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ASYMPTOTICALLY EFFICIENT STRATEGIES FOR A
STOCHASTIC SCHEDULING PROBLEM WITH

ORDER CONSTRAINTS
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Academia Sinica and Hong Kong University of Science and Technology

Motivated by an application in computerized adaptive tests, we con-
sider the following sequential design problem. There are J jobs to be pro-
cessed according to a predetermined order. A single machine is available
to process these J jobs. Each job under processing evolves stochastically as
a Markov chain and earns rewards as it is processed, not otherwise. The
Markov chain has transition probabilities parameterized by an unknown
parameter θ. The objective is to determine how long each job should be
processed so that the total expected rewards over an extended time inter-
val is maximized. We define the regret associated with a strategy as the
shortfall from the maximum expected reward under complete information
on θ. Therefore the problem is equivalent to minimizing the regret. The
asymptotic lower bound for the regret associated with any uniformly good
strategy is characterized by a deterministic constraint minimization prob-
lem. In ignorance of the parameter value, we construct a class of efficient
strategies, which achieve the lower bound, based on the theory of sequen-
tial testing.

1. Introduction. Consider the following sequential design problem.
There are J jobs to be processed by a single machine. When job j is pro-
cessed for a unit time, one observes the current state x of the job and receives
a reward gj�x�, which depends on the job nature j and the job state x. The
probability law that governs the evolution of the job under processing from
one period to the next follows a Markov chain.

The main difference of the problem considered here from common stochas-
tic scheduling problems is that these J jobs have to be processed in a pre-
determined order. When one decides to stop processing job j and move onto
job �j + 1�, it is not allowed to return to job j later. An adaptive strategy
is defined to be a sequence of random variables φ = �φt� taking values in
the set �1�2� 	 	 	 � J�, such that the event �φt = j� (process job j at step t),
j = 1� 	 	 	 � J belongs to the σ-field �t−1 generated by φ1�X1� 	 	 	 � φt−1�Xt−1,
where Xn denotes the state of the job being processed at the nth step. We
shall study the problem of designing an adaptive strategy which maximizes
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the expected value of the sum of one-step rewards,

JN�θ� = Eθ

N∑
t=1

gφt�Xt� as N→ ∞�(1.1)

under the constraint

φt ≤ φt+1 for 1 ≤ t ≤N− 1�(1.2)

where N is the total processing time. Here Eθ denotes the expectation with
initial distribution νj for each job γ = 1�2� 	 	 	 � J, which is assumed to be
finite.

If the parameter θ were known, the best strategy would be to process only
the job with greatest one-step expected reward. In ignorance of θ, an optimal
adaptive strategy needs to trade off a reduced reward for better knowledge
of the unknown parameter θ so that the total reward is as large as possible.
In order to achieve the optimal trade-off, we first establish an asymptotic
lower bound for the shortfall from complete information maximum reward
then construct efficient strategies that achieve this lower bound.

Our formulation is motivated by a sequential design problem from comput-
erized adaptive tests. Suppose we divide a computerized adaptive test into J
stages. At each stage, a sequential sample of test items was selected from a
stratum of test items with the same discrimination parameter value [see (5.1)]
and the discrimination parameter value increases from one stage to the next.
Within each stage, the selection was based on the up-and-down method on
the difficulty parameter values. That is, if the examinee answers the current
test item correctly, the difficulty level of the next item would increase by one
unit and decrease by one unit otherwise. The number of items from each stage
depends on a stopping rule with the purpose of maximizing the total Fisher
information from the test for estimating the latent trait of the examinee. The
first sequential aspect of the preceding design, the up-and-downmethod within
each stage, is justified by its superior Fisher information per test item over
the conventional test. The purpose of the second sequential aspect, stopping
rules from one stage to the next, is two-fold. First, it can curb the exposure
rate of test items with high discrimination parameter values. Second, when
the latent trait value is away from the center, the stopping rule can reduce the
information loss by using more test items with lower discrimination parameter
values. The details are given in Section 5.

The rest of the paper is organized as follows. In Section 2, we describe
the model and the assumptions. The asymptotic lower bound for the regret
is derived in Section 3. In Section 4, we use a class of sequential tests to
construct efficient strategies. In Section 5, the motivating example in comput-
erized adaptive tests is discussed and analyzed using the method described in
Sections 2–4.
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2. The model.

2.1. Relation to bandit problem. It is possible to formulate the scheduling
problem described in Section 1 as a bandit problem with constraint on arm-
pulling. To be more precise, let each of the J jobs correspond to an arm in the
bandit problem such that arms have to be pulled in a predetermined order:
once an arm i is pulled, then any arm j < i is no longer available in a later
stage. Pulling an arm once corresponds to processing a job for a unit time. We
now proceed to provide more details for the equivalence of the aforementioned
control problem to an irreversible bandit problem.

Given J statistical populations �1� 	 	 	 � �J. For each j = 1� 	 	 	 � J, the obser-
vations from �j follow a Markov chain on a state spaceD with σ-algebra � . It
is assumed that the transition probabilityPθ

j has a density function pj�x�y� θ�
with respect to some nondegenerate measure Q, where pj�x�y� ·� is known
and θ is an unknown parameter belonging to some parameter space �. We
also assume that the stationary measure of the Markov chain exists with the
density function πj�·� θ� with respect to Q. Let gj�x� be the reward when
population �j is sampled and x is observed. At each step we are required to
pull one arm obeying the order constraint. The constraint (1.2) indicates that
once a sample has been taken from �j, no further sampling is allowed from
�1� 	 	 	 � �j−1. Then the adaptive strategy for the scheduling problem described
in Section 1 corresponds to the adaptive irreversible allocation rule for the
bandit problem, and the objective function for the bandit problem is the same
as (1.1).

Note that the arms in the irreversible bandit problem considered here are
“correlated,” that is, when an arm is pulled, in addition to providing informa-
tion on the reward distribution about the arm pulled it also gives distribution
information about other arms as well. The difference between the “correlated”
and the independent multiarmed bandit lies in the structure of the param-
eter space �. In the “correlated” multiarmed bandit problem, the parameter
θ ∈ � parameterizes all the arms �j, j = 1� 	 	 	 � J, whereas in the indepen-
dent multiarmed bandit problem, the parameter �θ1� 	 	 	 � θJ� ∈ �, and each θj
parameterizes the individual arm �j for j = 1� 	 	 	 � J.

2.2. Optimality criterion. For each j = 1� 	 	 	 � J and for all θ ∈ �. Let the
initial state of the job under processing have distribution νj�·� θ�. Let πj�·� θ� be
the stationary distribution of the Markov chain and assume that

∫
x∈D

∫
y∈D×

�gj�y��pj�x�y� θ�πj�x� θ�dQ�y�dQ�x� <∞ and let

µj�θ� =
∫
x∈D

∫
y∈D

gj�y�pj�x�y� θ�πj�x� θ�dQ�y�dQ�x�(2.1)

be the one-step mean reward of job j under the stationary distribution. Let

TN�j� =
N∑
t=1

I�φt=j�(2.2)
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be the amount of time job j is processed when the total processing time for all
jobs isN. It follows from theWald’s equation for Markov chains (see Theorem 3
in the Appendix) that

JN�θ� =
N∑
t=1

J∑
j=1

Eθ

{
Eθ

[
gj�Xt�I�φt=j���t−1

]} = J∑
j=1

µj�θ�EθTN�j� +C�(2.3)

where C is a constant. HereEθTN�j� denotes the expectation under the initial
distribution νj�·� θ�, which is assumed to be finite.

