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ASYMPTOTICALLY MINIMAX REGRET PROCEDURES
IN REGRESSION MODEL SELECTION AND THE
MAGNITUDE OF THE DIMENSION PENALTY

By Alexander Goldenshluger and Eitan Greenshtein

University of Haifa and Technion

This paper addresses the topic of model selection in regression. We
emphasize the case of two models, testing which model provides a bet-
ter prediction based on n observations. Within a family of selection rules,
based on maximizing a penalized log-likelihood under a normal model, we
search for asymptotically minimax rules over a class � of possible joint
distributions of the explanatory and response variables. For the class �
of multivariate normal joint distributions it is shown that asymptotically
minimax selection rules are close to the AIC selection rule when the models’
dimension difference is large. It is further proved that under fairly mild
assumptions on � , any asymptotically minimax sequence of procedures
satisfies the condition that the difference in their dimension penalties is
bounded as the number of observations approaches infinity. The results are
then extended to the case of more than two competing models.

1. Introduction. Let V = �Y�X1� � � � �Xm�� m ≤ ∞ be a random vector
with distribution G. We will refer to X1� � � � �Xm as the explanatory variables
and to Y as the corresponding response variable. Suppose it is desired to con-
struct a predictor for Y based on a subsetXl1

� � � � �Xlk
� k ≤m of the explana-

tory variables. Under a squared error prediction loss, an optimal predictor
is Ŷ0 = E�Y�Xl1

� � � � �Xlk
� = f�Xl1

� � � � �Xlk
�� Typically G and, consequently,

f are not known, and a main object is to develop a method for estimating f.
Such a method usually involves the following steps: assume a model, that is, a
collection of conditional distributions �Gω�Y�X1� � � � �Xm�� ω ∈ �	� estimate
ω by ω̂ and let

f̂�Xl1
� � � � �Xlk

� = Eω̂�Y�Xl1
� � � � �Xlk

��

Given various possible models �Gjω�Y�X1� � � � �Xm�� ω ∈ �j	� j = 1�2� � � � � J�
and a set of i.i.d. observations V�t� = �Y�t��X1�t�� � � � �Xm�t��� t = 1� � � � � n�
an important question is which model to choose. Such a choice determines
a predictor as explained above. Thus, in our setting, choosing a model or a
predictor method are synonymous. It is well known, and will be seen in the
sequel, that the answer to the question, “Which is the most appropriate model
(or, equivalently, prediction method) under a givenG?” depends on the number
of observations n.
Various approaches to model selection yield various criteria. Mallows’ Cp

[Mallows (1973)] and Akaike’s AIC [Akaike (1974)] criteria are motivated by
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achieving a good prediction. Other related methods, based on cross-validation,
were suggested by Stone (1974) and Geisser (1975). Schwarz (1978) analyzed
the situation where there is a prior probability on the models, prior distribu-
tion on the parameters within the models and a 0–1 loss for selecting a wrong
model. Rissanen (1989) gave a criterion motivated by information theory, try-
ing to balance the trade-off between efficient coding using the most appropri-
ate distribution from rich parametric families and the complexity of coding the
parameters of such families. Hannan and Quinn (1979) characterize selection
methods which are consistent, that is, choose the most parsimonious among
the correct models with probability tending to 1 as the number of observations
tends to infinity. Most of the results and formulations (rather than heuristics)
are derived under the assumption that at least one of the models is correct;
that is, for some j0�G�·�·� ∈ �Gj0ω �Y�X1� � � � �Xm�� ω ∈ �j0	�
Denote gω�v� the conditional density gω�y�x1� � � � � xm� under Gω�·�·�� Let

gnω�v1� � � � � vn� = ∏n
i=1 gω�vi�� Many of the procedures of model selection

amount to choosing the model j0 that maximize over j = 1� � � � � J�

max
ω∈�j

log�gnω�v1� � � � � vn�� −Cn�j��(1)

for an appropriate choice of penalties Cn�j�.
Let pj be the dimension of the parameter set in model j. The value of Cn�j�

suggested by Akaike (1974) is Cn�j� = pj, while Schwarz’s and Rissanen’s
selection criteria are determined by Cn�j� = 1

2 log�n�pj� Hannan and Quinn
(1979) showed that in order to get consistency of a sequence of model selec-
tion procedures in some settings the following should hold: lim infn→∞�2 log
log�n�pj�−1Cn�j� > 1� and lim supn→∞ n−1Cn�j� = 0� The method of cross-
validation and Mallow’s Cp were shown to be asymptotically equivalent to
the procedure of Akaike in some cases [Stone (1977)]. For comprehensive sur-
veys on model selection see Linhart and Zuchinni (1986), Shibata (1989) and
Shao (1997); the last paper is especially relevant since it deals with regres-
sion models. Other papers dealing with regression model selection are Oliker
(1978), Thompson (1978), Stone (1981), Shibata (1981), Breiman and Freed-
man (1983), Nishii (1984), Speed and Yu (1993), Foster and George (1994).
The large difference in the magnitude of the values of Cn�j�, suggested by

