > 0; that is, we obtain
P�√T�∇�T�θ̂T�� ≥ ε� ≤ P��θ̂T − θ0� ≥ δ� → 0 for all ε > 0. Thus, the result
follows if we prove:

(i) ∇2�T�θ�i�T � − ∇2�T�θ0�
�→ 0,

(ii) ∇2�T�θ0�
�→ ∇2� �θ0� and ; = ∇2�T�θ0�,

(iii)
√
T∇�T�θ0�

�→ � �0�V�.
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(i) is a simple consequence of θ�i�T →� θ0 and the equicontinuity of ∇2�T�θ�
proved in Lemma 2.7. The first part of (ii) follows from Theorem 2.8. ; =
∇2� �θ0� follows from elementary calculus. To prove (iii) we use the method
of cumulants. We obtain from (2.23) with ∇� �θ0� = 0,

√
TE∇�T�θ0� = o�1��

Furthermore, we get from (2.17),

T Cov�∇i� �θ0��∇j�T�θ0��

= 1
32π4T

tr �UT�∇if−1θ0 �"UT�∇jf−1θ0 �"�

+ 1
16π4T

[
∇i
{�µ− µθ0�′UT�f−1θ0 �

}]
"
[
∇j
{
UT�f−1θ0 ��µ− µθ0�

}]
�

Lemma A.7 implies that this tends to Vij.
To study the higher-order cumulants we see from (2.17) that ∇i�T�θ0� can

be written as

∇i�T�θ0� =
1

8π2T
Y′AiY+ 1

4π2T
ν′iBY+ const.�

where EY = 0. The cumulants of order more than or equal to 3 of the νiBY
terms are zero, while the mixed cumulants of the Y′AiY and ν′iBY terms are
nonzero if and only if there are exactly two ν′iBY terms involved [this follows
from the product theorem for cumulants; cf. Brillinger (1981), Theorem 2.3.2,
EY = 0, and the normality of Y].

Therefore, we obtain with the product theorem for cumulants,

T7/2 cum�∇i1�T�θ0�� � � � �∇i7�T�θ0��

= C1T
−7/2 ∑

�j1�����j7�
permutation of

�i1�����i7�

tr
{ 7∏
k=1

"UT�∇jkf−1θ �
}

+C2T
−7/2 ∑

�j1�����j7�
permutation of

�i1�����i7�

ν′j1B
{ 7−1∏
k=2

"UT�∇jkf−1θ �
}
"Bν′j7 �

Lemma A.7 implies that all terms are of order O�T−7/2+1�. Therefore, the
theorem is proved. Asymptotic normality of θ̃T follows in exactly the same
way by using Lemma A.8 instead of Lemma A.7. ✷

Remark 3.2 (Special cases). (i) Theorem 3.1 contains the asymptotic
distribution of the Whittle estimate and the MLE in the stationary case as
a special case (if f�fθo� µ and µθo do not depend on u). The result for the
classical Whittle estimator is obtained if in addition µ = µθ = 0 and f = fθo .
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Theorem 3.1 also gives the asymptotic distribution in the case where a sta-
tionary model is used with the classical Whittle likelihood but the process is
only locally stationary.
(ii) The matrices ; and V from Theorem 3.1 simplify in several situations,
in particular when the model is correctly specified �f = fθo� µ = µθo ; cf.
Remark 3.3 below), when a stationary model is fitted (fθ and µθ do not depend
on u), and when the parameters separate. For univariate processes this has
been discussed in Dahlhaus [(1996b), Remark 2.6 and 2.7] in the context of
univariate maximum likelihood estimation.

Remark 3.3 (Correctly specified case/efficiency). In the correctly specified
case �f = fθo� µ = µθo� it is easy to see that V = ; with

;ij =
1
4π

∫ 1

0

∫ π
−π

tr �fθo�∇if−1θo �fθo�∇if−1θo ��dλdu

+ 1
2π

∫ 1

0
�∇iµθo�u��′f−1θo �u�0��∇jµθo�u��du�

In that case both estimates are asymptotically efficient. One way to see this
is to prove an LAN-expansion and to show that

√
T�θ̂T− θo� and

√
T�θ̃T− θo�

are equivalent to the central sequence. For univariate processes and the MLE
θ̃T this has been done in Dahlhaus [(1996b), Theorem 4.1 and 4.2]. By using
the technical lemmata of this Appendix the LAN-property and the efficiency
of both estimates can be derived in the same way as in that paper. We omit
details [for the efficiency concept, LAN-expansions and the importance of the
central sequence; cf. Strasser (1985), in particular Remark 83.12].