Remark. Equation (2.3) plays a pivotal role in our solution to the stochas-
tic scheduling problem. That is, (2.3) allows us to reduce the problem to the
study of stopping times TN�j�� j = 1� 	 	 	 � J. Note that (2.3) as well as (A.5) of
Theorem 3 in the Appendix give Wald’s equation for Markov chains with arbi-
trary initial distributions. Here, the importance of Wald’s equation for Markov
chains with arbitrary initial distribution lies not so much on its generality but
on the statistical significance. Because the stationary distribution depends on
θ, which is unknown in practice, we have to start the Markov chain with an
initial distribution independent of θ. Our proofs work for any initial distribu-
tion no matter whether it depends on θ or not. When the initial distribution
is the stationary distribution, the constant C is zero by (A.5).

Hence, the objective of maximizing JN�θ� is equivalent to that of minimiz-
ing the regret

RN�θ� �=Nµ∗�θ� −JN�θ� −C

= ∑
j�µj�θ�<µ∗�θ�

�µ∗�θ� − µj�θ��EθTN�j��(2.4)

where µ∗�θ� = max1≤j≤J µj�θ�.
The objective is to find an adaptive strategy φ that is optimal for all θ ∈ �

and large N. In general, no such strategy exists. Hence, we consider the class
of all (asymptotically) uniformly good irreversible adaptive strategies, with
regret satisfying

RN�θ� = o�Nα� for all α > 0� θ ∈ �	(2.5)

Such strategies have regret that does not increase too rapidly for any θ ∈ �.
We would like to find a strategy that minimizes the increasing rate of the
regret within the class of uniformly good irreversible adaptive strategies.

2.3. Bad sets. Here we shall describe the concept of bad set, which plays
a central role in deriving the regret lower bound and constructing efficient
adaptive strategies. For j = 1� 	 	 	 � J, define the Kullback–Leibler information
number as

Ij�θ� θ′� �=
∫
x∈D

∫
y∈D

log
pj�x�y� θ�
pj�x�y� θ′�

pj�x�y� θ�πj�x� θ�dQ�y�dQ�x�	(2.6)
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Then, 0 ≤ Ij�θ� θ′� ≤ ∞, and we shall assume that Ij�θ� θ′� < ∞, for all
θ� θ′ ∈ �.

Let

�j �= �θ ∈ �� µj�θ� > µi�θ� for i < j� and µj�θ� ≥ µi′ �θ� for i′ > j�(2.7)

be the subset of � for which job j yields higher expected rewards than any job
that comes before it and no lower expected rewards than any job comes after it.
That is to say, �j makes job j the first optimum job. Then the whole parameter
space � can be decomposed as a union of �j which means � �= ⋃J

j=1�j. For
θ ∈ �j ⊂ �� we define the bad set

B�θ� = �θ′ ∈ � \�j� Ij�θ� θ′� = 0�	(2.8)

Thus, B�θ� is the set of “bad” parameter values associated with θ, namely,
those parameter values θ′ for which the probability distribution of �j is the
same under θ and θ′, when the optimal strategy under θ is to process only
job j while the optimal strategy under θ′ is to process another job. The point
is that if the true parameter is θ′ when processing job j, we would be led to
believe it were θ, and be trapped into believing job j is optimum unless we
deliberately experiment with other seemingly inferior jobs. It is clear that,
when θ ∈ �j, in order for our problem, which is equivalent to a irreversible
bandit problem, to have a solution, the bad set B�θ� cannot have nonempty
intersection with �i, i = 1� 	 	 	 � j− 1. We shall discuss this assumption along
with others in the following subsection.

2.4. Assumptions.

A1. For all j = 1� 	 	 	 � J and θ ∈ �, the observations �Xjt� t ≥ 0� is a
Markov chain on a general state space D with σ-algebra � , which is irre-
ducible with respect to a maximal irreducible measure on �D�� � and aperi-
odic. Furthermore, we assume Xjt is Harris recurrent in the sense that there
exists a set Ej ∈ � , some rj ≥ 1, αj > 0 and a probability measure ϕj on Ej

such that Pθ
j�Xjt ∈ Ej i.o. �Xj0 = x� = 1 for all x ∈ D and

Pθ
j�Xrj

∈ A�Xj0 = x� ≥ αjϕj�A��(2.9)

holds for all x ∈ Ej and A ∈ � .
For all j = 1� 	 	 	 � J and θ ∈ �, let a�t� be a probability distribution on the

set of nonnegative integers, and let Kθ
ja = ∑∞

t=0 a�t�Pθ
j

t
, where Pθ

j

t
denotes

the t step transition of Pθ
j. A set Ej ∈ D is called petite, if there exists a

nontrivial measure ϕj on � such that

Kθ
ja�x�A� ≥ ϕj�A��(2.10)

for all x ∈ Ej and A ∈ � . Assume that the parameter space � is a metric
space and let ρ be its metric.
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A2. For all j = 1� 	 	 	 � J and θ ∈ �, given a function wj� D → �1�∞�, a
petite set Ej ∈ � , a constant bj < ∞ and an extended real valued function
Vj� D→ �0�∞� such that for all x ∈ D, we have

Pθ
jVj�x� ≤ Vj�x� −wj�x� + bjIEj

�x��

where Pθ
jVj�x� =

∫
Vj�y�Pθ

j�x�dy� and I denotes indicator function.
A3. For all θ ∈ �l+1, 1 ≤ j ≤ l, Ij�θ� θ′� is continuous in θ′ ∈ ⋃l

j=1�j	
A4. If θ ∈ �l+1, then inf θ′∈Bj�θ� Ij�θ� θ′� > 0, for all j = 1� · · · � l.
A5. For every θ ∈ � and j = 1� 	 	 	 � J, there exists δθ > 0 and rθ > 2 such

that ∫
x∈D

∫
y∈D

sup
θ′ �ρ�θ�θ′�≤δθ

∣∣∣∣ log pj�x�y� θ�
pj�x�y� θ′�

∣∣∣∣
rθ

pj�x�y� θ�πj�x� θ�

×dQ�y�dQ�x� <∞	

Assumption A1 is a recurrence condition general enough to allow a sub-
stantive theory and to cover interesting examples. Assumption A2 is a drift
criterion for Markov chains, that ensures the boundedness of the constants
appearing in the Wald’s equations for Markov chains. Assumption A3 is a
continuity assumption on Ij�θ� θ′�. Assumption A4 assures that when sam-
pling from a population one can consistently determine whether the current
population is optimal or the optimal population is still ahead. Assumption A5
is a moment assumption on the log-likelihood ratio statistics.