different yet very appealing approaches, should still be understood. It moti-
vates many of the above-mentioned papers. The purpose of this work is to give
some further insight and perspective to this issue. Our focus on the procedures
that are based on penalized log-likelihood is motivated by many papers deal-
ing with such procedures; there are, of course, other appealing types of proce-
dures. In our formulation we do not necessarily assume that one of the models
is correct. The assumptions made in a model are, in our view, only a means
for determining meaningful and mathematically tractable predictors. We will
examine performance of selection procedures with respect to a collection � of
possible joint distributions G, in the spirit of the theory of robust statistics.
The reason why one of the models is not simply taken as � is that the set �
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could be large, not finitely parameterized and mathematically intractable to
induce meaningful predictors.
We suggest a novel decision theoretic approach to the problem of selecting

a model. We emphasize the case of two competing regression models and test
which model provides a better prediction based on n observations. Among the
tests with penalties Cn�j� as in (1) and the log-likelihood under a normal
model, the asymptotically minimax tests (selection procedures) are character-
ized. In Section 3 we prove that in the case, where � is the set of all multi-
variate normal distributions, the minimax procedure is equivalent to Akaike’s
criterion asymptotically as d and n go to infinity; here d is the difference of the
models’ dimensions. In Section 4 we show that under fairly mild assumptions
on � any asymptotically minimax rule must satisfy the condition that the dif-
ference in penalty terms is bounded as the number of observations approaches
infinity. Finally we indicate how the results are extended to the case of several
competing models.

2. Theminimax criterion. We formulate the case of two competing mod-
els. Let V�t� = �Y�t��X1�t�� � � � �Xm�t�� be i.i.d. vectors V�t� ∼ G� t = 1�2� � � �
and let �Gjω� ω ∈ �j	� j = I� II be two competing models. Let ω̂jn�V�1�� � � � �
V�n��� j = I� II� n = 1�2� � � � be two sequences of estimators (say MLE) based
on the two models. Let Ŷj�n�� j = I� II� n = 1�2� � � � be two sequences of
predictors,

Ŷj�n+ 1� = Eω̂jn
[
Y�n+ 1��X1�n+ 1�� � � � �Xm�n+ 1�]�

Define θjn� the expected squared error loss in a prediction of a future observa-
tion Y�n+ 1�,

θjn = EGn+1
[
Y�n+ 1� − Ŷj�n+ 1�]2� j = I, II.(2)

Here Gn+1 is the �n+ 1�th product of the measure G. Denote
θn = θIn − θIIn �

The dependence of θn on G is suppressed.
From the point of view of prediction, the sequence of model selection prob-

lems determined by the observations V�1��V�2�� � � � may be thought of as the
following sequence of testing problems:

Hn
I � θn ≤ 0 versus Hn

II� θn > 0� n = 1�2� � � � �
Deciding Hn

j� j = I� II should be understood as selecting model j at stage n.
Define the loss function

Ln�θn�Hn
j� =

{
l�θn�� if θn /∈Hn

j ,
0� otherwise,

where l�·� is a symmetric around zero and nondecreasing function on the
positive real line. From the class of such functions l�·�, the function l�θ� = �θ�
is of a particular interest. It is consistent with the squared error prediction loss
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that defines the parameterization θjn� j = I� II� However, we find it instructive
and worthwhile to carry out the general development and, in particular, to
consider zero–one loss.
Let �δn	 = �δn�V�1�� � � � �V�n��	 be a sequence of selection or (equivalently)

testing procedures. For G ∈ � define

Rn�G�δn� = Rn�θn�G�� δn� = EGnLn�θn� δn��
and let rn�δn� = supG∈� Rn�G�δn�� For a given loss function l�·�� a sequence
of collections, "n� of possible selection rules based on n observations and a
collection of distributions � � we define an asymptotically minimax selection
selection procedure as follows. Denote r∗n = inf δn∈"n�rn�δn���

Definition 1. A sequence of selection procedures �δn	 is called asympto-
tically minimax if limn→∞�rn�δn�/r∗n� = 1�

We will study collections of procedures, denoted "cn� that are defined by
penalties Cn�j�� in the following way: select the model that maximizes over
j = I� II�

max
ω∈�j

log�gnω�V�1�� � � � �V�n��� −Cn�j��

Actually only the difference Cn = Cn�I� −Cn�II� matters.
Note that our minimax formulation uses regrets rather than the actual pre-

diction risks. An alternative minimax approach would be to select the model
that minimizes the maximal over G ∈ � mean squared prediction error. This
formulation often leads to the trivial selection rule that always chooses the
larger model. We refer to Shibata (1986) for some related results on using
regrets in regression model selection.

3. The class of multivariate normal distributions. In this section we
will assume that � is the collection of all multivariate normal distributions.
A study of prediction in this setting was conducted by Oliker (1978), Thompson
(1978) and by Breiman and Freedman (1983).
We assume two possible nested competing regression models

Y = β0 + β1X1 + · · · + βiXi + ε� ε ∼N�0� σ2�� i = k�m� k < m�
where σ2 is unknown. We will refer to the models determined by m and k
variables as models I and II, respectively. Our goal is to find a sequence of
constants C0n�j�� j = I� II� n = 1�2� � � � that determines a sequence of selec-
tion procedures which is asymptotically minimax within sequences such that
δn ∈ "cn.
It may be checked that a minimax value and a minimax procedure under the

class of all multivariate normal distributions are the same as under the class
of all multivariate normal distributions with independent Xi� i = 1� � � � �m
such that E�Xi� = 0� EX2

i = 1� and
Y = α0 + α1X1 + · · · + αmXm + εG�
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Here εG ∼ N�0� σ2G� is independent of X1� � � � �Xm� For details, see Lemma
2.1 in Breiman and Freedman (1983). We will assume the later class of joint
distributions. Denote τ2 = τ2�G� =∑m

j=k+1 α
2
j�

Lemma 1.