Remark 3.4 (Approximation of the MLE). Under the stronger assumption
that Aθ�u� λ� is differentiable in θ�u and λ with uniformly continuous deriva-
tives ∇3

ijk�∂2/∂u2��∂/∂λ�Aθ�u� λ�ab [see Assumption 2.6(iii)] we can prove that

θ̂T − θ̃T = OP�T−1+ε�(3.1)

for each ε > 0. We now briefly sketch the proof. Under this stronger assump-
tion we obtain as in Lemma 2.7 the equicontinuity of ∇3�T�θ� and ∇3 ˜�T�θ�
and as in Theorem 2.8,

sup
θ∈*

�∇3��T�θ� −� �θ��� �→ 0

and

sup
θ∈*

�∇3� ˜�T�θ� −� �θ��� �→ 0�

Taylor expansions of the second order of ∇�T�θ̂T� and ∇ ˜�T�θ̃T� around θ0
now yield

−∇�T�θ0� = ∇2�T�θ0��θ̂T − θ0� +Op�T−1�
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and

−∇ ˜�T�θ0� = ∇2 ˜�T�θ0��θ̃T − θ0� +Op�T−1��
From the proof of Theorem 2.8 we have

∇�T�θ0� − ∇ ˜�T�θ0� = Op�T−1+ε�
[see (2.22)] and similarly,

∇2�T�θ0� − ∇2 ˜�T�θ0� = Op�T−1−ε��
This implies (3.1)

Remark 3.5 (Related estimates). There are a number of estimates with
similar properties which are based on a simplified or modified form of the
likelihood:

(i) The first simplification results from the observation that the first
summand of the likelihood is often free from the parameters describing auto-
correlations. Suppose, for example, that the process has a one-sided MA�∞�-
representation

Xt�T = µ
(
t

T

)
+ 1
2π

∞∑
k=0

at�T�kεt−k

with at�T�k as in Remark 2.2 and Eεt = 0�Eεsε′t = 2πδstId. Let "ε�u� =
�1/2π�a0�u�a0�u�′ where a0�u� =

∫ π
−π A�u� λ�dλ. "ε�t/T� is up to an O�T−1�

error [due to the approximation (2.2) or (2.4)] the covariance matrix of the one-
step prediction error at time t and the covariance matrix of the innovations
in a standardized MA�∞�-representation. If the time varying spectral density
f�u� λ� is for all u and λ of full rank [cf. Assumption 2.6(iv)] then it can be
shown that

1
2π

∫ π
−π

log��2π�d detf�u� λ�
dλ = log det"ε�u��

leading to a simplified version of �T�θ�.
This follows, for example, from Theorem 1.3.2 of Hannan and Deistler (1988)

since the stationary MA�∞�-process

X
�u0�
t = µ�u0� +

1
2π

∞∑
k=0

ak�u0�εt−k

with u0 ∈ �0�1
 fixed and ak�u� as in Remark 2.2 fulfills the assumptions of
that theorem (this is the stationary approximation of the processXt�T at time
u0 = t0/T�.
For time varying ARMA-models as in Example 2.3 the above conditions are

fulfilled if det$�u� z� �= 0 for all �z� ≤ 1+ c with c > 0 and det&�u� z� �= 0 for
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all �z� < 1. In this case "ε�t/T� is the covariance matrix of the innovations εt.
The likelihood then becomes

�T�θ� =
1
2T

T∑
t=1

{
log det"εθ

(
t

T

)
+ 1
2π

∫ π
−π

tr
[
fθ

(
t

T
� λ

)−1
Ĩ
µθ
T

(
t

T
� λ

)]
dλ

}
with the spectral density fθ�u� λ� as in Example 2.3.
(ii) Consider the discrete frequency form of the quasi likelihood

�
�1�
T �θ� = 1

2T2

T∑
t=1

T−1∑
j=0

{
log
[
�2π�2d detfθ

(
t

T
� λj

)]

+ tr
[
fθ

(
t

T
� λj

)−1
Ĩ
µθ
T

(
t

T
� λj

)]}
with the minimizer θ̂�1�T [or as in (i) with the simpler form of the first term].
It follows easily that the second term is obtained by using the matrix
U
�1�
T ��1/4π2�f−1θ � with

U
�1�
T �φ�r� s =

2π
T

T−1∑
j=0

exp�iλj�r− s��φ
(
1
T

[
r+ s
2

]∗
� λj

)
instead of UT��1/4π2�f−1θ � as an approximation of "−1θ . It can be shown that
all results of this section continue to hold for �

�1�
T �θ� and θ̂�1�T . However, the

proofs are not a straightforward generalization of the proofs for �T�θ� and
θ̂T. They are sketched at the end of the Appendix. If the true mean function
µ is constant over time we can mean correct the likelihood by dropping zero
frequency and using the preperiodogram without mean correction (as in the
stationary case). Unfortunately, this is no longer possible in the case of a time-
varying mean.
(iii) Due to the continuous definition of ĨµT�u� λ� in u it is also possible to
define a continuous time version of the likelihood. The likelihood