2.5. Related literature. Although a dynamic programming method has
been developed to solve the adaptive control problem described above and
it can yield useful insight into some adaptive control problems, the diffi-
culty of computation makes it less applicable. One reason for adopting the
approach of this paper is to obtain an explicit (or semiexplicit) solution. Even
though this paper is motivated by multistage computerized adaptive tests, the
problem considered also relates to manufacturing job-shop and multiphase
project management. We formulate the problem of irreversible bandits with
Markovian rewarding, give an asymptotic lower bound for the regret to be
defined below and provide an asymptotically efficient strategy. This approach
was first introduced by Lai and Robbins (1985). When the irreversibility con-
straint is removed and the reward distribution is i.i.d., the preceding control
problem is the classical multiarmed bandit problem; see Robbins (1952), Berry
and Fristedt (1985) and Gittins (1989). When the observations in each arm are
independent and identically distributed (i.i.d.) random variables, Hu and Wei
(1989) studied the irreversible multiarm bandit problem, under a monotone
structure on one-dimensional parameter space. The concept of bad sets, first
introduced in Agrawal, Teneketzis and Anantharam (1989), plays an impor-
tant role in our solution to the adaptive control problem. Other related works
can be found in Anantharam, Varaiya and Walrand (1987), Gittins (1989),
Glazebrook (1991, 1996) and Presman and Sonin (1990).
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3. A lower bound for the regret. Note that for any fixed j = 1� 	 	 	 � J, if

0 = Ij�θ� θ′� =
∫
x∈D

∫
y∈D

log
pj�x�y� θ�
pj�x�y� θ′�

pj�x�y� θ�

× πj�x� θ�dQ�y�dQ�x��
(3.1)

then pj�x�y� θ� = pj�x�y� θ′� for Q-almost all x and y, and therefore, µj�θ� =
µj�θ′�.

The following theorem gives an asymptotic lower bound for the regret (2.4)
of uniformly good adaptive strategies.

Theorem 1. Assume that A1 holds and let θ ∈ �l+1 for 0 < l ≤ J−1	 Then,
for any uniformly good adaptive strategy φ� we have

lim inf
N→∞

RN�θ�/logN ≥ r�θ� l��(3.2)

where r�θ� l� is the solution of the following minimization problem.

Problem A. Minimize
∑l
j=1�µ∗�θ� − µj�θ��zj�θ�, subject to

inf
θ′∈B1�θ�

�I1�θ� θ′�z1�θ�� ≥ 1�

inf
θ′∈B2�θ�

�I1�θ� θ′�z1�θ� + I2�θ� θ′�z2�θ�� ≥ 1�

			

inf
θ′∈Bl�θ�

�I1�θ� θ′�z1�θ� + · · · + Il�θ� θ′�zl�θ�� ≥ 1

and

zj�θ� ≥ 0 for j = 1�2� 	 	 	 � l�

where Bj�θ� = B�θ� ∪�j� j = 1� 	 	 	 � J.

Remark. Agrawal, Teneketzis and Anantharam (1989) studied a controlled
independent process with finite parameter space, and introduced a finite set
B�θ� of bad parameter values associated with θ. In (2.8), for general param-
eter space � to be finite, we define the bad set B�θ� via the decomposition
� = ⋃n

j=1�j and apply it to Theorem 1 for the regret lower bound of irre-
versible bandits with Markovian rewards.

Note that for a uniformly good adaptive strategy, we have for every θ ∈ �,

lim
N→∞

N−1JN�θ� = µ∗�θ�	(3.3)
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The strategies that satisfy (3.3) are said to be consistent. Under the assump-
tions of Theorem 1, the strategies that satisfy for θ ∈ �l+1�

J∑
j=l+2

EθTN�j� = O�1� if l < J− 1�(3.4)

RN�θ� ∼ r�θ� l� logN if l > 0�(3.5)

are said to be asymptotically efficient. The result of (3.4) implies that

RN�θ� = O�1� if θ ∈ �1	(3.6)

This specifies the order of the regret when the best population is the first one,
while (3.5) gives the order when it is not. The results (3.4) and (3.5) also imply
that for all θ ∈ �l+1,

Eθ�N−TN�l+ 1�� = O�logN�	(3.7)

We need the following two lemmas for the proof of Theorem 1, where Pθ

and Eθ denote the probability and expectation, respectively, under the initial
distribution νj�·� θ�.

Lemma 1. Assume that A1 holds. Let φN be a uniformly good irreversible
allocation rule. Then, for every θ ∈ ⋃J

j=l+1�j and every θ′ ∈ Bl�θ��

lim inf
N→∞

[ l∑
j=1

Ij�θ� θ′�EθTN�j�
]/

logN ≥ 1	(3.8)

Proof. To prove (3.8), it suffices to show that for every θ′ ∈ Bl�θ� and for
α > 0, δ > α > 0,

lim
N→∞

Pθ

{
l∑

j=1

Ij�θ� θ′�TN�j� ≥ �1− δ� logN
}
= 1	(3.9)

Since φN is uniformly good, Eθ′ �N−TN�l�� = o�Nα� for α > 0.
Because θ′ ∈ Bl�θ� and θ ∈ �j for some j = l+ 1� 	 	 	 � J, we have µ∗�θ′� >

µj�θ′� and Ij�θ� θ′� = 0. Hence, µj�θ� = µj�θ′� < µ∗�θ′� implying that µ∗�θ′� >
µ∗�θ�. For θ′ ∈ �l, µl�θ′� = µ∗�θ′� > µ∗�θ� ≥ µl�θ�; therefore, Il�θ� θ′� > 0.
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It then follows that for all large N,

Pθ′

{
l∑

j=1

Ij�θ� θ′�TN�j� < �1− δ� logN
}

= Pθ′

{
NIl�θ� θ′� −

l∑
j=1

Ij�θ� θ′�TN�j� > NIl�θ� θ′� − �1− δ� logN
}

≤ Eθ′
[
NIl�θ� θ′� −

∑l
j=1 Ij�θ� θ′�TN�j�]

O�N�

= 1
O�N�Eθ′

[
�N−TN�l��Il�θ� θ′� −

l−1∑
j=1

Ij�θ� θ′�TN�j�
]

= o�Nα−1�	

(3.10)

Let νj be the initial distribution of the Markov chain �Xj1�Xj2� 	 	 	 �Xjnj
�,

which are the successive realizations from job J. And let

Ln1�			�nl
=

l∑
j=1

nj∑
t=1

log�νj�Xj0� θ�

× pj�Xjt�Xj�t+1�� θ�/νj�Xj0� θ′�pj�Xjt�Xj�t+1�� θ′��

be the log likelihood ratio of θ with respect to θ′. Let

GN =
{

l∑
j=1

Ij�θ� θ′�TN�j� < �1− δ� logN

and LTN�1��			�TN�l� ≤ �1− α� logN
}
	

Then, by (3.10), Pθ′ �GN� = o�Nα−1�. By Wald’s likelihood ratio identity for
Markov chains,

Pθ′ �TN�1� = n1� 	 	 	 �TN�l� = nl�Ln1�			�nl
≤ �1− α� logN�

=
∫
�TN�1�=n1�			�TN�l�=nl�Ln1�			�nl

≤�1−α� logN�
dPθ′

dPθ

dPθ

=
∫
�TN�1�=n1�			�TN�l�=nl�Ln1�			�nl

≤�1−α� logN�
exp�−Ln1�			�nl

�dPθ

≥ Nα−1Pθ�TN�1� = n1� 	 	 	 �TN�l� = nl�Ln1�			�nl
≤ �1− α� logN�	

(3.11)

We can then sum (3.11) over n1� 	 	 	 � nl to get

Pθ�GN� ≤N1−aPθ′ �GN� =N1−ao�Na−1� = o�1�	(3.12)
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Under Assumption A1 of the Markov chains, we have by the strong law of
large numbers [cf. Theorem 17.0.1 of Meyn and Tweedie (1993)], as∑l
j=1 mj → ∞,