θIn = n+ 1
n

(
1+ m

n−m− 2
)
σ2G�

θIIn = n+ 1
n

(
1+ k

n− k− 2
)
�σ2G + τ2��

The proof follows from equation (6) in the paper of Oliker (1978), or from
Theorem 1.1 in Breiman and Freedman (1983). Note that we use the paramet-
rization under model I.
From the lemma we obtain

θn = σ2G
d

n
− τ2

(
1+ k

n

)
+ o(n−1)�(3)

τ2 ≈ σ2G
d

n
iff� θn = o�n−1��(4)

where d =m− k�
First we will consider the case of a 0–1 loss function l�θ�� In this case the

minimax test is a rule that attains its maximum for θn ≈ 0 or, equivalently,
when τ2 ≈ σ2Gdn−1� the minimax value is 1/2. The purpose of the following
is to:

1. calculate PG(rejecting H
n
I � for procedures in "cn�

2. find Cn�j� such that the corresponding procedure satisfies

Pτ2=σ2Gdn−1�rejecting Hn
I � ≈ 1

2 �

Let X be the random matrix �Xi�t��� t = 1� � � � � n� i = 1� � � � �m� and denote
Y′ = �Y�1�� � � � �Y�n��� Let �YI and �YII be the projections of Y on the first m
and k columns of X, respectively. Then the ANOVA identity is

�Y− �YII�2 = �Y− �YI�2 + ��YI − �YII�2� j = I� II�(5)

denoted U21 = U22 +U23� Notice that for the two models I, II,

max
ω∈�j

log�gnω�V�1�� � � � �V�n���

= −n
2
log

(
1
n
�Y− �Yj�2

)
+ constant� j = I� II�
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Denote Cn = Cn�I�−Cn�II�� and suppose that Cn = o�n� as n goes to infinity.
We obtain

PG�rejecting Hn
I�

= PG�log�U22� > log�U22 +U23� +
2
n
�Cn�II� −Cn�I��

= PG�U22 exp�2Cnn−1� > U22 +U23�(6)

= PG��1+ 2Cnn−1�U22 > U22 +U23� + o�1�
= PG�U23 < σ2G2Cn� + o�1��

Conditionally on �X1�t�� � � � �Xm�t��� t = 1� � � � � n� the distribution of U23σ
−2
G

is � 2 with d = m − k degrees of freedom and noncentrality parameter γ2n�
unconditionally γ2n is a random variable γ2n = nτ2σ−2

G �1 + op�1��� In the case
where θn = o�n−1�� recall from (4) that τ2 = dσ2Gn−1�1 + o�1��� and then γ2n
converges in probability to d as n approaches infinity.
Denote by m̄d the median of a �

2
d �d� distribution with d degrees of freedom

and noncentrality parameter d.

Theorem 1. Let �I and �II be two nested linear models, where d is their
dimension difference. Then for the class � of all multivariate normal distribu-
tions, 0–1 loss function l�·� and the class of sequences of procedures �δn	 such
that δn ∈ "cn� an asymptotically minimax sequence of procedures is determined
by penalties Cn�I��Cn�II� satisfying

Cn = Cn�I� −Cn�II� =
m̄d
2
�

The proof follows from (4), and the discussion following it, upon realizing
that for a 0–1 loss the worst case is attained for a distribution G such that
θn�G� ≈ 0� and the corresponding expected loss is 1/2.
Notice that for large values of d� m̄d is close to 2d (the median is close to

the mean), and we get the AIC criterion. This asymptotic phenomenon is more
general as may be seen from the following Theorem 2. This theorem applies
to the class of loss functions satisfying l�θ� = O��θ�a�� a ≥ 0� as θ approaches
infinity, but it is motivated mainly by the case a = 1.
In a situation where the number of observations is large, typically, candi-

date models will have large dimensions, and also the dimension difference will
be large. The following theorem indicates that, for the class � of multivariate
normal distributions, an appropriate penalty difference is the models’ dimen-
sion difference, as in the AIC criterion. Consider a sequence of model selection
problems (with different competing models at each stage). Let dk denote the
models’ dimension difference in the kth problem, and suppose limk→∞ dk = ∞�
For every k� consider a sequence of penalty differences Ck�Mn that determines
an asymptotically minimax sequence of procedures denoted δM�kn � We denote
the sequence of procedures induced by the penalties Ckn = dk by δdkn �
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Theorem 2. Suppose l�·� satisfies l�θ� = O��θ�a�� a ≥ 0� as θ approaches
infinity. Suppose that � consists of all multivariate normal distributions G
satisfying σ2G ≤ σ20 <∞ for some σ20 . Then

lim
k→∞

lim
n→∞

Ck�Mn
dk

= lim
k→∞

dk + o�
√
dk�

dk
= 1�

Before proving the theorem we present the following lemma.

