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We consider the situation where one has to maximize a function η�θ�x�
with respect to x ∈ �q, when θ is unknown and estimated by least squares
through observations yk = f��xk�θ+εk, with εk some random error. Clas-
sical applications are regulation and extremum control problems. The ap-
proach we adopt corresponds to maximizing the sum of the current esti-
mated objective and a penalization for poor estimation: xk+1 maximizes
η�θ̂k�x� + �αk/k�� dk�x�, with θ̂k the estimated value of θ at step k and
dk the penalization function. Sufficient conditions for strong consistency of
θ̂k and for almost sure convergence of �1/k�∑ki=1 η�θ�xi� to the maximum
value of η�θ�x� are derived in the case where dk�·� is the variance func-
tion used in the sequential construction of D-optimum designs. A classical
sequential scheme from adaptive control is shown not to satisfy these con-
ditions, and numerical simulations confirm that it indeed has convergence
problems.

1. Introduction. We consider an optimization problem, where one wants
to maximize a worth η�θ̄�x� with respect to x ∈ � , with θ̄ the unknown true
value of some parameter vector θ ∈ �p. The worth function η�θ̄� ·� may be
possibly multimodal on � , a compact subset of �q. The value of θ̄ is estimated
by Least-Squares (LS) from observations

yk = f��xk�θ̄+ εk�(1.1)

with f�·� a continuous function of x and εk a random error. We assume that

εk� is a martingale difference sequence with respect to an increasing se-
quence of σ-fields 
�k�: εk is �k-measurable and E
εk��k−1� = 0 for all k. An
important example is when the εk’s are independent random variables with
zero means.

A well-known example corresponds to the so-called “self-tuning optimizer”
or “self-tuning extremum control” problem; see Wellstead and Zarrop (1991),
where the worth η�θ�x� = f��x�θ is quadratic in x and noisy observations of
η�θ̄�x� itself are available. In this case, the value xk+1 maximizing η�θ̂k�x� is
obtained analytically. However, using this value at the next step [which corre-
sponds to “certainty equivalence control”; see Bar-Shalom and Tse (1974)] does
not guarantee convergence of xk to x∗ which maximizes η�θ̄�x�. For instance,
using the ODE method of Ljung (1977), Bozin and Zarrop (1991) give the set of
values of θ and x to which θ̂k and xk may converge when η�θ� x� = θ1x+θ2x

2:
the set of limiting values for xk contains x∗ = −θ̄1/�2θ̄2� but is not restricted to
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it. It has thus been suggested to randomly perturb the certainty equivalence
control law in order to obtain convergence, see Bozin and Zarrop (1991). An-
other class of example corresponds to regulation problems, where one wishes
to minimize the deviation of the response f��x�θ̄ from a given target. Again,
the addition of random disturbances to the certainty equivalence control law
can be used to obtain convergence; see, for example, Lai and Wei (1987), where
the problem of how often probing inputs (disturbances) should be introduced
is considered. One can refer, for example, to Aström and Wittenmark (1989)
and Wellstead and Zarrop (1991) for examples of application of self-tuning sys-
tems to various control problems (distillation column, chemical reactor, ship
steering, spark ignition engine, temperature regulation, etc.).

In fact, the sequence 
xk� should be chosen so as to fulfill two objectives
simultaneously: (i) estimate θ̄, or a function of it; (ii) maximize η�θ̄�x�. The
problem thus corresponds to dual control [see the pioneer papers by Fel’dbaum
(1960, 1961)], that is to a stochastic optimal control problem [Bar-Shalom
(1981)]. This is more easily exposed for a finite time-horizon N. The classical
approach is then Bayesian, with a prior distribution π�θ� = π�θ��0� assumed
for θ. A standard objective [see, e.g., Ginebra and Clayton (1995)], is then to
maximize

E

{
N∑
i=1

η�θ�xi���0

}
�

where the expectation is with respect to all random variables. Since the xi’s
are chosen sequentially, the problem can be decomposed into

max
x1

[
E

{
η�θ�x1�

+max
x2

[
E

{
η�θ�x2� + · · · +max

xN
�E 
η�θ�xN���N−1�� · · ·

∣∣�1

}] ∣∣∣�0

}]
�

The presence of imbedded expectations and maximizations makes it extremely
difficult to solve, except in very particular situations, so that simple subopti-
mal solutions have been proposed; see, for example, Aström and Wittenmark
(1989). The already mentioned addition of random disturbances to the cer-
tainty equivalence control law is one of them. Certainty equivalence control
corresponds to using at step k the optimal strategy for a deterministic system
with parameters θ̂k. This strategy is generally not satisfactory due to its pas-
sive character: xk does not help to estimate θ. A suboptimal active strategy
is proposed for instance in Kulcsár et al. (1996), and a comparison between
different strategies is presented in Allison et al. (1995).