∣∣∣∣Lm1�			�ml
−

l∑
j=1

Ij�θ� θ′�mj

∣∣∣∣ = o

(
l∑

j=1

mj

)
a.s. Pθ�

and by Lemma 2 below, we have as
∑l
j=1mj → ∞,

max∑l
j=1 Ij�θ�θ′�nj≤

∑l
j=1mj

(
Ln1� ···� nl −

∑l
j=1 Ij�θ� θ′�nj∑l

j=1mj

)
−→ 0 a.s. Pθ	

Since 1−α > 1−δ, it then follows that asN→ ∞, Pθ�Ln1�			�nl
> �1−α� logN

for some n1� 	 	 	 � nl such that
∑l
j=1 Ij�θ� θ′�nj < �1− δ� logN� → 0	

Therefore,

Pθ

{
l∑

j=1

Ij�θ� θ′�TN�j� < �1− δ� logN and

LTN�1��			�TN�l� > �1− a� logN
}
−→ 0	

This combined with (3.12) gives (3.9), from which (3.8) follows by letting
δ ↓ 0. ✷

Lemma 2. Let S1n1
� S2n2

be two independent sequences of random variables

with positive means µ1 and µ2� respectively. Let n = n1 +n2 such that ni/n→
λi for i = 1�2	 If, as n→ ∞�

S1n1
+S2n2

n
−→ µ = λ1µ1 + λ2µ2 a.s.(3.13)

then, as n→ ∞,

max
iµ1+jµ2≤n

S1i +S2j

n
−→ µ a.s.(3.14)

Proof. For all ε > 0,

P

{
max

iµ1+jµ2≤n
S1i +S2j ≥ �1+ ε�nµ

}

≤ P

{
max
iµ1≤n1

S1i ≥
(
1+ ε

2

)
n1µ1 + o�1�� max

jµ2≤n2

S2j ≥
(
1+ ε

2

)
n2µ2 + o�1�

}
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= P

{
max
iµ1≤n1

S1i ≥
(
1+ ε

2

)
n1µ1 + o�1�

}

×P

{
max
jµ2≤n2

S2j ≥
(
1+ ε

2

)
n2µ2 + o�1�

}

−→ 0�since as nk → ∞� Sknk/nk → µk a.s. for k = 1�2�	 ✷

Applying Theorem 1 successively for j = 1� 	 	 	 � l, we have the following.

Corollary 1. Assume that A1 holds. Let φN be a uniformly good irre-
versible allocation rule. Then, for every θ ∈ �l+1 and θj ∈ Bj�θ� for 1 ≤ j ≤ l,
we have

lim inf
N→∞

I1�θ� θ1�EθTN�1�/ logN ≥ 1�

			

lim inf
N→∞

l∑
j=1

Ij�θ� θl�EθTN�j�/ logN ≥ 1	

Because our goal is to minimize
∑l
j=1�µ∗�θ� − µj�θ��EθTN�j�� Corollary 1

leads us to consider Problem A. Assume that <l = �1×· · ·×�l is nonempty. For
each λ = �θ1� 	 	 	 � θl� ∈ �1×· · ·×�l and θ ∈ �l+1. Problem A has a solution [cf.
Duffin, Peterson and Zener (1967)] and we denote the minimum by r�θ� l� λ�	

Proof of Theorem 1. Assume <l is nonempty; we first show that for
every θ ∈ �l+1,

lim inf
N→∞

RN�θ�/ logN ≥ sup
λ∈<l

r�θ� l� λ�	(3.15)

If lim infN→∞RN�θ�/ logN = ∞, then (3.15) clearly holds. On the other
hand assume lim infN→∞RN�θ�/ logN = c < ∞, then lim infN→∞EθTN�j�/
logN <∞ for 1 ≤ j ≤ l because µ∗�θ� − µj�θ� ≥ 0 for 1 ≤ j ≤ l and RN�θ� ≥∑l
j=1�µ∗�θ� − µj�θ��EθTN�j�. Therefore, we can choose a subsequence Nn

such that limn→∞RNn
�θ�/ logNn = c and limn→∞EθTNn

�j�/ logNn = zj�θ�,
for 1 ≤ j ≤ l. It is clear that

zj�θ� ≥ 0 for 1 ≤ j ≤ l(3.16)

and

c ≥
l∑

j=1

�µ∗�θ� − µj�θ��zj�θ�	(3.17)
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For each λ ∈ <l, by Corollary 1, we have

I1�θ� θ1�z1�θ� ≥ 1�

			

I1�θ� θl�z1�θ� + · · · + Il�θ� θl�zl�θ� ≥ 1	

This along with (3.16) leads to
∑l
j=1�µ∗�θ� − µj�θ��zj�θ� ≥ r�θ� l� λ�. Hence,

l∑
j=1

�µ∗�θ� − µj�θ��zj�θ� ≥ sup
λ∈<l

r�θ� l� λ�	(3.18)

Combining (3.17) and (3.18), we obtain (3.15).
Next, we want to show that

r�θ� l� = sup
λ∈<l

r�θ� l� λ�	(3.19)

For each λ ∈ <l, θj ∈ Bj�θ�, j = 1� 	 	 	 � l and θ ∈ �l+1, we have

inf
θ′∈Bj�θ�

Ii�θ� θ′� ≤ Ii�θ� θj�� 1 ≤ i ≤ l� 1 ≤ j ≤ l	(3.20)

Now let zj�θ�, j = 1� 	 	 	 � l be a solution of Problem A. In view of (3.20), zj�θ�,
j = 1� 	 	 	 � l also satisfies

I1�θ� θ1�z1�θ� ≥ 1�

			

I1�θ� θl�z1�θ� + · · · + Il�θ� θl�zl�θ� ≥ 1	

Consequently,

r�θ� l� =
l∑

j=1

�µ∗�θ� − µj�θ��zj�θ� ≥ r�θ� l� λ�	

Hence,

r�θ� l� ≥ sup
λ∈<l

r�θ� l� λ�	(3.21)

Next, we choose λn = �λ1�n�� 	 	 	 � λl�n�� ∈ <l such that

lim
n→∞λn = �θ1� 	 	 	 � θl�	(3.22)

Fix θ ∈ �l+1	 Let zn = �z1�n�� 	 	 	 � zl�n�� be a solution of Problem A. Set

cj�n� = max�Ij�θ� λj�n��/Ij�θ� θj�� 	 	 	 � Ij�θ� λl�n��/Ij�θ� θl��	(3.23)

In view of (3.22) and (3.23),

lim
n→∞ cj�n� = 1 for 1 ≤ j ≤ l	(3.24)
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By (3.23), �c1�n�z1�n�� 	 	 	 � cl�n�zl�n�� solve Problem A. Hence,[
max
1≤j≤l

cj�n�
]
r�θ� l� λn� ≥

l∑
j=1

�µ∗�θ� − µj�θ��cj�n�zj�n� ≥ r�θ� l�	

Applying (3.24), we obtain

sup
λ∈<l

r�θ� l� λ� ≥ r�θ� l�	

Now (3.19) follows from this and (3.21). ✷

4. Constructionof asymptotically efficient strategies. Tounderstand
the main idea behind our construction of efficient strategies, first note that
the goal of any reasonable strategy is to determine whether the job currently
under processing is optimum or not based on sequentially observed job states.
The job under processing, say job j, is optimum if θ ∈ �j. Thus, the problem
of constructing an efficient strategy reduces to that of finding an optimum test
of the hypothesis θ ∈ �j based on a sequential sample.