Lemma 2. Let ξi� i = 1� � � � � dk be i.i.d. normal random variables with

mean µk and variance 1. Let U2 = ∑dk

i=1 ξ
2
i � and δ = dkµ2k − dk� here dkµ2k is

the noncentrality parameter of U2. Then:

(i)

P�U2 < 2dk� ≤
(
1− δ

2dk + δ
)dk/2

exp
{

δdk

2�2dk + δ�
}
�(7)

(ii) Suppose that µk → 1� then there exist constants c > 0 and α > 0� such
that for every dk and δ < cdk�

P�U2 < 2dk� < exp�−αδ2/dk��(8)

Proof. The first part is proved by applying the Chernoff bounding method
to the noncentral chi-square random variable with dk degrees of freedom and
mean 2dk+δ� Specifically, the moment generating function of a noncentral� 2

distribution with dk degrees of freedom and non-centrality parameter dkµ2k is
given by

φ�s� = e−dkµ2k/2
∞∑
j=0

(
dkµ2k
2

)j �1− 2s�−�dk+2j�/2

j!
�

Then the probability P�U2 < 2dk� is bounded from above by φ�−s� exp�s�dk+
dkµ2k − δ�	 for any s > 0. Choosing 2s = δ�dk + dkµ2k − δ�−1 we obtain (7).
(ii) Inequality (8) follows from (7). See also Lemma 2.2(a) in Breiman and

Freedman (1983). ✷

Proof of Theorem 2. We take σ2G = 1 in our derivation. Suppose that
there exits ε > 0 such that for every k0 there exists k > k0 for which lim supn
�Ck�Mn /dk� > 1 + ε; w.l.o.g. assume that Ck�Mn > �1 + ε�dk for large enough
k and n. Also, w.l.o.g. there exists a sequence,Ck�Mn , satisfying the last inequal-
ity, such that dk = o�n�� here the rate at which dk/n approaches zero may be
assumed arbitrarily fast. We will get a contradiction to the minimax property
of the sequence Ck�Mn .
Since dk = o�n�� we get by (6) that for the procedures δdkn one has

Pθkn
(
rejecting Hnk

I

) = Pθkn�U23 < 2dk� + o�1��
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Here θkn is determined by the sequence of penalties C
k
n = dk and by the asso-

ciated sequence of procedures δd
k

n , in the following way: θ
k
n = θn�G0�� where

Rn�G0� δdkn � = supG∈� Rn�G�δdkn �� We will show in the sequel, that for large
enough B� �θkn� < B

√
dk/n for every n and k, or, equivalently, by (3) we obtain

that the corresponding τ2nk satisfies τ
2
nk = �dk + bkn

√
dk�/n for bkn < B. As pre-

viously discussed, U23 has a noncentral chi-square distribution with random
noncentrality parameter; since dk = o�n�� the noncentrality parameter has a
degenerate distribution (as n→ ∞), and it may be considered fixed, equal to
nτ2nk. Now the expectation of U

2
3� under �θkn� and under −�θkn�, is 2dk − bkn

√
dk

and 2dk+bkn
√
dk� respectively. Also, the asymptotic variance of U23 under both

�θkn� and −�θkn� equals 6dk� Thus we obtain

P−�θkn��U23 < 2dk + c� = P�θkn��U23 > 2dk − c� + o�1��
The last equation follows by approximating the distribution of a noncentral
chi-square random variable with large number of degrees of freedom dk by
a normal distribution. The approximation is by the CLT when representing
U23 as a sum of squares of dk i.i.d. normal random variables, denoted ξi, with
variance 1 and mean µk. This approximation is uniform, since the second and
third moments of the i.i.d. terms in the representation of U23 are bounded
under θkn. Hence, by the Berry–Esseen theorem the convergence to normality
is uniform. By the symmetry of l�·�, for large enough dk and n,

Rn
(−�θkn�� δM�kn

) = l(−�θkn�
)
P
(
rejecting Hnk

I by δM�kn

)
≈ l(−�θkn�

)
P−�θkn�

(
U23 < 2C

k�M
n

)
> l

(−�θkn�
)
P−�θkn�

(
U23 < �1+ ε�2dk)

≈ l(�θkn�)P�θkn�
(
U23 > 2d

k − 2εdk)
> l

(�θkn�)P�θkn�
(
U23 > 2d

k
) ≈ Rn(G0� δdk)�

Note that since τ2nk < �dk +B
√
dk�/n� P�θkn��U23 > 2dk� is bounded away from

zero, and thus the approximate equality sign is meaningful. Hence we got a
contradiction to the minimaxity of δM�kn � this follows since Rn�G0� δdkn �, the
worst case risk for the procedure δd

k

n , is smaller than the worst case risk
obtained by δM�kn . Similarly we show that lim infn�Ck�Mn /dk� > 1−ε for every ε
and large enough k. A closer look at the proof, when bounding the normal
approximation error using the Berry–Esseen theorem, reveals that Ck�Mn =
dk + o�

√
dk� for a proper choice of n = n�k�.