The problem is even more complicated when the horizon is infinite, which
is the case considered in this paper, and the restriction is then to even sim-
pler strategies. A possible criterion of asymptotic performance for a Bayesian
strategy is the long run average limN→∞�1/N�E


∑N
i=1 η�θ�xi���0� and, for a

frequentist approach, a natural objective is to reach

lim
N→∞

1
N

N∑
i=1

η�θ̄�xi� = max
x∈�

η�θ̄�x� almost surely�(1.2)
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Note that all terms in the sequence receive the same weight in the evaluation
of the performance, that is all xi’s are considered equally important in terms of
worth η�θ̄�xi�. Opposite to this is the case where experiments are performed
in two stages: first, the worth of the xi’s is not considered, and they are chosen
according to an experimental design criterion for the estimation of x∗ which
maximizes η�θ̄�x�; next, the xi’s are fixed at the estimated value x̂∗. One can
refer, for instance, to Pronzato and Walter (1993) for a survey of experimental
design approaches for estimating the extremum of a response surface.

A popular strategy in the infinite horizon case consists in adding to the
estimate of the function to be maximized, η�θ̂k�x� at step k, a penalty for poor
estimation of θ at the next step. For instance, the penalty can be proportional
to the decrease of the determinant [Aström and Wittenmark (1989)], or the
trace [Wittenmark (1975)] of the covariance matrix for θ, or to the decrease of
the variance of a particular component of θ [Wittenmark and Elevitch (1985)].
The upper-bound designs used in Ginebra and Clayton (1995) also belong
to this family, with a penalty proportional to the standard deviation of the
prediction at x. The reason for such a deterministic choice of xk is that it
can be expected to give better performances than the introduction of random
disturbances, as in Bozin and Zarrop (1991).

Note that when dynamical systems are concerned, the vector xk is usually
formed of lagged values of a scalar input variable uk, that is xk=�uk�uk−1� � � � �
uk−q+1�, which induces peculiar constraints on successive design variables xk
(e.g., when uk can take two values only, xk lives on a DeBruijn graph Bq).
This case is not considered here, and will be the subject of further studies.
We thus assume that the design set � is the same for all vectors xk, and all
components of xk can be chosen at step k.

We shall consider the case where at step k, that is, after the observation of
y1� � � � � yk, with k larger than some K0, the vector xk+1 is taken as

xk+1 = arg max
x∈�

η�θ̂k�x� + αkf��x�M−1
k f�x��(1.3)

with Mk the design matrix

Mk =
k∑
i=1

f�xi�f��xi��(1.4)

We consider LS estimation,

θ̂k = arg min
θ∈�

k∑
i=1

[
yi − f��xi�θ

]2
�

with � ⊂ �p a compact set, but extension to Bayesian estimation could be
considered as well. If the optimization problem in (1.3) has several solutions,
then xk+1 is simply taken as one of them.

If the εk’s were i.i.d. with zero mean and variance σ2, and if the xi’s were
nonrandom constants, then Mk/σ

2 would be the usual information matrix
and f��x�M−1

k f�x� would be proportional to the variance of the prediction of
y at x. Since xk depends on previous observations (it is �k−1 measurable),
Mk is not (proportional to) the usual information matrix. Also, conditions for
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strong consistency of θ̂k are more stringent than in the case where the xi’s
are nonrandom constants. One result of the paper is that the usual choice
[Aström and Wittenmark (1989)] of keeping αk constant in (1.3) does not fulfill
the sufficient conditions of Lai and Wei (1982) for strong consistency of θ̂k.
Numerical simulations indeed confirm that there are convergence problems
when αk is kept constant.

In Section 2 we consider the design problem only, where for k ≥K0,

xk+1 = arg max
x∈�

η
(
θ̄�x

)+ αkf��x�M−1
k f�x��(1.5)

that is, θ̄ is assumed to be known and we are interested in the convergence
properties of the sequence 
xk�. In particular, we show that under rather
general conditions (see the hypotheses below) �1/k�∑k

i=1 η�θ̄�xi� converges to
maxx∈� η�θ̄�x�when αk/k tends to zero. Convergence for the original situation
(1.3) is considered in Section 3: αk/k should tend to zero but not too fast, and
we derive sufficient conditions on αk for strong consistency of θ̂k and for (1.2) to
be satisfied. An illustrative example is presented in Section 4. Finally, Section
5 concludes and points out some possible developments. We shall denote by ξ
a normalized measure on � (that is, such that

∫
� ξ�dx� = 1), and ��� � the

set of such measures. We define I�ξ� as I�ξ� = ∫
� f�x�f��x�ξ�dx�. At step k,

we define ξk as the discrete measure having support points xi, i = 1� � � � � k,
with uniform mass 1/k, so that I�ξk� = Ik = Mk/k. We write zk ↗ (resp.,
zk ↘) for a nondecreasing (resp. nonincreasing) sequence, and zk ↗ l (resp.,
zk ↘ l) when the sequence converges to l ≤ ∞ (resp., ≥ −∞). We indicate
hereafter the assumptions we shall refer to, some consequences of which are
given in the Appendix. We assume throughout the paper that A1 and A2 are
satisfied.

A1. f�x� and η�θ̄�x� are continuous in x on � compact.
A2. x1� � � � �xK0

are such that MK0
is positive definite.