The efficient adaptive strategy to be described below is based on a sequen-
tial test. The lower bound discussed in Section 3 gives us valuable information
about the sample size of the sequential test. In particular, it suggests that for
θ ∈ �l+1, the amount of processing time for job j �j = 1� 	 	 	 � l� should be
at least of the order �zj�θ� + o�1�� logN, where the zj�θ� solve the following
minimization problem:

Minimize r̃�θ� l� =
l∑

j=1

�µ∗�θ� − µj�θ��zj�θ��(4.1)

subject to

inf
θ′∈B1�θ�

�I1�θ� θ′�z1�θ�� = 1�

inf
θ′∈B2�θ�

�I1�θ� θ′�z1�θ� + I2�θ� θ′�z2�θ�� = 1�

			

inf
θ′∈Bl�θ�

�I1�θ� θ′�z1�θ� + · · · + Il�θ� θ′�zl�θ�� = 1	

One can use sequential likelihood ratio tests of composite hypotheses in
Markov chains to test the null hypothesis that θ ∈ �j, with prescribed error
probability of wrongly rejecting the null hypothesis and with asymptotically
minimal expected sample size to correctly reject the null hypothesis when it
is false.

To construct an irreversible asymptotically efficient adaptive strategy, we
need to decide when to stop processing the current job and move to the next
one. Let TN�j� be the amount of processing time for job j. To be more concrete,
for each 1 ≤ j ≤ J, let �Xjt� be a random sample from �j	 For any adaptive
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strategy φ, the associated TN�j� is an �N�j�-stopping time. Then φ = �φt�
is said to be an irreversible adaptive strategy if

φt = l if
l−1∑
j=0

TN�j� < t ≤
l∑

j=0

TN�j� and TN�0� = 0	(4.2)

Our goal is, therefore, to construct �N�j�-stopping time TN�j� so that the
regret RN�θ� = O�1� for θ ∈ �1 and R�θ� ∼ ∑l

j=1�µ∗�θ� − µj�θ��zj�θ� logN
for θ ∈ �l+1, under some regularity conditions. To this end, for each l, let Fl

be a probability distribution with support
⋃J
j=l+1�j. For nonnegative integers

n1� 	 	 	 � nl� let

Ul�n1�			�nl�=
∫⋃J

j=l+1�j

∏l
j=1νj�Xj0�θ�

∏nj
t=0pj�Xjt�Xj�t+1��θ�dFl�θ�

supθ′∈Bl�θ�
∏l
j=1νj�Xj0�θ′�

∏nj
t=0pj�Xjt�Xj�t+1��θ′�

	(4.3)

Define TN�j�, 1 ≤ j ≤ J, inductively by

TN�0� = 0�

			

τN�l� = inf�n� Ul�TN�1�� 	 	 	 �TN�l− 1�� n� > N��

TN�l� = min
{
τN�l��N−

l−1∑
j=1

TN�j�� for 1 ≤ l < J

}
�

			

TN�J� =N−
J−1∑
j=1

TN�j�	

(4.4)

Theorem 2. Assume that A1–A5 hold and let θ ∈ �l+1	 Then, the strategy
described in (4.3) and (4.4) satisfies

�4	5� �i�
J∑

j=l+2

EθTN�j� = O�1� if l+ 1 < J�

�4	6� �ii� lim sup
N→∞

inf
θ′∈Bl�θ�

[ l∑
j=1

Ij�θ� θ′�EθTN�j�
]/

logN ≤ 1�

where EθTN�j� denote the expectation under the initial distribution νj�·� θ�.
Therefore, its regret satisfies

lim inf
N→∞

RN�θ�/ logN = r̃�θ� l��(4.7)

where r̃�θ� l� is the solution of the minimization problem (4.1).
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Remarks. Consider the following additional assumption to Theorem 2.
Suppose that for any θ ∈ �l+1 and any 1 ≤ i ≤ l,

inf
θ′∈Bi

�Ij�θ� θ′�/�µ∗�θ� − µj�θ���(4.8)

is monotone increasing as j increases for 1 ≤ j ≤ l. Following an argument
similar to that of Theorem 3 of Hu and Wei (1989), we can establish that
r̃�θ� l� = r�θ� l�.

The proof of Theorem 2 involves a detailed analysis of the log-likelihood
ratio statistics and suitable applications of Wald’s equations for Markov
chains. We leave the proof of Wald’s equation for Harris recurrent Markov
chains to the Appendix.

Proof of Theorem 2. (i) Under Assumption A5 we can construct the
twisting transformation (A.3) given in the Appendix. A simple change of mea-
sure argument, as that of Theorem 6.1 in Woodroofe (1982), leads to that for
all x ∈ D,

Pθ�τN�l� <∞�X0 = x� ≤ 1
N
	(4.9)

This implies that supx Pθ�
∑l
j=1TN�j� = N�X0 = x� ≥ supx Pθ�τN�l� =

∞�X0 = x� ≥ 1− 1/N. Consequently,

J∑
j=l+1

EθTN�j�≤�J−l�Nsup
x
Pθ

{ J∑
j=l+1

EθTN�j�>0�X0=x
}
≤J−l	(4.10)

(ii) For simplicity, in the remaining part of this proof, we shall use Tj in
instead of TN�j�. Here the initial distribution νj is a point mass at xj0 in

(4.3). Let STj
=∑Tj

t=1Xjt� T = min�τN�l� − 1�Tl�� ST =∑T
t=1Xlt and

A�λ� γ� =
( l−1∑
j=1

�λ− γ�STj
−Tj�<j�λ� − <j�γ��

)

+
(
�λ− γ�ST −T�<l�λ� − <l�γ��

)
�

(4.11)

where <j� = log λj and λj is the maximal simple eigenvalue of the operator
defined in (A.2) for �j. By the definition of T and the twisting
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transformation (A.3),

logN ≥ logUl�T1� 	 	 	 �Tl−1�T�

= inf
θ′∈Bl�θ�

{
log
∫
⋃J
j=l+1 �j

(
l∏

j=1

rj�XjTj
�λ�

rj�xj0�λ�
rj�xj0� θ′�
rj�XjTj

� θ′�

)

× exp�A�λ� θ′��dFl�λ�
}

(4.12)

= inf
θ′∈Bl�θ�

{
A�θ� θ′� + log

(
l∑

j=1

rj�xj0� θ′�
rj�XjTj

� θ′�

)

+ log
∫
⋃J
j=l+1 �j

(
l∏

j=1

rj�XjTj
�λ�

rj�xj0�λ�
rj�xj0� θ�
rj�XjTj

� θ�

)
exp�A�λ� θ��dFl�λ�

}
	

Since αu �= maxi=1�			�l supx∈D ri�x� θ� < ∞ and αl �= mini=1�			�l inf x∈D
ri�x� θ� > 0, we obtain that

l∏
j=1

rj�Xjnj
�λ�

rj�x�λ�
≤ �αu/αl�l	(4.13)

Combining this and (4.12), there exists a constant C1 > 0 such that, for any
δ such that θ is in the δ-neighborhood of

⋃l
j=1�j, we have

logN ≥ inf
θ′∈Bl�θ�

{
A�θ� θ′� + log

(
l∏

j=1

rj�XjTj
� θ�

rj�xj0� θ�
rj�xj0� θ′�
rj�XjTj

� θ′�

)

+ logC1

∫
λ∈Nδ�θ�

exp�A�λ� θ��dFl�λ�
}
�

(4.14)

where Nδ�θ� �= �λ� ρ�λ� θ� < δ� is a δ-neighborhood of θ. By Jensen’s
inequality, ∫