It remains to show that τ2nk < �dk + B
√
dk�/n, for large enough B. First,

we will show it assuming that τ2nk = �dk+o�dk��/n� Let τ̄2nk = �dk+B
√
dk�/n,

and τ̃2nk = �dk +
√
6dk�/n. We will prove that for large enough B� n and k,

l̃�τ̃2nk�Pτ̃2nk�U23 < 2dk� > l̃�τ̄2nk�Pτ̄2nk�U23 < 2dk��
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Here l̃�τ2� = l�θn�τ2�� is the function l�·� in terms of τ2. Under the assumption
that τ̃2nk = �dk + o�dk��/n� the asymptotic variance of U23 equals 6dk� Hence,
by the CLT Pτ̄2nk�U23 < 2dk� → :�−1�� From the last fact we obtain that

inf k Pτ̃2nk�U23 < 2dk� = r > 0. Thus l̃�τ̃2�Pτ̄2�U23 < 2dk� > l̃�τ̃2�r� The inequal-
ity (8) in Lemma 2 for the tail ofU23 yields for τ̄

2
nk = �dk+B

√
dk�/n� Pτ̄2nk�U23 <

2dk� < exp�−αB� with a proper α. Thus we have l̃�τ̄2�Pτ̄2�U23 < 2dk� <
l̃�τ̄� exp�−αB�� For polynomial loss the assertion now follows by taking large
enough B. The fact that τ2nk = �dk + o�dk��/n, assumed in the proof, may be
easily obtained from the tail inequality for U23 as in Lemma 1(i). ✷

Remark 1. If we do not assume σ2G ≤ σ20 < ∞ in the last theorem, then
r∗n ≡ ∞ under any sequence of selection rules determined by a sequence Cn.
Thus any such a procedure and, in particular, AIC procedures, is (trivially)
asymptotically minimax. We may avoid this extra assumption and difficulty if
we consider normalized squared prediction errors, for example, �Y− Ŷ�2/σ2Y�
and define θn accordingly.

The above results indicate that the proposed minimax criterion behaves
similarly to the AIC criterion when the dimension’s difference d is large. It
may also be seen from the following numerical study. Table 1 displays the val-
ues of limn Cn that correspond to asymptotically minimax rules under a 0–1
loss and under an absolute value loss, for various values of models’ dimension
differences d. In the case of the 0–1 loss, the values in the table represent the
median of the corresponding � 2

d �d� distribution divided by two. For the abso-
lute value loss, the values in the table are obtained by numerically minimizing
the function

R�c� = max
θ

�θ�[P�� 2
d �d+ θ� < 2c	1�θ<0	(9)

+(1−P�� 2
d �d− θ� ≥ 2c	)1�θ≥0	]�

Table 1
The limiting differences of penalties corresponding to asymptotically minimax procedures

d l��� = 1 l��� = ��� d l��� = 1 l��� = ���
1 0.54 0.48 9 8.51 8.10
2 1.53 1.38 10 9.45 9.30
3 2.52 2.25 20 19.50 19.20
4 3.54 3.24 40 39.00 38.40
5 4.50 4.20 50 48.75 48.00
6 5.49 5.22 55 53.63 54.45
7 6.51 6.10 60 59.40 59.40
8 7.44 7.20 80 79.20 79.20
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As the proof of Theorem 2 suggests, it is sufficient to maximize the right-
hand side of (9) over θ ∈ �−d�d�� Finally, in our implementation we minimize
R�c� over c ∈ �0�3d�� Notice that for small values of d� limn Cn is signifi-
cantly smaller than the corresponding values suggested by the AIC; this is
contrary to the criticism suggesting that the values corresponding to the AIC
are too small.

4. General class of distributions. In the main result of this section,
Theorem 3, we give conditions on � and l�·� under which, for any asymptot-
ically minimax sequence of procedures �δn	, the corresponding sequence of
differences �Cn�I� − Cn�II�	 is bounded. Theorem 4 gives conditions for the
existence of asymptotically minimax sequence of procedures with bounded
penalty differences.
Let V = �Y�X1� � � � �Xm� be a random vector with distribution G, where

X1� � � � � Xm are the explanatory variables, and Y is the corresponding re-
sponse variable. Assume thatY andXi are centered random variables,EG�Y�2
< ∞ and EG�Xi�2 < ∞� ∀ i = 1� � � � �m� Without loss of generality we will
assume that X1� � � � �Xm are linearly independent with respect to G, that is,∑m
i=1 aiXi = 0� G-a.s. only if all ai’s are equal to zero. Let � �X1� � � � �Xm� be

the linear subspace spanned by �X1� � � � �Xm�. It is well known that for a given
G there exists an orthonormal system �ηG1 � � � � � ηGm� such that � �X1� � � � �Xi�
= � �ηG1 � � � � � ηGi � for every i ≤ m; then Y admits the standard orthogonal
decomposition

Y =
m∑
i=1
αiη

G
i + εG�(10)

where EG�εG� = 0�EG�ηGi �2 = 1� EG�ηGi εG� = 0� i = 1� � � � �m and EG�ε2G� =
σ2G. Note that EG�εG�η1� � � � � ηm� is not necessarily zero here. In what follows
we will assume that �X1� � � � �Xm� is an orthonormal system with respect to
the underlying distribution G, and in (10) we will write Xi instead of η

G
i .