A3. η�θ�x� is continuous in �θ�x� on �×� , with � compact.
A4. θ̄ ∈ � and θ̂k ∈ � for all k (a projection of the estimate is used if necessary).
A5. In the linear regression model (1.1), 
εk� is a martingale-difference se-

quence which satisfies

sup
k

E
{
ε2
k��k−1

}
<∞ almost surely�

A6. η�θ̄�x� has a unique global maximizer x∗:

∀β > 0� ∃ε > 0 such that η
(
θ̄�x

)+ ε > η (θ̄�x∗)⇒ �x − x∗� < β�

2. Optimum design: the parameters are known. In this section, we
consider the properties of the design generated when θ̄ is known (local design)
and, at step k ≥K0, xk+1 is given by (1.5), which we rewrite as

xk+1 = arg max
x∈�

η
(
θ̄�x

)+ αk
k
dk�x�� k ≥K0�(2.6)
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where

dk�x� = f��x�I−1
k f�x��(2.7)

with Ik = Mk/k the average design matrix per sample. If there are several
solutions, xk+1 is taken as one of them. Assuming that θ̄ is known is of little
practical interest, but the results obtained in this case form an important step
for proving those of Section 3.

We assume that αk ≥ 0, and, for reasons that will become clear in Section
3, we are mainly interested in the case αk →∞. We shall distinguish between
two situations: αk/k = α constant and αk/k → 0. The case αk/k → ∞ is not
considered, since A1 implies that for any ε, ∃K1 such that kη�θ̄�x�/αk < ε for
any k > K1 and any x ∈ � ; see (A.4). Under A1–A2, the measure ξk therefore
converges to a D-optimal measure on � for the linear regression model (1.1);
see Wynn (1970) for a proof of convergence when xk+1 = arg maxx∈� dk�x�.

Compromise designs� αk = kα. When αk = kα, the sequence generated
by (2.6) makes a compromise between D-optimal design and maximization
of η�θ̄�x�, as indicates the following theorem, the proof of which is given in
Section 6.

Theorem 2.1. Assume that A1–A2 are satisfied and that αk = kα. The
sequence 
xk� generated by �2�6� is then such that H�ξk� tends to H�ξ∗� =
maxξ∈��� �H�ξ� when k→∞, where

H�ξ� = F�ξ� + α log det I�ξ��(2.8)

with

F�ξ� =
∫
�
η�θ̄�x�ξ�dx��(2.9)

Worth-maximizing designs� αk/k → 0. When αk/k → 0, the study of the
convergence properties of (2.6) is more difficult because of the following circu-
lar argument:

(i) the penalizing term �αk/k�dk�x� can be expected to decrease since the
weighing factor αk/k tends to zero, and xk can thus be expected to converge
to a global maximizer of η�θ̄�x�; (ii) at the same time, if the set of these global
maximizers x∗1� � � � �x

∗
m is such that the associated regressors f�x∗1�� � � � � f�x∗m�

form a singular design, the matrix Ik will tend to become singular, which will
increase the value of dk�x�; see (2.7).

On the other hand, it is precisely this dual feature that will permit in
Section 3 to the simultaneous accumulation of the sequence 
xk� on the global
maximizer(s) of η�θ̄�x� and strong consistency of the parameter estimates.

Bounds on the speed of decrease of det Ik and speed of increase of
maxx∈� dk�x� are given in Lemmas in Section 6. The following theorems state
some convergence properties for ξk as generated by (2.6). The first one corre-
sponds to the easiest case where αk is bounded. The proof of Theorem 2.3 is
given in Section 6.
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Theorem 2.2. Assume that A1–A2 are satisfied and that αk < α. Then,
the sequence 
xk� generated by �2�6� is such that η�θ̄�xk� → η�θ̄�x∗� when
k→∞. If, moreover, A6 is satisfied, then xk → x∗.

Proof. We have αkdk�xk+1�/k < αdk�xk+1�/k which tends to zero; see
Pázman (1974). Therefore, ∀ε > 0, ∃K1�ε� such that ∀k > K1, αkdk�xk+1�/k <
ε, which gives η�θ̄�xk+1� > η�θ̄�x∗� − ε. When A6 is satisfied, this implies
�xk+1 − x∗� < β for any β and any k larger than some K2�β�. ✷

Theorem 2.3. Assume that A1–A2 are satisfied and that αk/k↘ 0, αk ↗
∞. Then, the sequence 
xk� generated by �2�6� is such that F�ξk� → η�θ̄�x∗�
when k → ∞. If, moreover, A6 is satisfied, then 
ξk�

w−→ ξx∗ (in the sense of
weak convergence of measures), with ξx the discrete measure that puts weight
1 at the point x.

3. Adaptive optimization and design. We consider now the case where
θ̄ is unknown, and estimated by LS. At step k, xk+1 is given by

xk+1 = arg max
x∈�

η�θ̂k�x� + αk
k
dk�x�� k ≥K0�(3.10)

with dk�x� given by (2.7). From Corollary 3 of Lai and Wei (1982), a sufficient
condition for strong consistency of θ̂k, under A5, is

λmin�Mk� → ∞�
�log λmax�Mk��1+δ = o�λmin�Mk�� for some δ > 0�

(3.11)

From Lemma 3 in Section 6 and (A.1), the condition λmin�Mk� → ∞ is satisfied
when αk →∞. Note that when A5 is strengthened into

sup
k

E
�εk�γ��k−1� <∞ almost surely, for some γ > 2�

it is enough to take δ = 0 in (3.11); see Theorem 1 in Lai and Wei (1982). This
property is used in Section 6 to prove the following theorems.