�
�2�
T �θ� = 1

4π

∫ 1

0

∫ π
−π

{
log
[�2π�2d detfθ�u� λ�]

+ tr
[
fθ�u� λ�−1ĨµθT �u� λ�

]}
dλdu

is obtained by using the approximation

U
�2�
T �φ�r� s =

∫ π
−π

exp�iλ�r− s��T
∫ �r+s+1�/2T
�r+s−1�/2T

φ�u� λ�dudλ

[with φ�u� λ� = 0 for u > 1; note that Ĩ�u� λ� = 0 for u < 1/�2T�]. Again all
results of this section continue to hold for �

�2�
T �θ� and its minimizer θ̂�2�T . In

this case the proof is a straightforward generalization of the proofs for �T�θ�
and θ̂T (it can be shown that all results of the Appendix remain valid with
U
�2�
T instead of UT).
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Remark 3.6 (Non-Gaussian case). It is possible to extend Theorem 3.1 to
non-Gaussian processes. For two reasons we have not included the non-
Gaussian case:

(i) In the present situation where µθ may depend on θ non-Gaussianity
would not only introduce a fourth-order cumulant term into the asymptotic
variance but also a complicated third-order term [as can easily be seen from
(2.17)].
(ii) The calculation of the extra terms cannot be handled with the present
results from the Appendix but requires a different technical approach.

APPENDIX

Norms and matrix products of generalized Toeplitz matrices. In
this section we study the behavior of the matrix UT�φ� in some detail. In par-
ticular, we prove that UT��4π2f�−1� with f�u� λ� = A�u� λ�A�u�−λ�′ is a rea-
sonable approximation of the inverse of "T�A�A�. The results of this section
are frequently used in Section 3. There are a few similarities to Section 4 of
Dahlhaus (1996a) where we have constructed a different (less precise) approx-
imation of the inverse of "T�A�A�.

For an n× n matrix A, we denote the spectral norm by

�A� = sup
x∈�n

�Ax�
�x� sup

x∈�n

(
x∗A∗Ax
x∗x

)1/2
= �maximum characteristic root of A∗A
1/2�

(A.1)

where A∗ denotes the conjugate transpose of A, and the Euclidean norm
of A by

|A| = �tr�AA∗�
1/2�(A.2)

The following results are well known [see, e.g., Davies (1973), Appendix II,
or Graybill (1983), Section 5.6].

Lemma A.1. Let A�B be n× n matrices. Then:

(a) �tr�AB�� ≤ |A||B|,
(b) �AB� ≤ �A�|B|� |AB| ≤ |A|�B�,
(c) �AB� ≤ �A��B�,
(d) �A�2 ≤ �supi

∑n
j=1 �aij���supj

∑n
i=1 �aij��,

(e) �A� = supx∈�n
∣∣x∗Ax/x∗x∣∣ for A hermite,

(f) �x∗Ax� ≤ x∗x�A�� x ∈ �n,
(g) log detA ≤ tr�A− I� for A positive definite.

Furthermore, let LT� �→ ��T ∈ �+ be the periodic extension (with period
2π) of

L∗
T�α� �=

{
T� �α� ≤ 1/T�
1/�α�� 1/T ≤ �α� ≤ π.
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Properties of LT�α� are listed in Dahlhaus [(1997). Lemma A.4]. We remark
that we have with a generic constant K,∫ π

−π
LT�α�dα is monotone increasing in T�(A.3)

LT�α� ≤ 2LT�2α��(A.4) ∫ π
−π
LT�β− α�LT�α+ γ�dα ≤KLT�β+ γ� logT�(A.5)

∫ π
−π
LT�α�dα ≤K logT�

∫ π
−π
LT�α�k dα ≤KTk−1 for k > 1�(A.6)

Let

AT�λ� �=
T∑
r=1

exp�−iλr��

Direct verification shows

�AT�λ�� ≤ πLT�λ��(A.7)

Lemma A.2. (i) Let ψ � �0�1
 → � be differentiable with bounded deriva-
tive. Then

T∑
r=1
ψ

(
r

T

)
exp�−iλr� = ψ�1�AT�λ� +O

(
sup
u
�ψ′�u��LT�λ�

)
= O�LT�λ���

The same holds if ψ�r/T� is replaced on the left side by ψr�T with supr �ψr�T−
ψ�r/T�� = O�T−1�.