In particular, in all the assumptions to follow Xi� i = 1� � � � �m should be
understood as an orthonormal system. In this section we will consider classes
of distributions � satisfying

�A� supG∈� EG�Xi�16 <∞� i = 1� � � � �m� supG∈� EG�εG�16 <∞�
The following two competing normal regression models are assumed:

�I� Y =
m∑
i=1
βiXi + ε�

�II� Y =
k∑
i=1
βiXi + ε�

where ε is a normal zero mean random variable with unknown variance,
and d = m − k > 0� The assumed normal models give rise to the following
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predictions:

ŶI�n+ 1� = β̂′
IφI�n+ 1�� ŶII�n+ 1� = β̂′

IIφII�n+ 1��

where φI�t� = �X1�t�� � � � �Xm�t��� φII�t� = �X1�t�� � � � �Xk�t��� and β̂I� β̂II are
the standard least squares estimates based on models I and II, respectively,

β̂j =
( n∑
t=1
φj�t�φ′

j�t�
)−1( n∑

t=1
φj�t�Y�t�

)
� j = I� II�(11)

We introduce some notation used in what follows. Let � be the set of all
possible regression models based on the explanatory variables X1� � � � �Xm�
Let φj�t�� j ∈ � be the subvector of �X1�t�� � � � �Xm�t�� corresponding to
model j. Define also αI = �α1� � � � � αm�′ � αII = �α1� � � � � αk�′ and Wj�n� =∑n
t=1φj�t�φ′

j�t�� j ∈ � � In words, Wj�n� is the “X′X” matrix correspond-
ing to model j and based on n observations. We also write WI�n� and WII�n�
for the matrices corresponding to models I and II, respectively. Our current
goal is to evaluate the mean square prediction errors of Ŷj�n+ 1�� j =I, II.
In order to derive an analog of Lemma 1 for the least squares estimates

under a general class of distributions � , we need an invertibility property of
the matrices Wj�n� as in the following condition (B):
(B) There exists an integer number N0 such that

sup
n≥N0�G∈�

EG
(��Wj�n�/n�−1�81�λmin�Wj�n�� > 0	

)
<∞� j ∈ � �(12)

Here � · � stands for the standard Euclidean matrix norm, and λmin�·� is the
minimal eigenvalue of a matrix.
Roughly, condition (B) assumes that the expected value of ��Wj�n�/n�−1�8

is bounded uniformly over the class of distributions � for all models j ∈ � .
The matrices Wj�n�� j = I, II may be singular with positive probability for
every n. If Wj�n�� is not of full rank then the corresponding estimate (11) is
not unique. Note, however, that a predictor Ŷj�n+ 1� is well defined here; it
is the projection of Y on a largest linear subspace spanned by the columns of
the corresponding regression matrix. In this case the reasoning below should
be applied to the models of smaller dimensions. That is why we require (12)
for all submodels j ∈ � .
One way to obtain condition (B) is by introducing a “no-inference zone.”

When the norm of the matrixWj�n�−1 is too large [Wj�n� is close to singular-
ity], there is no inference. An elaborate and technical study of condition (B)
may be found in Goldenshluger and Greenshtein (1998).

Lemma 3. Let � satisfy conditions (A) and (B); then there exists N0 such
that

sup
n≥N0�G∈�

EG
(
n2�β̂j − αj�41�λmin�Wj�n�� > 0	

)
<∞� j = I� II�
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Proof. We have

β̂I − αI = �n−1WI�n��−1
(
1
n

n∑
t=1
φI�t�εG�t�

)
�(13)

EG

∥∥∥∥ 1√n n∑
t=1
φI�t�εG�t�

∥∥∥∥8 = EG
[
m∑
i=1

(
1√
n

n∑
t=1
Xi�t�εG�t�

)2]4
�(14)

Note that �Xi�t�εG�t�	t=1�����n is a sequence of independent zero mean ran-
dom vectors. It can be checked by direct calculation that under the moment
conditions (A),

sup
n�G∈�

EG

(
n−1/2

n∑
t=1
Xi�t�εG�t�

)8
<∞� i = 1� � � � �m�

Therefore it follows from (14) that

sup
n�G∈�

EG

∥∥∥∥ 1√n n∑
t=1
φI�t�εG�t�

∥∥∥∥8 <∞�

and using (13) and condition (B) we complete the proof. ✷

The next lemma establishes expressions for the mean square prediction
errors of Ŷj�n + 1�� j = I,II defined by (2). For simplicity in proofs in the
sequel we will consider cases where the probability of singularity of WI�n�
and WII�n�� n ≥ m is zero. To treat the singularity, one should project on
subspaces of lower dimension.

Lemma 4. Let � be a class of distributions satisfying conditions (A) and
(B); then

(i)

θIn = σ2G + qI
n

+ oG�n−1�� n→ ∞�(15)

θIIn = σ2G + τ2 + qII
n

+ oG�n−1�� n→ ∞�(16)

where τ2 = τ2�G� =∑m
i=k+1 α

2
i , and

qI = qI�G� =
m∑
i=1
EG�X2

i ε
2
G��

qII = qII�G� =
k∑
i=1
EG

[
X2
i

(
εG +

m∑
i=k+1

αlXl

)2]
�

(ii) There exists a constant κ̃ such that �oG�n−1�� ≤ κ̃n−1� ∀G ∈ � �
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Proof. (i) The mean square prediction error of ŶI�n+ 1� is
θIn = EG

[�β̂I − αI�′φI�n+ 1� − εG�n+ 1�]2
= σ2G − 2EG

[�β̂I − αI�′φI�n+ 1�εG�n+ 1�]+EG��β̂I − αI��2
= σ2G +EG��β̂I − αI��2�

The third equality follows from conditioning on the σ-algebra �n generated
by Y�t��XI�t�� � � � �Xm�t�� t = 1� � � � � n� and from the fact that φI�n+ 1�� and
εG�n+ 1� are uncorrelated and independent of �n. Further, we have