λ∈Nδ�θ�
exp�A�λ� θ��dFl�λ�/Fl�Nδ�θ��

≥ exp
∫
λ∈Nδ�θ�

A�λ� θ�dFl�λ�/Fl�Nδ�θ��	
(4.15)

In view of (4.14) and (4.15),

logN ≥ inf
θ′∈Bl�θ�

{
A�θ� θ′� + log

(
l∏

j=1

rj�XjTj
� θ�

rj�xj0� θ�
rj�xj0� θ′�
rj�XiTi

� θ′�

)}

+ logC1 + logFl�Nδ�θ��

+
∫
λ∈Nδ�θ�

A�λ� θ�dFl�λ�/Fl�Nδ�θ��	

(4.16)
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Substituting pj�x�y� θ� in the twisting formula (A.3) in (2.6) and a simple
calculation yields

Ij�λ� γ� = �λ− γ�µj�λ� −
(
<j�λ� − <j�γ�

)
+
∫
x∈D

∫
y∈D

log
(
rj�y�λ�
rj�x�λ�

rj�x�γ�
rj�y�γ�

)

× pj�x�y�λ�πj�x�λ�dQ�y�dQ�x�	

(4.17)

Combining this with (4.13), there exists a constant C2 such that

A�λ� γ� =
(
l−1∑
j=1

�λ− γ��STj
− µj�λ�Tj�

)
+ �λ− γ��ST − µl�λ�T�

+
l−1∑
j=1

Ij�λ� γ�Tj + Il�λ� γ�T+C2	

(4.18)

Because Tj ≤ N for all j, Wald’s equation for Markov chains in Theo-
rem 3(i) implies that there exists a constant C3 such that

EθA�θ� θ′� =
l−1∑
j=1

Ij�θ� θ′�EθTj + Il�θ� θ′�Eθ�T+ 1�

− �θ− θ′�Eθ�Xl�T+1 − µl�θ�� +C3	

(4.19)

By the Markov–Wald equation for squared sums in Theorem 3(ii) and
Hölder’s inequality, there exists a finite constant C4 > 0, such that

Eθ�Xl�T+1 − µl�θ�� ≤ Eθ

[
T+1∑
t=1

�Xlt − µl�θ��2
]1/2

≤ σθ�Eθ�T+ 1��1/2 +C4	

(4.20)

In view of this, we have

Eθ

∫
λ∈Nδ�θ�

A�λ� θ�dFl�λ�

≥
{
−ε
[
l−1∑
j=1

EθTj +Eθ�T+ 1�
]
−C5�Eθ�T+1��1/2

}
Fl�Nδ�θ��−C4�

(4.21)
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for a suitable constant C5. Applying (4.19) and (4.21) to (4.16), we obtain that

logN ≥ inf
θ′∈Bl�θ�

{
l−1∑
j=1

�Ij�θ� θ′� − ε�EθTj + �Il�θ� θ′� − ε�Eθ�T+ 1�
}

−2C5�Eθ�T+ 1��1/2 + logFl�Nδ�θ��
−C4 − �θ− θ′�Eθ�Xl�T+1 − µl�θ�� +C3	

(4.22)

By the definition of T and Tl, T ≥ Tl − 1. Note that by Assumption A4,
inf θ′∈Bj�θ� Ij�θ� θ′� > 0 for all j = 1� 	 	 	 � l. Since ε can be arbitrary small, (4.6)
follows from (4.22).

In order to show that the regret satisfies (4.7), we first claim that

lim inf
N→∞

inf
θ′∈Bl�θ�

[
l∑

j=1

Ij�θ� θ′�EθTN�j�
]/

logN ≥ 1	(4.23)

To show (4.23), we shall apply Lemma 1. In order to apply Lemma 1, we note
that by part (ii), of the proof, the adaptive strategy (4.3), (4.4) is uniformly
good, and under Assumptions A3 and A4, we obtain (4.23).

Now, by (4.6) of Theorem 2 and (4.23), we have that

lim inf
N→∞

inf
θ′∈Bl�θ�

[
l∑

j=1

Ij�θ� θ′�EθTN�j�
]/

logN = 1	(4.24)

This implies that any limit point of �TN�1�/ logN� 	 	 	 �TN�l�/ logN� satisfies
(4.1), therefore, (4.7) holds. ✷

5. An example. To illustrate how our method can be applied, we discuss
here one concrete example: computerized adaptive testing. One drawback for
the conventional test is that it cannot adaptively adjust the difficulty level of
test items according to the ability of the examinee. In sharp contrast with the
conventional tests, computerized adaptive tests allow the difficulty level of the
next test item to depend on the results of previous responses.

A commonly used statistical criterion for item selection in computerized
adaptive testing (CAT) is to maximize item information, estimated from cur-
rently available responses from the examinee. The standard three-parameter
logistic (3-PL) item response model specifies that, for an examinee with latent
trait, θ, the probability that he/she answers an item correctly (Y = 1) is

P�Y = 1�θ� = c+ �1− c� 1
1+ exp�−a�θ− b�� �(5.1)

where a� b and c are item parameters and are, respectively, called the dis-
crimination, difficult and guessing parameters [cf. Lord (1980) and Chang and
Ying (1999b)].

A key aspect of CAT is how to adaptively select test items to maximize the
Fisher information I�θ�a� b� at the currently estimated ability trait. In the
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3-PL model, it is

�1− c�a2 exp�a�θ̂− b��
�1+ exp�a�θ̂− b���2�1− c+ c�1+ exp�−a�θ̂− b����(5.2)

at θ = θ̂, the estimated ability trait.
It has been noted that the information-based selection rule could lead to

extremely skewed item exposure rates in the sense that some items may be
overexposed while others may never be used. Remedies to curb high exposure
rates have been proposed and studied by Sympson and Hetter (1985), Stocking
and Lewis (1995) and Chang and Ying (1999a).

In the case of the 2-PL model (c = 0), based on an idea of stratification,
Chang and Ying (1999a) proposed a selection procedure for CAT. A modified
version is described as follows.

1. Partition the item pool into J strata according to the value a of the dis-
crimination parameter. The first stratum contains items with the smallest
a’s, the next stratum contains items with the second smallest a’s and so on
such that the last stratum contains those with the largest a’s.

2. Accordingly, partition the entire test of length N into J stages.
3. In the jth stage, let TN�j� be the number of items selected from the jth

stratum. The selection criterion within each stage is based on Dixon and
Mood’s (1948) up-and-down method on the item difficulty parameter. Start-
ing from an initial difficulty level, a 0 − −1 test is performed. When the
response is 0 (wrong), we will decrease the difficulty level of the next item
by one unit, while if the response is 1 (correct), we will increase the diffi-
culty level by one unit for the next test item. The process continues until
the stopping time TN�j�, which is defined in (4.4). After the stopping rule
TN�j� is satisfied, we move to stage j + 1 and repeat the up-and-down
selection method. Note that T1+· · ·+TJ =N. This implies that the whole
procedure is terminated when all N items have been selected.

Within each stage j = 1� 	 	 	 � J, suppose that the difficulty parameter b
can take countably many infinite values, b1� b2� 	 	 	 from the interval �−3�3�
(commonly used in practice). Let the sequence of random variables �Xjt� t =
1�2� 	 	 	�, each taking values in the set �b1� b2� 	 	 	�, denote the sequence of ran-
dom difficulty levels generated by the up-and-down method. Then �Xjt� t ≥ 0�
forms a Markov chain with infinitely many states. Due to the nature of the
up-and-down method, the Markov chain Xjt visits a small interval of the
true ability trait θ infinitely often, and the expected waiting time is finite.
This implies that Xjt is a positive Harris recurrent Markov chain. Since
EπY1 < ∞, by Theorem 14.1.2 of Meyn and Tweedie (1993), the drift cri-
terion A2 holds. In practice, we shall use a truncated version with a finite
transition probability matrix.