Theorem 3.1. Assume that A1–A5 are satisfied and that αk = kα. The
sequence 
xk� generated by �3�10� is then such that θ̂k → θ̄ and H�ξk� →
H�ξ∗� = maxξ∈��� �H�ξ� almost surely when k → ∞, with H�ξ� defined by
�2�8��

Theorem 3.2. Assume that �αk/k� log αk ↘ and αk/�log k�1+δ ↗ ∞ for
some δ > 0. Then, under A1–A5, the sequence 
xk� generated by �3�10� is such
that θ̂k → θ̄ and F�ξk� → η�θ̄�x∗� almost surely as k→∞, with F�ξ� defined
by �2�9�� If, moreover, A6 is satisfied, then 
ξk�

w−→ ξx∗ almost surely (in the
sense of weak convergence of measures).
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Fig. 1. Evolution of xk as a function of k when αk = 1�5.

Note that taking a penalty function of the form dk�x� = λdetMk+1/detMk

[see Aström and Wittenmark (1989)] corresponds to taking αk = α constant
in (3.10), which does not guarantee that λmin�Mk� → ∞. The example in the
next section illustrates the convergence problems caused by this insufficient
penalization for poor estimation. Also note that for the approach suggested
in Alster and Blanger (1974), which corresponds to modifying the certainty-
equivalence control law only when trace�Mk is smaller than some predefined
threshold, λmin�Mk� → ∞ is not necessarily satisfied.

4. Example. We consider a self-tuning extremum control problem, with
a scalar input xk ∈ � = �−1�1� and a quadratic response η�θ� x� = f��x�θ =
θ0 + θ1x+ θ2x

2. We take θ̄ = �0�0�04�−0�2��, so that the maximum response
for θ̄ is reached at x∗ = 0�1. The measurement errors εk are i.i.d. � �0� σ2�
with σ = 0�1. The first three experiments are fixed: x1 = −1� x2 = 0� x3 = 1,
so that K0 = 3 in A2.

We consider three different choices for 
αk�, namely:

(i) α�i�k = 1�5;

(ii) α�ii�k = 0�05�log k�2;
(iii): α�iii�k = 0�007k;

so that α�i�k > α
�ii�
k > α

�iii�
k for k < 200.
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Fig. 2. Evolution of xk as a function of k when αk = 0�05�log k�2.

Figures 1 and 2 respectively present the evolution of xk as a function of
k in cases (i) and (ii). The value of x∗ is indicated by a dashed line. In case
(iii), xk fluctuates a lot between −1 and 1, and a histogram is presented in
Figure 3.

We see in Figure 1 that ξk does not converge to ξx∗ , although Theorem
2.2 applies: the excitation is not sufficient to estimate the model parameters
and the corresponding value of x∗ correctly. Figure 3 shows that the design
measure ξk makes a compromise between a D-optimal measure, with support
points −1�0�1, and the discrete measure ξx∗ with a unique support point at x∗

[see Theorems 2.1 and 3.1]: the excitation is too important for ξk to converge
to ξx∗ . In Figure 2, the excitation is sufficient to estimate the parameters
correctly and ξk converges to ξx∗ ; see Theorem 3.2.

Figures 4 to 6 respectively present αkdk�xk+1�/k (A, left) and det Ik (B,
right) as functions of k, in cases (i), (ii) and (iii). Note that the penalization
for poor estimation decreases faster in Figure 4 than in Figures 5 and 6. Also
note that det Ik converges to a positive value on Figure 6; see Theorem 2.1.
The value of det I�ξD�, with ξD the D-optimal measure with support points
−1�0�1 receiving weights 1/3 each, is det I�ξD� = 4/9 � 0�1481.
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Fig. 3. Histogram of 
xk� when αk = 0�007k �1 ≤ k ≤ 1000�.

5. Conclusions and further developments. The joint problem of opti-
mization and parameter estimation considered in this paper finds application
in many different areas. Using a penalization for poor estimation, we have
given conditions on the sequence of weights put on the penalizing term that
simultaneously guarantee strong consistency of the parameter estimates and
almost sure convergence of the empirical mean of the response to its maxi-
mum value; see (1.2). Further work might concern the characterization of the
speed of convergence, in order to choose a suitable sequence of weights for a
particular problem and a given time horizon. Also, the design space � was
assumed here to be fixed. In practice, it might be useful to take xk+1 in a
compact set �k centered on xk in order to avoid large excursions for succes-
sive values of xk. Finally, other penalizing functions than the one considered
here, see (2.7), might be of interest. For instance, a possible choice might be
dk�x� = �f��x�qk�2/λmin�Ik�, with �qk� = 1 and qk an eigenvector of Ik as-
sociated with its minimum eigenvalue, which is related to E-optimum design
[see, e.g., Silvey (1980), Pukelsheim (1993)]. Also, since the interest is in esti-
mating x∗, which is a function of θ̄, and not θ̄ itself, a penalty function related
to c-optimality might be useful. A related idea is sometimes used in adap-
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Fig. 4. Evolution of αkdk�xk+1�/k (A) and det Ik (B) when αk = 1�5.

tive control [see, e.g., Wittenmark and Elevitch (1985)] where the penalty is
related to the decrease of the variance of a particular component of θ.