(ii) Suppose ψ� �0�1
k → � has bounded derivative ∂kψ/∂u1 · · · ∂uk. Then∣∣∣∣ T∑
r1�����rk=1

ψ

(
r1
T
�����

rk
T

)
exp

(
−i

k∑
j=1
λjrj

)∣∣∣∣
≤Ksup

7≤k
sup

�i1�����i7�⊂�1�����k�
sup
u

∣∣∣∣ ∂7

∂ui7 ···∂ui7
ψ�u�

∣∣∣∣ k∏
j=1
LT�λj�=O

( k∏
j=1
LT�λj�

)
�

Proof. (i) Summation by parts gives

T∑
r=1
ψ

(
r

T

)
exp�−iλr� = −

T−1∑
r=1

{
ψ

(
r+ 1
T

)
− ψ

(
r

T

)}
Ar�λ� + ψ�1�AT�λ��

which implies with (A.7) the result. (ii) Let Dj be the difference operator with
respect to the jth component, that is,

Djψ�r1/T� � � � � rk/T� �= ψ�r1/T� � � � � rj−1/T� �rj + 1�/T� rj+1/T� � � � � rk/T�
− ψ�r1/T� � � � � rk/T��
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Then we obtain with repeated partial summation and the convention ψ�u� = 0
for u �∈ �0�1
k,

T∑
r1�����rk=1

ψ

(
r1
T
� � � � �

rk
T

)
exp

(
−i

k∑
j=1

λjrj

)

= �−1�k
T∑

r1�����rk=1

(
D1 · · ·Dkψ

(
r1
T
� � � � �

rk
T

)) k∏
j=1

Arj�λj��

We have ∣∣∣∣D1 · · ·Dkψ

(
r1
T
� � � � �

rk
T

)∣∣∣∣ ≤ 2k−7T−7 sup
u

∣∣∣∣ ∂7

∂ui1 · · · ∂ui7
ψ�u�

∣∣∣∣�
where �i1� � � � � i7� = �i�ri �= T�, leading to the result. ✷

Assumption A.3. (i) SupposeA� �0�1
×�→ �d×d is a 2π-periodic matrix
function with A�u� λ� = A�u�−λ� whose components are differentiable in u
and λ with uniformly bounded derivatives �∂/∂u��∂/∂λ�Aab. A

o
t�T� � → �d×d

are 2π-periodic matrix functions with

sup
t� λ

∣∣∣∣Ao
t�T�λ�ab −A

(
t

T
� λ

)
ab

∣∣∣∣ ≤KT−1 for all a� b ∈ �1� � � � � d��

(ii) Suppose in addition to (i) that all eigenvalues of A�u� λ�A�u�−λ�′ are
bounded from below by some C > 0 uniformly in u and λ.

(iii) Suppose φ� �0�1
 × � → �d×d is a 2π-periodic matrix function whose
components are twice differentiable in u and differentiable in λ with uniformly
bounded derivative �∂2/∂u2��∂/∂λ�φ.

(iv) Suppose the components of µ� �0�1
 → �d are differentiable with uni-
formly bounded derivatives.

Remark A.4. All results stated in this Appendix are uniform in the sense
that the upper bounds depend only on the bounds of the involved functions
A�φ and µ and their derivatives and not on the particular values.

Lemma A.5. (i) SupposeA and B fulfill Assumption A.3(i) and the compo-
nents of φ are differentiable with uniformly bounded derivative
�∂/∂u��∂/∂λ�φab. Then we have

�"T�A�B�� ≤ C1

and

�UT�φ�� ≤ C2

with some constants C1�C2.
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(ii) More precisely, we have under Assumption A.3(i)

�"T�A�A�� ≤ 2π sup
u� λ

�A�u� λ�A�u� λ�′� +CAo�1�

and

�"T�A�A� − "T�B�B��
≤ 2π sup

u� λ
�A�u� λ�A�u� λ�′ −B�u� λ�B�u� λ�′� + �CA +CB�o�1��

where CA is a constant depending on the upper bounds ofA and its derivatives.
If in addition A fulfills Assumption A.3(ii) we have

�"T�A�A�−1� ≤ �2π inf
u� λ
λ
�A�2
min�u� λ� +CAo�1��−1�

where λ
�A�2
min�u� λ� is the smallest eigenvalue of A�u� λ�A�u� λ�′.

(iii) If φ is Hermite and fulfills Assumption A.3(iii) we have

�UT�φ�� ≤ 2π sup
u� λ

�φ�u� λ�� +Cφo�1��

where Cφ is a constant depending on the upper bounds of φ and its deriva-

tives. If in addition the smallest eigenvalue λ
φ
min�u� λ� of φ�u� λ� is uniformly

bounded from below, then

�UT�φ�−1� ≤
(
2π inf

u� λ
λ
φ
min�u� λ� +Cφo�1�

)−1
�

Proof.. (i) Lemma A.1(g) implies

�UT�φ�� ≤ d
∑
r∈Z

sup
u∈�0�1


a� b∈�1�����d�

∣∣∣∣ ∫ φ�u� λ�ab exp�iλr�dλ
∣∣∣∣+K�

The smoothness conditions then imply the result [cf. Dahlhaus (1996a), page
156]. The upper bound for �"T�A�B�� is obtained in the same way.