For ease of exposition, assume that there are k difficulty levels b1� b2� 	 	 	 � bk
with bi < bj for i < j. Recall that Yjt is the response variable for the tth
item in stage j. Let ��xj0� yj0�� 	 	 	 � �xjTN�j�� yjTN�j��� be the corresponding



STRATEGIES FOR STOCHASTIC SCHEDULING PROBLEM 1689

observations in stage j. It is easy to see that �Xjt� t = 1� 	 	 	 �TN�j�� form
a Markov chain on the state space �b1� 	 	 	 � bk� with transition probability
matrix

P =




1− pj1 pj1 0 · · · 0
1− pj2 0 pj2 · · · 0

			
	 	 	

	 	 	
	 	 	

			
0 0 · · · 0 pj�k−1�
0 · · · 0 1− pjk pjk


 �(5.3)

where pji = �1 + exp�−aj�θ − bi���−1. For each j = 1� 	 	 	 � J, solving the
system of equations pjiπj�i� = �1 − pj�i+1��πj�i + 1� for i = 1� 	 	 	 � k − 1
and πj�1� + · · · + πj�k� = 1, we obtain the stationary distribution for the
transition probability matrix (5.3) as πj�i� = Kdji, where dj1 = 1, dji =∏i
t=2pj�t−1�/�1− pjt� and K = 1/�∑k

i=1 dji�, for i = 1� 	 	 	 � k.
In the three-parameter logistic model, the parameter space � consists of

all possible values of the latent trait θ, which is one-dimensional. The proba-
bility of getting correct answers P�Y = 1�θ� is an increasing function of a if
θ > b and a decreasing function of a if θ < b. In the 2-PL model (c = 0), the
selection criterion for CAT at each stage j is to maximize the expected Fisher
information

Ij�θ� =
k∑
i=1

πj�i�I�θ�aj� bi� = a2
j

k∑
i=1

πj�i�pji�1− pji�	(5.4)

Typically, one uses θ ∈ �−4�4�� a ∈ �0	5�2� and b ∈ �−3�3�.
There are two sequential aspects for the proposed mutistage CAT. First,

within each stage, the up-and-down method sequentially chooses the diffi-
culty level of the next test item. A detailed analysis of the expected Fisher
information Ij�θ� reveals the superiority of the up-and-down method over the
conventional tests. That is, Ij�θ� compares favorably to the total Fisher infor-
mation obtained from the conventional tests using the same discrimination
parameter value aj for all test items. For example Ij�θ� dominates the Fisher
information obtained from the conventional test with evenly distributed dif-
ficulty levels. See Figure 1 for a demonstration of the superiority of the up-
and-down method over the conventional test.

Second, the number of test items used in each stage is sequentially deter-
mined according to the stopping rule specified by (4.3) and (4.4). Further anal-
ysis shows that the up-and-down method gives higher Fisher information for
higher values of a when θ values are close to the center of the interval (-4,4).
When the values θ are away from the center, lower values of a may yield
higher Fisher information. Actually, as shown by Figure 2, the set of θ values
that makes the Fisher information Ij�θ�, corresponding to a particular dis-
crimination parameter value aj, highest moves away from the center as aj
deceases. For examinees with the latent trait values approaching extreme, the
stopping rule (4.4) would prefer more test items for earlier stages, which cor-
respond to strata with lower discrimination parameter values. Thus, using the
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Fig. 1. Fisher information for fixed and sequential designs: Plotted curves have the same
discrimination parameter a = 1	8	 up-and-down method on difficulty levels b ∈
�−2�−1�0�1�2�; - - - - - fixed design with difficulty level distribution 5%�b = −2��15%�b = −1��
60%�b = 0�� 15%�b = 1�� 5%�b = 2�� −̇ · −· fixed design with difficulty level distribution
10%�b = −2�� 20%�b = −1�� 40%�b = 0�� 20%�b = 1�� 10%�b = 2�� · · · · · · fixed design with uni-
form distribution over difficulty levels b ∈ �−2�−1�0�1�2�. Obviously, the up-and-down method
compared favorably to the fixed designs.

stopping rule to determine the number of test items at each stage can reduce
information loss when the ability level θ of the examinee is relatively high or
low. Interestingly, this reduction of information loss is achieved by using more
test items with lower values of a. Hence, as we have previously mentioned,
the multi-stage CAT can help to curb the exposure rate of test items with high
discrimination values.

It is not difficult to verify that the bad sets in this example are all empty
sets. Hence Bj�θ� = �j. We also found that �J is an interval occupying
the center part of � = �−4�4�, and �J−1 consists of two intervals lying to
the immediate left and right of �J. In the same way �J−2 consists of two
intervals lying to the immediate left and right of �J−1. The rest of �j,j =
1�2� 	 	 	 � J− 3� follows the same pattern. One can check that all assumptions
in Section 2.4 hold for this example. Therefore, the efficient strategy described
in Section 4 can be employed so that the information obtained from CAT is
nearly optimum.

APPENDIX

Wald’s equations for Markov chains. Let �Xn� n ≥ 0� be a Markov
chain on a state spaceD with σ-algebra � � which is irreducible with respect to
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Fig. 2. Fisher information for up-and-down method: Plotted curves correspond to three different
discrimination parameters values, —– -a = 1	6; · · · · · · a = 1	2; · − · −·a = 0	8. The difficulty levels
b ∈ �−0	8�−0	6�−0	4�−0	2�0�0	2�0	4�0	6�0	8�. When the latent trait θ is relatively large �>2	5�
or small �<− 2	5�, the Fisher information is larger for smaller discrimination parameter values.

a maximal irreducibility measure ϕ on �D�� � and is aperiodic. The transition
probability kernel is denoted by P�·� ·� and assumeXn has stationary measure
π�·�. Let Sn = ∑n

t=1 ξt be an additive component of Xn, taking values in Rk

such that ��Xn�Sn�� n ≥ 0� is a Markov chain on D × Rk, with transition
probability

P��Xn+1� Sn+1� ∈ A× �B+ s���Xn�Sn� = �x� s�� = P�x�A×B��(A.1)

for all x ∈ D, A ∈ � and all B ∈ ��Rk�, the Borel σ-algebra on Rk. The chain
is called a Markov random walk.

The purpose of the present section is to establish the Wald’s equation for
Harris recurrent Markov chains (Assumption A1). It turns out that an even
stronger result is possible. We shall prove the Wald’s equation under the fol-
lowing condition which is weaker than Assumption A1.