β̂I − αI =
(
1
n

n∑
t=1
φI�t�φ′

I�t�
)−1(

1
n

n∑
t=1
φI�t�εG�t�

)
�

By the law of large numbers for every G ∈ � � n−1∑n
t=1φI�t�φ′

I�t� →p Im
as n → ∞, where Im is the m ×m identity matrix. Observe that �ξI�t�	 =
�φI�t�εG�t�	, t = 1� � � � � n is a sequence of independent zero meanm-vectors all
having the same distribution. In addition, EG��ξI�t���2 <∞ for every G ∈ � , so
by the multidimensional central limit theorem we have that n−1/2∑n

t=1 ξI�t�
→d �m�0�QI�, where QI = QI�G� = EG�φIφ′

Iε
2
G�� Hence

√
n�β̂I − αI� →d

�m�0�QI�� and

n��β̂I − αI��2
d→Z′Z� Z ∼ �m�0�QI��(17)

It follows from Lemma 3 that �n��β̂I − αI��2	 is a sequence of uniformly inte-
grable random variables. This fact along with (17) implies convergence of
expectations; that is, nEG��β̂I − αI��2 → tr�QI� as n → ∞. Hence, (15) fol-
lows if we note that qI = tr�QI�. The equality (16) follows from the same
considerations for the model II.
Statement (ii) of the lemma follows immediately from Lemma 3. ✷

From the lemma we obtain

θn = −τ2 + qI − qII
n

+ oG�n−1��(18)

where �oG�n−1�� ≤ κ̃n−1 for some κ̃ and every G ∈ � . When Xi� i = 1� � � � �m
are independent rather than uncorrelated, and X′

is are independent of εG�
this equality takes the form [cf. (3)],

θn = −τ2
(
1+ k

n

)
+ dσ

2
G

n
+ oG�n−1��

Denote

U23 = U21 −U22 =
n∑
t=1

�Y�t� − β̂′
IIφII�t��2 −

n∑
t=1

�Y�t� − β̂′
IφI�t��2�

as in (5). The dependence of these variables on n is suppressed. Let

U = U23 − 2Cn
(U22
n

− σ2G
)
−U22

(
exp�2Cnn−1� − 1− 2Cnn−1

)
�
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An argument similar to (6) shows that for every n,

PG�δnchooses model I	 = PG�U ≥ 2σ2GCn	�
In the next lemma we establish some useful properties of the random
variable U.

Lemma 5. Suppose � satisfies conditions (A), (B), and let �n�K� denote
the set of all distributions from � such that τ2�G� = τ2 ≤Kn−1 for a given K.
The random variable U admits the following representation U = ζn + ηn with
the following properties:

(i) supn≥N0�G∈�n�K�EG�ζn� <∞� for some N0 and every K.
(ii) supG∈� EG�ηn� = o�Cn�� n→ ∞�

Proof. Denote νG =∑m
i=k+1 αiXi� then we have

U23 =
[
�αII − β̂II�′

( n∑
t=1
φII�t�φ′

II�t�
)
�αII − β̂II�

−�αI − β̂I�′
( n∑
t=1
φI�t�φ′

I�t�
)
�αI − β̂I�

]

+2
[
�αII − β̂II�′

n∑
t=1
φII�t��εG�t� + νG�t�� − �αI − β̂I�′

n∑
t=1
φI�t�εG�t�

]

+
n∑
t=1

[
�εG�t� + νG�t��2 − ε2G�t�

]
= �1�n� + �2�n� + �3�n��

Using the same ideas as in the proof of Lemma 3, one can show that there
exists N0 such that supn≥N0G∈� �EG��i�n��� < ∞� i = 1�2� In addition,
EG��3�n�� = nτ2, and therefore supn≥N0G∈�n�K�EG�U23� < ∞� Now we define
ηn = 2Cn�U22n−1 − σ2G� and

ζn = U23 = U22
(
exp�2Cnn−1� − 1− 2Cnn−1

)
�

The statement of the lemma follows from the fact that supG∈� EG�U22n−1−
σ2G� = o�1� as n→ ∞� ✷

Our current goal is to characterize asymptotically minimax selection pro-
cedures for a general class � of possible joint distributions of the explanatory
and response variables. Recall that the risk of a sequence of procedures δn is
defined by

rn�δn� = sup
G∈�

EGnLn�θn� δn� = sup
G∈�

[
l�θn�PG�δn makes a wrong decision	

]
�
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Let � I
n = �G ∈ � � θn�G� > 0	�� II

n = �G ∈ � � θn�G� > 0	� Let δn be a sequence
of selection rules associated with the sequence of differences of dimension
penalties Cn. Define

RIn�δn� = sup
G∈� I

n

[
l�θn�G��PG

{
U < 2σ2GCn

}]
�

RIIn �δn� = sup
G∈� II

n

[
l�θn�G��PG

{
U ≥ 2σ2GCn

}]
�

Due to Lemma 4 and (18) there exist some positive constants K1�K2 and N0
such that for all n ≥N0,

τ2�G� ≥K1/n implies G ∈ � I
n�(19)

G ∈ � II
n implies θn�G� = �θn�G�� ≤K2/n�(20)

Asymptotically minimax selection procedures are determined essentially by
properties of the sets � I

n and � II
n . The next theorem characterizes asymptoti-

cally minimax selection rules for general classes of joint distributions � .