(ii) follows for d = 1 from Lemma 4.4 of Dahlhaus (1996a). In the mul-
tivariate case the proof is completely analogous to that lemma. We omit the
details.

(iii) The bounds for �UT�φ�� and �UT�φ�−1� can be established in exactly
the same way as the bounds for �"T�A�A�� and �"T�A�A�−1� by a straightfor-
ward generalization of Lemma 4.4 of Dahlhaus (1996a). We omit the
details. ✷

In the proof of Lemma A.7 we frequently make use of the following result.
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Lemma A.6. Suppose A and B fulfill Assumption A.3(i) and φ fulfills
Assumption A.3(iii) with d = 1. Then we have

T∑
r� s=1

φ

(
1
T

[
r+ s
2

]∗
� λ

)
Ao
s�T�γ1�Bor�T�−γ2� exp�−i�λ− γ1�s− i�γ2 − λ�r�

=
T∑

r� s=1
φ

(
r+ s
2T

�λ

)
A

(
s

T
� λ

)
B

(
r

T
�−λ

)
exp�−i�λ− γ1�s− i�γ2 − λ�r�

+O�LT�2λ− 2γ1�� +O�LT�2γ2 − 2λ��
= O�LT�2λ− 2γ1�LT�2γ2 − 2λ���

Proof. We start by replacing Ao
s�T�γ1� by A�s/T� γ1�. Lemma A.2(i) and

(A.4) imply

∣∣∣∣ T∑
r=1
φ

(
1
T

[
r+ s
2

]∗
� λ

)
Bor�T�−γ2� exp�−i�γ2 − λ�r�

∣∣∣∣ ≤KLT�2γ2 − 2λ��

which gives a replacement error of KLT�2γ2 − 2λ�. In the same way we re-
place Bor�T�−γ2� by B�r/T�−γ2�. We then replace φ���r + s�/2
∗/T� λ� by
φ��r + s�/�2T�� λ�. For r + s even those two are the same. The replacement
error therefore is �r = 2k� s = 27− 1�

�T/2
∑
k� 7=1

[
φ

(
2�k+ 7� − 2

2T
�λ

)
−φ

(
2�k+ 7� − 1

2T
�λ

)]
A

(
27− 1
T

�γ1

)
B

(
2k
T
�−γ2

)
× exp�−i�λ− γ1��27− 1� − i�γ2 − λ�2k� + a similar term�

Since

φ

(
2�k+ 7� − 2

2T
�λ

)
−φ

(
2�k+ 7� − 1

2T
�λ

)
= 1
T

[
∂

∂u
φ

(
k+ 7− 1

T
�λ

)
+O�T−1�

]

we get with Lemma A.2(i) that this expression is bounded by KLT�2λ −
2γ1�. Finally, we replace A�s/T� γ1� by A�s/T� λ� with a replacement error
ofK�λ− γ1�LT�λ− γ1�LT�γ2 − λ� ≤KLT�2γ2 − 2λ� [by using Lemma A.2(ii)].
Similarly, we obtain KLT�2λ − 2γ1� as the replacement error for replacing
B�r/T�−γ2� byB�r/T�−λ� which leads to the first equation. The second equa-
tion then follows from Lemma A.2(ii) and (A.4). ✷
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Lemma A.7. Let k ∈ ��A7�B7 fulfill Assumption A.3(ii), φ7 fulfill Assump-
tion A.3(iii) and µ1� µ2 fulfill Assumption A.3(iv). Then we have:

(i)

1
T

tr
{ k∏
7=1
UT�φ7�"T�A7�B7�

}

= �2π�2k−1
∫ 1

0

∫ π
−π

tr
{ k∏
7=1
φ7�u� λ�A7�u� λ�B7�u�−λ�′

}
dλdu

+O�T−1 log2k−1T��
(ii)

1
T
µ′1T

{ k−1∏
7=1
UT�φ7�"T�A7�B7�

}
UT�φk�µ2T

= �2π�2k−1
∫ 1

0
µ1�u�′

{ k−1∏
7=1
φ7�u�0�A7�u�0�B7�u�0�′

}
φk�u�0�µ2�u�du

+O�T−1 log2k−1T��

Remark. If Ĩ is thed×d identitymatrixthen�1/2π�"T�Ĩ� Ĩ� = �1/2π�UT�Ĩ�
is the dT×dT identity matrix. Therefore Lemma A.7 also gives the asymptotic
expressions for

1
T

tr
{ k∏
7=1
"T�A7�B7�

}
and

1
T

tr
{ k∏
7=1
UT�φ7�

}
and more generally for the trace of an arbitrary product of "T’s and UT’s.