(M)Minorization condition. There exists a family of measures �h�x�B��B ∈
��Rk�� on Rk, for each x ∈ D, and a probability measure �ϕ�A × B�� A ∈
� � B ∈ ��Rk�� on D×Rk, such that for all x ∈ D, A ∈ � ,B ∈ ��Rk�,

h�x� ·� ∗ ϕ�A� ·��B� ≤ P�x�A×B��

where ∗ denotes the convolution of two measures.
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Let x ∈ D, θ ∈ Rk and let g be a given bounded measurable function on D.
Define the linear operators Pθ, P by

�Pθg��x� = Ex�eθ·ξ1g�X1��� �Pg��x� = Ex�g�X1���(A.2)

where “·” denotes the inner product. Without loss of generality, we may assume
that Eπe

θ·ξ1 < ∞ for all θ ∈ Rk. Under the minorization condition (M),
Theorem 4.1 of Ney and Nummelin (1987) shows that Pθ has a maximal
simple eigenvalue λ�θ� with associated right eigenfunction r�·� θ� such that
<�θ� = log λ�θ� is analytic and strictly convex on Rk, and r�·� θ� is uniformly
positive, bounded and analytic on Rk for each x ∈ D. Note that when Sn
defined in (A.1) is a deterministic function of Xn, (M) implies that the Harris
recurrent assumption A1 of �Xn� n ≥ 0� holds. Now, for θ ∈ Rk, define the
“twisting” transformation for the transition probability of �Xn� n ≥ 0�,

Pθ�x�dy� =
r�y� θ�
r�x� θ�e

−<�θ�+θ·ξ1P�x�dy�	(A.3)

If the function <�θ� is normalized so that <�0� = <
′ �0� = 0, then P0 = P

is the transition probability of the Markov chain �Xn� n ≥ 0� with invariant
probability π0 = π.

Let �∞ = σ�X0� �X1� S1�� �X2� S2�� 	 	 	�. The following proposition is taken
from Theorem 1 of Sadowsky (1989).

Proposition 1. Under (M), assume Eπe
θ·ξ1 < ∞ for all θ ∈ Rk. Let N be

any stopping time. Then, for any x ∈ D�B ∈ �N and θ ∈ Rk,

Pθ�B ∩ �N <∞��X0 = x�

=
∫
B∩�N<∞�

r�XN� θ�
r�x� θ� exp�θSN −N<�θ��dPx	

(A.4)

A version of Wald’s equations for uniformly ergodic Markov random walks
can be found in Fuh and Lai (1998), where they applied the spectral theory of
positive operators related to Markov semigroups. Fuh and Zhang (2000) first
derived Poisson equations for Markov random walks and then applied them to
establish Wald’s equations. Here in (A.2) and (A.3), we applied results in Ney
and Nummelin (1987) on Harris recurrent Markov random walks to obtain
Wald’s equations and characterize the boundedness of the constants appearing
in (A.5) and (A.7) via Poisson equations.

Theorem 3. Assume that (M) and A2 of Section 2	4 hold for the Markov
chain concerned with correspondingV, w and b, such that

∫
DV�x�dπ�x� <∞.

Assume Eπe
θ·ξ1 < ∞ for all θ ∈ Rk. Let N be a stopping time such that

EνN <∞.

(i) Suppose supx Ex�ξ1� <∞ and let µ = Eπξ1. Then,

EνSN = µEνN−Eν�r′�XN�0� − r′�X0�0���(A.5)
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where r′�·� θ� denotes the first derivative of r�·� θ� with respect to θ. Further-
more, r′�x�0� is bounded on Rk, and is the solution g of the following Poisson
equation:

�I−P�g = P�Exξ1 − µ��(A.6)

where I is the identity operator and P is the operator defined in (A.1).
(ii) Suppose supx Exξ

2
1 < ∞ and let σ2 = Eπ�ξ1 − µ� + 2

∑∞
t=1 Covπ�ξ1 −

µ� ξ1+t − µ�. Then,

Eν�SN − µN�2 = σ2EνN+ 2Eν��SN − µN�r′�XN�0��
+Eν�r

′′ �XN�0� − r
′′ �X0�0���

(A.7)

where r
′′ �·� θ� denotes the second derivative of r�·� θ� with respect to θ. Further-

more, r
′′ �x�0� + r′2�x�0� is bounded on Rk and is the solution of the following

Poisson equation:

�I−P�g = P�Exξ1 − µ−Eπr
′�X1�0� + r′�x�0��2	(A.8)

Proof. (i) We first establish (A.6). Since r�·� θ� is an eigenfunction of λ�θ�
with respect to the operator Pθ, we have Pθr�x� θ� = λ�θ�r�x� θ�, which implies
that Ex�eθ·S1r�x� θ�� = λ�θ�r�x� θ�. A one-term Taylor expansion for λ�θ� and
r�x� θ� with respect to θ around 0 entails λ�θ� ∼= 1+µ · θ+ o��θ�� and r�x� θ� ∼=
1+ r′�x�0� + o��θ��. Therefore,

Ex�1+ θ · ξ1 + o��θ����1+ θr′�x�0� + o��θ���
= �1+ µ · θ+ o��θ����1+ θr′�x�0� + o��θ���
⇒ ExS1 +Exr

′�x�0� = µ+ r′�x�0�
⇒ �I−P�r′�x�0� = P�Exξ1 − µ�	

By Assumptions A1, A2 and Eπ �Exξ1−µ� <∞, the existence and bounded-
ness of the solution r′�x�0� for the Poisson equation (A.6) follows from (17.38)
and Theorem 17.4.2 of Meyn and Tweedie (1993). Furthermore, �r′�x�0�� ≤
�Exξ1 − µ�.

To verify (A.5), let T�n� = min�N�n�. By Proposition 1 and Doob’s optional
stopping theorem, for θ ∈ Rk� Ex�eθ·ST�n�−<�θ�T�n�r�XT�n�� θ�� = r�x� θ�	 Taking
derivatives with respect to θ on both sides yields

Ex

{�ST�n� − <′�θ� ·T�n��eθST�n�−<�θ�T�n�r�XT�n�� θ�
+ eθ·ST�n�−<�θ�T�n�r′�XT�n�� θ�

}= r′�x� θ�	
(A.9)

We can interchange expectation and differentiation by the dominated conver-
gence theorem, because T�n� ≤ n and supθ∈Rk�x∈D��<�θ�� + �<′�θ�� + �r�x� θ�� +
�r′�x� θ�� + Exξ1� < ∞. Setting θ = 0 in (A.9) and noting that µ = <′�0�, we
obtain by integrating with respect to ν that

Eν��ST�n� − <′�0�T�n�� + r′�XT�n��0�� = Eνr
′�x�0�	
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By the dominated convergence, we have EνT�n� → EνN and that Eνr
′

�XT�n��0� → Eνr
′�XN�0� as n → ∞. By the monotone convergence theorem,

we have Eν�
∑T�n�
j=1 S

+
j � →Eν�

∑N
j=1S

+
j � and Eν�

∑T�n�
j=1 S

−
j � → Eν�

∑N
j=1S

−
j � as

n → ∞. Hence applying the preceding argument separately to
∑T�n�
j=1 S

+
j and∑T�n�

j=1 S
−
j gives the desired conclusion.

To prove (ii), note that σ2 = <
′′ �0�. Following an argument similar to that

of Fuh and Lai (1998), taking derivatives with respect to θ in (A.9) and setting
θ = 0 yield the desired result. The same argument as (i) leads to (A.8). Because
there exists a positive constant c such that Eπ�Exξ1 − µ − Eπr

′�X1�0� +
r′�x�0��2 ≤ c supx Exξ

2
1 < ∞, the existence and boundedness of the solution

r
′′ �x�0� of (A.8) follows from (17.38) and Theorem 17.4.2 of Meyn and Tweedie

(1993). Furthermore, we have �r′′�x�0�� ≤ �Exξ1−µ−Eπr
′�X1�0�+r′�x�0��2. ✷
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