6. Proofs.

Proof of Theorem 2.1. Consider the first and second order directional
derivatives

∇H�ξ� ξ′� = ∂H
∂γ

��1− γ�ξ+ γξ′��γ=0+� ∇2H�ξ� ξ′� = ∂
2H

∂γ2
��1− γ�ξ+ γξ′��γ=0+ �

For ξ such that I�ξ� is nonsingular, one has

∇H�ξ� ξ′� = α trace
I−1�ξ��I�ξ′� − I�ξ��� +F�ξ′� −F�ξ��(6.1)

∇2H�ξ� ξ′� = −α trace
I−1�ξ��I�ξ′� − I�ξ��I−1�ξ��I�ξ′� − I�ξ����(6.2)

and ∇H�ξk� ξ′� is maximum for ξ′ = ξxk+1
, the design measure putting mass 1

at the support point xk+1 given by (2.6); that is, xk+1 = arg maxx∈� ∇H�ξk� ξx�,
with ∇H�ξ� ξx� = α�f��x�I−1�ξ�f�x�−p�+η�θ̄�x�−F�ξ�. One can then apply
the dichotomous Theorem of Wu and Wynn (1978), which gives (i) H�ξk� →
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Fig. 5. Evolution of αkdk�xk+1�/k (A) and det Ik (B) when αk = 0�05�log k�2.

H�ξ∗� or (ii) there exists a subsequence ξks with H�ξks� → −∞. Condition C6
of the same paper can be used to eliminate the unboundedness situation (ii).
All that needs to be proved is that there exist M and D such that

H�ξ� <M⇒ D�∇H�ξ� ξx̄��2 > −∇2H�ξ� ξx̄��(6.3)

where, from (6.2), ∇2H�ξ� ξx� = α�1 − �f��x�I−1�ξ�f�x� − 1�2 − p�, and x̄ =
arg maxx∈� ∇H�ξ� ξx�. From A1, H�ξ� <M implies log det I�ξ� < �M+B�/α,
see (A.4), and thus λmin�I�ξ�� < exp��M+B�/�pα��. The inequality (A.1) then
gives maxx∈� f��x�I−1�ξ�f�x� > ρ2 exp�−�M +B�/�pα��. Using A1 again, we
get f��x̄�I−1�ξ�f�x̄� + η�θ̄� x̄�/α > ρ2 exp�−�M + B�/�pα�� − B/α, and thus
f��x̄�I−1�ξ�f�x̄� > 
ρ2 exp�−�M+B�/�pα��−2B/α� → ∞ whenM→−∞. The
condition (6.3) can thus always be fulfilled by choosing D and M respectively
large and small enough. ✷

Lemma 1. Assume that A1–A2 are satisfied and that 
αk/k� is a nonin-
creasing sequence. Then, the sequence generated by �2�6� is such that

∃, > 0 such that ∀k ≥K0� ρk =
(
k

αk

)p
det Ik > ,�(6.4)



1754 L. PRONZATO

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25
A

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
B

Fig. 6. Evolution of αkdk�xk+1�/k (A) and det Ik (B) when αk = 0�007k.

where K0 is defined in A2. If, moreover, A3 and A4 are satisfied, the same is
true for the sequence generated by �3�10��

Proof. First, we use the identity

det Ik+1 =
(

k

k+ 1

)p [
1+ dk�xk+1�

k

]
det Ik(6.5)

which implies ∀k, ρk+1 > ρkα
p
k/α

p
k+1 ≥ ρkkp/�k+ 1�p, and thus, ∀ε, ∃K1 such

that ∀k > K1, ρk+1 > �1− ε�ρk.
Now, for k > K1, we define Ak = �1 − ε�k−K1ρK1

< ρk and M�A� =
�ρ2/A1/p − 2B�, so that M�A� → ∞ when A → 0. Take K2 ≥ K1 such that
M�AK2

� > 2pαK1
/K1 and ��k + 1�/k�p < 1 + 2p/k for any k > K2. We show

in the rest of the proof that this implies ρk > �1− ε�AK2
for any k > K2.

The proof is by induction on k. It is true for k = K2 + 1. Assume that
it is true for k, and consider the two cases ρk > AK2

, AK2
≥ ρk > �1 −

ε�AK2
. The first one gives ρk+1 > �1 − ε�AK2

, and only the second has to

be considered. Inequality (A.1) implies maxx∈� dk�x� > kρ2/�αkA1/p
K2
�, which

gives dk�xk+1� > kM�AK2
�/αk when (2.6) is used, see (A.4), or when (3.10) is



ADAPTIVE OPTIMIZATION AND DESIGN 1755

used, see (A.5). Then, (6.5) gives

ρk+1 − ρk > ρk
(
αk
αk+1

)p [
1+ M�AK2

�
αk

]
− ρk

≥ ρk
α
p−1
k

α
p
k+1

{
M�AK2

� −
[( �k+ 1�

k

)p
− 1

]
αk

}

> ρk
α
p−1
k

α
p
k+1

[
M�AK2

� − 2pαK1

K1

]
> 0�

so that ρk+1 > ρk > �1− ε�AK2
. ✷

Lemma 2. Assume that A1–A2 are satisfied, that 
αk/k� is nonincreasing,
αk ↗ ∞, and that �αk/k� log αk → 0. Then, the sequence generated by �2�6�
satisfies

∃D such that ∀k ≥K0�
αk
k

max
x∈�

dk�x� < D�

where K0 is defined in A2. If, moreover, A3 and A4 are satisfied, the same is
true for the sequence generated by �3�10��

Proof. Define d̄k = maxx∈� dk�x�. We show first that αid̄i/i > D > 2B
for i = k� k+ 1� � � � � k+ nk and k larger than some K1, implies nk < k. Then
we show by contradiction that αkd̄k/k is bounded for all k larger than 2K1.