Proof of Lemma A.7. (i) We give the proof for k = 1 and afterwards for
general k ≥ 2. We have

1
T

tr�UT�φ�"T�A�B��

= 1
T

d∑
a� b� c=1

T∑
r� s=1

∫ π
−π

∫ π
−π
φ

(
1
T

[
r+ s
2

]∗
� λ

)
ab

Ao
s�T�γ�bcBor�T�−γ�ac

× exp�i�λ− γ��r− s��dλdγ�
which by using Lemma A.6 and (A.6) is equal to

1
T

d∑
a� b� c=1

T∑
r� s=1

∫ π
−π

∫ π
−π
φ

(
r+ s
2T

�λ

)
ab

A

(
s

T
� λ

)
bc

B

(
r

T
�−λ

)
ac

× exp�i�λ− γ��r− s��dλdγ +O�T−1 logT��
Integration over γ now gives the result.
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To simplify notation we use in the rest of the proof the “trace” notation,
keeping in mind that in the calculation of remainders usually the individual
components have to be considered. For k ≥ 2 we then have

1
T

tr
{ k∏
j=1

UT�φj�"T�Aj�Bj�
}

= 1
T

T∑
r1�����rk�

s1�����sk=1

∫ π
−π
· · ·
∫

tr
{ k∏
j=1

φj

(
1
T

[
rj + sj

2

]∗
� λj

)

×Ao
j� sj�T

�γj�Boj� rj+1�T�−γj�
}

× exp
{
− i

k∑
j=1

[�λj − γj�sj + �γj − λj+1�rj+1
]}
dλdγ�

where rk+1 = r1 and λk+1 = λ1. Application of Lemma A.6 together with (A.5)
and (A.6) shows that this is equal to

1
T

T∑
r1� ���� rk�
s1� ���� sk=1

∫ π
−π
· · ·
∫ π
−π

tr
{ k∏
j=1

φj

(
rj + sj
2T

�λj

)
Aj

(
sj

T
� λj

)
Bj

(
rj+1
T
�−λj+1

)}

× exp
{
−i

k∑
j=1

[�λj − γj�sj + �γj − λj+1�rj+1
]}
dλdγ +O(T−1 log2k−1T

)
�

Integration over all γj shows that this is equal to

�2π�k
T

T∑
r1� ���� rk=1

∫ π
−π
· · ·
∫ π
−π

tr
{ k∏
j=1

φj

(
rj + rj+1

2T
�λj

)
Aj

(
rj+1
T
�λj

)

×Bj
(
rj+1
T
�−λj+1

)}
exp

{
−i

k∑
j=1

�λj − λj+1�rj+1
}
dλ+O(T−1 log2k−1T

)
�

We now replace the argument λk in φk, Ak and Bk−1 by λk−1. The replace-
ment error is of the form

1
T

T∑
r1� ���� rk=1

∫ π
−π
· · ·
∫ π
−π
ψλ

(
r1
T
� � � � �

rk
T

)
exp

{
−i

k∑
j=1

�λj − λj+1�rj+1
}
dλ�

where supu �∂7/�∂u11 � � � ∂ui7�ψ�u�� ≤ K�λk − λk−1� for all �i1� � � � � i7� ⊂
�1� � � � � k�; that is, we obtain for the replacement error with Lemma A.2(ii)
and (A.6) as an upper bound,

K
1
T

∫ π
−π
· · ·
∫ π
−π
�λk − λk−1�

k∏
j=1

LT�λj − λj−1�dλ ≤KT−1 logk−1T�
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In the same way we successively replace all λj by λ1 and integrate finally over
λ2� � � � � λk which proves the assertion.

(ii) The proof of (ii) is completely analogous to (i). We therefore only give a
brief sketch for the case k ≥ 2. We have

1
T
µ′1T

{k−1∏
j=1

UT�φj�"T�Aj�Bj�
}
UT�φk�µ2T

= T−1
T∑

r1� ���� rk�
s1� ���� sk=1

∫ π
−π
· · ·
∫ π
−π
µ1

(
r1
T

)′{k−1∏
j=1

φj

(
1
T

[
rj + sj

2

]∗
� λj

)

×Ao
j� sj�T

�γj�Boj� rj+1�T�−γj�
}

×φk
(
1
T

[
rk + sk

2

]∗
� λk

)
µ2

(
sk
T

)

× exp
{
−i

k−1∑
j=1

[�λj − γj�sj + �γj − λj+1�rj+1
]+ iλ1r1 − iλksk}dλdγ�

We now use similar replacement steps as in (i) [note that Lemma A.6 also
holds if, e.g., Bor�T�−γ2� = µ1�r/T� and γ2 is set equal to zero] which leads
with sk = rk+1 to