When (2.6) is used, A1 implies αkd̄k/k ≤ αkdk�xk+1�/k+ 2B, see (A.4), and
thus αidi�xi+1�/i > �1−ε�D for i = k� k+1� � � � � k+nk, where ε = 2B/D < 1.
The same is true under A3 and A4 when (3.10) is used, see (A.5). Using (6.5),
αk ↗ and Lemma 1, we get

det Ik+nk+1 >

(
k

k+ nk + 1

)p
det Ik

k+nk∏
i=k

[
1+ �1− ε�D

αi

]

> ,

(
k

k+ nk + 1

)p [
1+ �1− ε�D

αk+nk

]nk+1 (αk
k

)p
�

Therefore, since αk ↗, for k large enough

log det Ik+nk+1 > log ,+ p log

(
αk
αk+nk

)
+ p log

(
αk+nk
k+ nk

)
+ p log�1/2�

+�nk + 1��1− ε�D
2αk+nk

�

(6.6)

and also, from A1, log det Ik+nk+1 < log D̄ for some D̄. This gives

nk�1− ε�D
2�k+ nk�

<
αk+nk
k+ nk

[
log
D̄

,
− p log

αk+nk
k+ nk

+ p log αk+nk + p log 2

]

and, since �αk/k� log αk → 0 and αk ↗ ∞, ∃K1 such that ∀k ≥ K1, nk�1 −
ε�D/�2�k+ nk�� < �1− ε�D/4, that is, nk < k.
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We show now that ∀n > 2K1, αnd̄n/n ≤ 2D/�1 − 1/�2K1��. Assume that
αnd̄n/n > 2D/�1 − 1/�2K1�� for some n > 2K1. Direct calculation using the
definition (2.7) of dk�x� gives dk+1�x� ≤ ��k+ 1�/k�dk�x� for any x, and thus,
since αk/k↘, αk+1d̄k+1/�k+1� ≤ �αk+1/αk�αkd̄k/k ≤ ��k+1�/k�αkd̄k/k. There-
fore, αmd̄m/m > �m/n�2D/�1− 1/�2K1�� > D for m = "n/2#� "n/2# + 1� � � � � n
which contradicts the first part of the lemma. ✷

Lemma 3. Assume that A1–A2 are satisfied and that αk → ∞. Then, the
sequence generated by (2�6� is such that maxx∈� dk�x�/k→ 0. If, moreover, A3
and A4 are satisfied, the property is also valid for the sequence generated by
�3�10��

Proof. From Pázman (1974) [see also Proposition V.5 in Pázman (1986)],
dk�xk+1�/k → 0. When (2.6) is used, A1 implies that, for k > K0,
maxx∈� dk�x�/k < dk�xk+1�/k + 2B/αk, which tends to zero when k → ∞.
The same is true under A3 and A4 when (3.10) is used. ✷

Proof of Theorem 2.3. We use notation similar to Section 2, and define
the objective Hk�ξ� = �αk/k� log det I�ξ� + F�ξ�. Its first and second-order
directional derivatives at ξk in the direction of ξx are given by ∇Hk�ξk� ξx� =
�αk/k��dk�x�−p�+η�θ̄�x�−F�ξk�, ∇2Hk�ξk� ξx� = �αk/k��1−�dk�x�−1�2−p�.
In a first part (i), we give a lower bound on the increase Hk�ξk+1� −Hk�ξk�.
In part (ii), we show that there exists an infinite subsequence 
ξks� such that
F�ξks� → η�θ̄�x∗�. In part (iii) we show that F�ξk� → η�θ̄�x∗�. Finally, in part

(iv) we show that A6 implies 
ξk�
w−→ ξx∗ .

(i) We can write

Hk�ξk+1� =Hk�ξk� +
1

k+ 1
∇Hk�ξk� ξxk+1

� + 1
2�k+ 1�2∇

2Hk�α��

for some α ∈ �0�1/�k+ 1��, where

∇2Hk�α� = ∇2Hk��1− α�ξk + αξxk+1
� ξxk+1

�

= αk
k

(
1−

[
dk�xk+1�

αdk�xk+1� + �1− α�
− 1

]2

− p
)
�

so that

∇2Hk�α� ≥ ∇2Hk�0� ≥
αk
k
�1− �dk�xk+1� − 1�2 − p��(6.7)

Define �k�A� = 
ξ ∈ ��� � � �αk/k�dk�xk+1� ≤ A�. One has from (6.7): ∃K1
such that ∀k > K1, ξk ∈ �k�A� ⇒ ∇2Hk�α� ≥ −A2k/αk, and thus

Hk�ξk+1� ≥Hk�ξk� +
1

k+ 1
∇Hk�ξk� ξxk+1

� − A2

kαk
�(6.8)

Consider now the case where ξk $∈ �k�A�. Define ∇H′
k = �k/αk�∇Hk�ξk� ξxk+1

�,
∇2H′

k = �k/αk�∇2Hk�ξk� ξxk+1
�. For A large enough, A1 implies ∃K2 such that
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∀k > K2, ∇H′
k > dk�xk+1�/2 and ∇2H′

k > −2d2
k�xk+1�. Therefore, ∀k > K2,

ξk $∈ �k�A� implies

Hk�ξk+1� ≥Hk�ξk� +
1

k+ 1
∇Hk�ξk� ξxk+1

�
[
1− 4

k+ 1
�
k

αk
∇Hk�ξk� ξxk+1

�
]
�

Now, from Lemma 3 and A1, and since αk → ∞, ∇Hk�ξk� ξxk+1
�/αk tends to

zero when k→∞. Therefore, we have the following: ∃K3 such that ∀k > K3,
(6.8) is satisfied if ξk ∈ �k�A� and

Hk�ξk+1� ≥Hk�ξk� +
1

2�k+ 1�∇Hk�ξk� ξxk+1
�(6.9)

otherwise.
(ii) Assume now that ∃ε such that ∀k, F�ξk� < η�θ̄�x∗� − ε. This implies

∇Hk�ξk� ξx∗� > ε−pαk/k, and thus ∇Hk�ξk� ξxk+1
� ≥ ∇Hk�ξk� ξx∗� > ε−pαk/k.

Since αk/k→ 0,

∃K4 such that ∀k > K4� ∇Hk�ξk� ξxk+1
� > ε/2�(6.10)

Inequalities (6.8) and (6.9) then give

Hk�ξk+1� ≥Hk�ξk� +
ε

2�k+ 1� −
A2

kαk
for ξk ∈ �k�A��

Hk�ξk+1� ≥Hk�ξk� +
ε

4�k+ 1� for ξk $∈ �k�A��

Therefore, since αk →∞, ∃K5 such that ∀k > K5 and ∀ξk,

Hk�ξk+1� ≥Hk�ξk� +
ε

4�k+ 1� �(6.11)

Consider nowHk+1�ξk+1� =Hk�ξk+1�+�αk+1/�k+1�−αk/k� log det Ik+1. There
are two cases. If log det Ik+1 ≤ 0, then, since αk/k↘, Hk+1�ξk+1� ≥Hk�ξk+1�.
Otherwise, since αk/k ↘ 0 and det Ik is bounded: ∃K6 such that ∀k > K6,
�αk/k� log det Ik+1 < ε/8. Also, since αk ↗,

(
αk+1

k+ 1
− αk
k

)
log det Ik+1 > −

αk
k�k+ 1� log det Ik+1 > −

ε

8�k+ 1� �

Inequality (6.11) thus implies for k > max
K5�K6�

Hk+1�ξk+1� ≥Hk�ξk+1� −
ε

8�k+ 1� > Hk�ξk� +
ε

8�k+ 1� �(6.12)

This in turn implies thatHk�ξk� → ∞, which is impossible from A1. Therefore,
there exists an infinite subsequence 
ξks� such that F�ξks� → η�θ̄�x∗�.
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(iii) We show now that F�ξk� → η�θ̄�x∗�. First note that F�ξk+1�−F�ξk� =
�η�θ̄� ξk+1� −F�ξk��/�k+ 1�, so that A1 implies

∀ε� ∃K7 such that ∀k > K7� F�ξk+1� > F�ξk� −
ε

2
�(6.13)

We use Lemma 1: det Ik > ,�αk/k�p for k larger than some K, and thus
�αk/k� log det Ik > �αk/k� log ,+ p�αk/k� log�αk/k�. On the other hand, det Ik
is bounded and αk/k→ 0 gives

∀ε� ∃K8 such that ∀k > K8� Hk�ξk� −
ε

4
< F�ξk� < Hk�ξk� +

ε

4
�(6.14)

Using part (ii) of the proof, we get: ∀k > max
K5�K6�,
�F�ξk� < η�θ̄�x∗� − ε� ⇒ �Hk+1�ξk+1� > Hk�ξk���(6.15)

see (6.12). Take ks > max
K5� � � � �K8� and such that F�ξks� ≥ η�θ̄�x∗� − ε.
Consider the sequence F�ξk� for k ≥ ks, and define �ε = 
k ≥ ks � F�ξk� ≥
η�θ̄�x∗�−ε�. We show that for any two consecutive ki� kj in �ε, kj > ki ≥ ks,
F�ξk� > η�θ̄�x∗� − 2ε, ∀k ∈ 
ki� ki + 1� � � � � kj�. First, (6.13) gives F�ξki+1� >
η�θ̄�x∗� − 3ε/2. If F�ξki+1� ≥ η�θ̄�x∗� − ε, then ki + 1 = kj ∈ �ε. Oth-
erwise, F�ξki+1� < η�θ̄�x∗� − ε, (6.15) implies Hki+2�ξki+2� > Hki+1�ξki+1�,
(6.14) implies F�ξki+2� > Hki+2�ξki+2�−ε/4 andHki+1�ξki+1� > F�ξki+1�−ε/4,
which give altogether F�ξki+2� > η�θ̄�x∗� − 2ε. We can repeat the same argu-
ments, and either ki + 2 ∈ �ε or F�ξki+2� < η�θ̄�x∗� − ε. In the second case,
Hki+3�ξki+3� > Hki+2�ξki+2� > Hki+1�ξki+1� and Fki+3�ξki+3� > Hki+1�ξki+1� −
ε/4 > Fki+1�ξki+1� − ε/2 > η�θ̄�x∗� − 2ε. By induction, F�ξk� > η�θ̄�x∗� − 2ε,
∀k ≥ ks.