�2π�k−1
T

T∑
r1� ���� rk+1=1

∫ π
−π
· · ·
∫ π
−π

exp
{
iλ1r1 − i

k−1∑
j=1

�λj − λj+1�rj+1 − iλkrk+1
}
dλ

× µ1
(
r1
T

)′{k−1∏
j=1

φj

(
rj + rj+1

2T
�λj

)
Aj

(
rj+1
T
�λj

)
Bj

(
rj+1
T
�−λj+1

)}

×φk
(
rk + rk+1

T
�λk

)
µ2

(
rk+1
T

)
+O�T−1 log2k−1T��

As before we now replace all λj by λ1 and finally λ1 by 0 leading to the
result. ✷

Lemma A.8. Let k ∈ � and �I1� � � � � I4� be a partition of �1� � � � � k�. Let the
matrices A7�B7 �for 7 ∈ I1� fulfill Assumption A.3(ii), C7 �for 7 ∈ I2� fulfill
Assumption A.3(i), (ii) with bounded derivatives �∂2/∂u2��∂/∂λ�C7�u� λ�ab�φ7
�for 7 ∈ I3 ∪ I4� fulfill Assumption A.3(iii) with eigenvalues �for 7 ∈ I4� that
are bounded from below uniformly in u and λ, and µ1� µ2 fulfill Assump-
tion A.3(iv).
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Let further

V7 = "T�A7�B7�� ψ7�u� λ� = 2πA7�u� λ�B7�u�−λ�′� 7 ∈ I1�
V7 = "T�C7�C7�−1� ψ7�u� λ� = �1/2π�C7�u�−λ�

′−1C7�u� λ�−1� 7 ∈ I2�
V7 = UT�φ7�� ψ7�u� λ� = 2πφ7�u� λ�� 7 ∈ I3�
V7 = UT�φ7�−1 ψ7�u� λ� = �1/2π�φ7�u� λ�−1� 7 ∈ I4�

Then we have:

(i)

1
T
tr
{ k∏
7=1
V7

}
= 1

2π

∫ 1

0

∫ π
−π

tr
{ k∏
7=1
ψ7�u� λ�

}
dλdu+O(T−1 log6k−1T

)
�

(ii)

1
T
µ′1T

{ k∏
7=1
V7

}
µ2T=

1
2π

∫ 1

0
µ1�u�′

{ k∏
7=1
ψ7�u�0�

}
µ2�u�du+O

(
T−1log6k−1T

)
�

Proof. (i) Let j = �I2� + �I4�. More precisely, we prove the result with
the rate O�T−1 log2k+4j−1T�. For j = 0 the assertion follows for all k from
Lemma A.7. Suppose now the assertion holds for all k and some fixed j.
Consider the case j + 1. By renumbering the V7 we can assume that k ∈
I2 ∪ I4. Suppose k ∈ I2. We approximate Vk = "−1 �= "T�Ck�Ck�−1 by Ũ �=
UT��4π2Ck�C′

k�−1�. We have with Lemma A.1, Lemma A.5 and Proposition 2.4,∣∣∣∣∣ 1T tr
{ k∏
7=1
V7

}
− 2
T
tr
{(k−1∏

7=1
V7

)
Ũ

}
+ 1
T
tr
{(k−1∏

7=1
V7

)
Ũ"Ũ

}∣∣∣∣∣
=
∣∣∣∣∣ 1T tr

{(k−1∏
7=1
V7

)(
"−1 − Ũ)"("−1 − Ũ)}∣∣∣∣∣

≤
(k−1∏
7=1

�V7�
)
�"� 1

T
|"−1 − Ũ|2 = O�T−1 log3 T��

This implies the convergence with rate

O�T−1 log2�k+2�+4j−1T� = O�T−1 log2k+4�j+1�−1T�
which gives the result. If k ∈ I4 the result is obtained in the same way by
using the second equation of Proposition 2.4. (ii) follows similarly. ✷

Technically, Lemma A.7 and Lemma A.8 are the key results for proving the
asymptotic properties of the local likelihood estimator and of the exact MLE as
done in Section 3. For I1 = �7�7 even �, I2 = �7�7 odd �, I3 = I4 = !. Lemma
A.8 is a generalization of a central result for Gaussian stationary processes to
the locally stationary case [cf. Taniguchi (1983), Theorem 1].
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Proof of Proposition 2.5. We replace "T �="T�A�A� byUT �=UT�A�A′�.
We obtain, with Lemma A.1(g),

∣∣∣∣∣ 1T log det "T −
1
T
log detUT

∣∣∣∣∣ =
∣∣∣∣∣ 1T log det"−1/2T UT"