(iv) Define �k�β� = 
xi $∈ ��x∗� β�� i = 1� � � � � k�, and assume that ∃β >
0 such that lim supk→∞ #�k�β�/k > γ > 0, where #� denotes the number
of elements of � . From A6, this implies that there exists ε > 0 such that
lim supk→∞�1/k�

∑k
i=1�η�θ̄�x∗�−η�θ̄�xi��>εγ, which contradicts the fact that

F�ξk� → η�θ̄�x∗�. We thus have ∀β > 0, limk→∞ #�k�β�/k = 0, and ξk
w−→

ξx∗ . ✷

Proof of Theorem 3.1. We already showed that λmin�Mk� → ∞. Using
(A.2), we get λmin�Mk�/�log λmax�Mk��1+δ > λmin�Mk�/�log kL�1+δ, and thus,
for some K1 > 0,

λmin�Mk�
�log λmax�Mk��1+δ

>
λmin�Mk�
�2 log k�1+δ ∀k > K1�(6.16)

Lemma 1 and (A.3) give

λmin�Mk�
�log λmax�Mk��1+δ

>
,

Lp−1

α
p
k

kp−1�2 log k�1+δ(6.17)

for k > max
K0�K1�, so that

λmin�Mk�
�log λmax�Mk��1+δ

>
,

Lp−1
αp−1 αk

�2 log k�1+δ →∞ as k→∞�
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Therefore, from (3.11), θ̂k → θ̄ almost surely as k→∞.
Using the boundedness condition (A.5) and arguments similar to the proof

of Theorem 2.1, we get H�ξk� →H�ξ∗� almost surely. ✷

Proof of Theorem 3.2. As in Theorem 3.1, λmin�Mk� → ∞ and (6.16) is
satisfied. Since �αk/k� log αk ↘ and αk → ∞, �αk/k� log αk ↘ l ≥ 0. If l = 0,
Lemma 2 applies, and (A.1) gives λmin�Mk� > ρ2αk/D for k > K0. Therefore,
for k > max
K0�K1�

λmin�Mk�
�log λmax�Mk��1+δ

>
ρ2

D

αk
�2 log k�1+δ →∞ as k→∞�

If l > 0, Lemma 1 and (A.3) give (6.17) for k > max
K0�K1�. Inequality
�αk/k� log αk ≥ l then gives

λmin�Mk�
�log λmax�Mk��1+δ

>
,lp−1

Lp−1

αk
�log αk�p−1�2 log k�1+δ

>
,lp−1

Lp−1

αk
�log αk�p−121+δ�log αk + log log αk − log l�1+δ

which tends to infinity when k→∞. Condition (3.11) is thus satisfied for any
l ≥ 0 and θ̂k → θ̄ almost surely, k→∞.

The only modification required in the proof of Theorem 2.3, due to the fact
that the sequence is generated now by (3.10) instead of (2.6), concerns the
construction of a lower bound on ∇Hk�ξk� ξxk+1

� in (ii); see (6.10).
Assume that ∃ε such that: ∀k, F�ξk� < η�θ̄�x∗�−ε. It implies ∇Hk�ξk� ξx∗�

> ε − pαk/k, and thus maxx∈� ∇Hk�ξk� ξx� > ε − pαk/k. Strong consis-
tency of θ̂k, A3 and A4 then imply that there exists K such that ∀k > K,
�maxx∈� ∇Hk�ξk� ξx� − ∇Hk�ξk� ξxk+1

�� < ε/4. Now, since αk/k→ 0, pαk/k <
ε/4 starting with some k and thus, ∃K4 such that ∀k > K4� ∇Hk�ξk� ξxk+1

� >
ε/2, which coincides with (6.10). The rest of the proof is similar to that of
Theorem 2.3. ✷

APPENDIX

Consequences of A1–A4. A2 implies that the components of f�·� are in-
dependent, and thus, there exist ρ > 0 such that the ball ��0� ρ� of radius ρ
centered at the origin 0 is included in the convex closure of 	 ∪ �−	 �, where
	 = 
f�x�� x ∈ � �. Therefore, A1 and A2 imply that for any positive definite
matrix M,

max
x∈�

f��x�M−1f�x� ≥ ρ2

λmin�M�
�(A.1)

where λmin�M� denotes the minimum eigenvalue of M. A1 implies

∃L > 0 such that ∀k� λmax�Ik� < L�(A.2)
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where Ik = Mk/k and, for any M, λmax�M� denotes the maximum eigenvalue
of M. This in turn implies that

λmin�Ik� ≥
det Ik
Lp−1

�(A.3)

where the inequality is strict when Ik is positive definite, that is, when k ≥K0
as defined in A2. A1 also implies

∃B > 0 such that ∀x ∈ � � −B ≤ η�θ̄�x� ≤ B�(A.4)

A3 and A4 imply that the same property is true for any θ̂k:

∃B > 0 such that ∀θ̂k ∈ �� ∀x ∈ � � −B ≤ η�θ̂k�x� ≤ B�(A.5)
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