−1/2
T

∣∣∣∣∣
≤ max

{
1
T
tr
(
"−1T UT − I

)
�
1
T
tr�U−1

T "T − I�
}
�

Lemma A.8 yields that both terms are of O�T−1 log11 T�. Since f�u� λ� =
A�u� λ�A�u� λ�′ is symmetric and positive definite there exist an orthonormal
matrix B�u� λ� and a diagonal matrix D�u� λ� = diag�d1�u� λ�� � � � � dd�u� λ��
with positive dj�u� λ� such that

f�u� λ� = B�u� λ�D�u� λ�B�u� λ�′�
Now let x ∈ [0, 1] and

f�x��u� λ� �= B�u� λ�D�x��u� λ�B�u� λ�′

with

D�x��u� λ� �= diag �d1�u� λ�x� � � � � dd�u� λ�x��
We have UT�f�1�� = UT and UT�f�0�� = 2πI where I is the dT× dT identity
matrix. We therefore obtain with U�x�

T �= UT�f�x��
1
T
log det"T =

1
T
log detUT +O�T−1 log11T�

= 1
T

∫ 1

0

∂

∂x
log detU�x�

T dx+ log�2π�d +O�T−1 log11T�

= 1
T

∫ 1

0
tr
[
U
�x�−1
T

∂

∂x
U
�x�
T

]
dx+ log�2π�d +O�T−1 log11T��

Furthermore,

∂

∂x
U
�x�
T =

∫ π
−π

exp�iλ�r− s�� ∂
∂x
f�x�

(
1
T

[r+ s
2

]∗
� λ

)
dλ

with

∂

∂x
f�x��u� λ� = B�u� λ�diag�d1�u� λ�x log d1�u� λ�� � � � � dd�u� λ�x

× log dd�u� λ��B�u� λ�′�
Since f�x��u� λ� and �∂/∂x�f�x��u� λ� have the same smoothness properties
as φ�u� λ� uniformly in x� we obtain from Lemma A.8, with straightward
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calculations,

1
T
tr
[
U
�x�−1
T

∂

∂x
U
�x�
T

]
= 1

2π

∫ 1

0

∫ π
−π

{
d∑
j=1

log dj�u� λ�
}
dλdu+O�T−1 log11T�

= 1
2π

∫ 1

0

∫ π
−π

log detf�u� λ�dλdu+O�T−1 log11T�

uniformly in x which implies the result. ✷

The discrete frequency form of the likelihood. We now briefly indicate how
the results are proved for the discrete frequency form of the quasi-likelihood
�

�1�
T �θ� and its minimizer θ̂�1�T as defined in Remark 3.5. The main problem

is to show that the spectral norm of U�1�
T �φ� is bounded [Lemma A.5 with

U
�1�
T �φ�
. Heuristically the reason for the problems is that the elements of

U
�1�
T �φ� cannot be approximated uniformly by the elements of UT�φ� since

the elements in the upper right and the lower left of U�1�
T �φ� are large while

they are small for UT�φ�. Note that for T even, r ≤ T/2� s > T/2 we have

U
�1�
T �φ�r+T/2� s−T/2 = U�1�

T �φ�r� s�(A.8)

that is, U�1�
T �φ�1+T/2�T/2 = U�1�

T �φ�1�T. For this reason we define

VT�φ�r� s =
{
U
�1�
T �φ�r� s� if �r− s� < T/2�

0� if �r− s� ≥ T/2.

Heuristically, the corner elements i.e., the elements of U�1�
T �φ�r� s −VT�φ�r� s

are then “shifted by (A.8) to the center.” To be precise let x = �x1� � � � � xT�′ ∈ �T

and y = �y1� � � � � yT�′ be defined by

yT =
{
xt+T/2� for t = 1� � � � �T/2,
xt−T/2 for t = T/2+ 1� � � � �T.

Since the matrix

WT�φ�r� s =


U
�1�
T �φ�r� s� if r ≤ T/2 and s ≤ T/2�

U
�1�
T �φ�r� s� if r > T/2 and s > T/2�

0� elsewhere,

is Hermite and nonnegative definite we obtain

x∗U�1�
T �φ�x ≤ x∗U�1�

T �φ�x+ y∗WT�φ�y
= x∗VT�φ�x+ x∗�U�1�

T �φ� −VT�φ�
x+ y∗WT�φ�y
= x∗VT�φ�x+ y∗VT�φ�y
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and therefore ��U�1�
T �� ≤ 2��VT�φ���. We can now show analogously to the proof

of Lemma 4.4 in Dahlhaus (1996a) that

��U�1�
T �� ≤ 2��VT�φ��� ≤ 4π sup

u� λ
��φ�u� λ��� +Cφo�1��(A.9)

whereCφ is a constant dependent on the upper bounds of φ and its derivatives.

By using (A.9) we now obtain the result of Lemma A.7 with U�1�
T �φ� instead

of UT�φ� [for the proof of this statement we need (A.5) and (A.6) with the
integral replaced by the sum over the Fourier frequencies. However, this can
easily be derived].

This implies the assertions of (2.15), Lemma 2.7, Theorem 2.8 and Theorem
3.1 for � �1�

T �θ� and θ̂�1�T with exactly the same proofs as in Sections 2 and 3. ✷
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