Theorem 3. Suppose � satisfies conditions (A) and (B), and for every c > 0
the set � contains at least one distribution G such that τ2�G� ∈ �0� c�� If
l�k1/n��l�k2/n��−1  → 1 as n → ∞ for all k1  = k2, then for every sequence of
asymptotically minimax selection rules δn ∈ "cn� the difference in the dimension
penalties Cn = Cn�I� −Cn�II� is bounded, that is,

lim sup
n→∞

Cn <∞�(21)

Proof. In the proof w.l.o.g we set σ2G = 1. Suppose there exists a sequence
δ̄n of asymptotically minimax rules with penalties, �Cn, such that limn→∞ �Cn =
∞� By definition and Lemma 5,

RIn�δ̄n� = sup
�G� θn�G�≤0	

l�θn�G��PG�ζn + ηn < 2�Cn	�

RIIn �δ̄n� = sup
�G� θn�G�>0	

l�θn�G��PG�ζn + ηn ≥ 2�Cn	�

It follows from the premise of the theorem that � contains a sequence of
distributions �Gj	 with monotone decreasing τ2�Gj� = τ2j → 0� j → ∞. Fix
K1 andK2 satisfying (19) and (20), and letK1 be large enough so that τ2�G� >
K1/n implies �θn�G�� > 2K2/n. Define the subsequence nj = �K1/τ

2
j�+1� here

�·� denotes the integer part. Note that nj → ∞ as j→ ∞. For the subsequence
of time instants �nj	, the sets � I

nj
contain at least one distribution, Gj, such

that �θn�Gj�� > 2K2n
−1
j . Now R

I
n�δ̄nj� may be bounded from below by

RInj�δ̄nj� ≥ l�θn�Gj��PGj�ζn + ηn < 2�Cn	
≥ l�2K2n

−1
j ��1− o�1��� nj → ∞�
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The last inequality is by Markov inequality combined with Lemma 5; notice
that τ2�Gj� < Kn−1

j for a proper K. Thus, we obtain that

rnj�δ̄nj� ≥ l�2K2n
−1
j ��1− o�1��� nj → ∞�(22)

Now let δ̃n be the sequence of selection rules which always chooses model I.
This sequence of rules corresponds to the choice Cn ≡ 0. The risk of such a
procedure will be

rn�δ̃n� = RIIn �δ̃n� ≤ l�K2n
−1�� n→ ∞�(23)

Comparing (23) with (22) and taking into account the properties of l�·�, we
obtain lim supn→∞ rn�δ̃n��rn�δ̄n��−1 < 1, which contradicts the asymptotic
minimax property of δ̄n� thus (21) follows. ✷

The condition imposed on � in the above theorem is essential for bounded-
ness of Cn. It ensures that the sets � I

n and � II
n are not empty eventually, and

� II
n contains distributions with τ

2 arbitrarily close to zero. Note that if � II
n is

empty starting from some n, then the sequence of procedures δn which always
selects model I �Cn ≡ 0� is asymptotically minimax, and the theorem holds
trivially. On the other hand, if � contains only distributions with τ2�G� = 0
then the sequence of rules which identically choose model II �Cn ≡ ∞� is
asymptotically minimax, and for such � the theorem does not hold. It should
be stressed that the condition that the sets � I

n��
II
n are not empty eventually

is not sufficient for boundedness of Cn. Indeed, suppose that � contains only
two distributions with τ2�G1� = 0 and with τ2�G2� = c for some constant
c > 0. Here � I

n and � II
n are not empty for large n, but �

I
n is not rich enough

and contains only a distribution with “large” τ2�G�. Different choices of such
distributions may lead to asymptotically minimax procedures with bounded
as well as unbounded Cn� the boundedness is determined by the tail behavior
of the corresponding distributions of ζn + ηn.
Theorem 3 asserts that if � contains distributions with τ2�G� arbitrar-

ily close to zero, then every asymptotically minimax rule corresponds to a
bounded sequence of penalty differences Cn. It turns out that under more
relaxed assumptions on � it can be shown that there exists an asymptotically
minimax rule with bounded Cn (see Theorem 4 below).
Consider loss functions l�·� satisfying

l
(
k1/n

) = O(l(k2/n)) ∀k1� k2� as n→ ∞�(24)

Our main interest is again in the cases l�θ� = �θ� and l�θ� = 1.

Definition 2. Given a loss l�·� satisfying (24) and a class � satisfying
conditions (A) and (B), we say that � and l�·� determine a difficult selec-
tion problem if the induced minimax sequence of values r∗n satisfies r

∗
n =

O�l�n−1��� n→ ∞.

Observe that for any � satisfying conditions (A) and (B), and l�·� sat-
isfying (24), the minimax sequence of risks is of magnitude less than or
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equal to O�l�n−1�� (compare with the sequence of rules which identically
chooses model (I); thus when equality holds, the problem is indeed difficult.
Notice further that for any given l�·�, the set of all classes � that determine
difficult problems is larger than the set of all classes � satisfying the condi-
tions of Theorem 3.

Theorem 4. Suppose � and l�·� determine a difficult problem. Then there
exists a sequence of minimax procedures with a bounded difference of
penalties Cn.

Proof. Obviously r∗n may be achieved by a sequence of equalizer rules δn ∈
"cn satisfyingR

I
n�δn� ≈ RIIn �δn��∀n. Now suppose that such a rule is associated

with Cn → ∞. In this case an argument similar to that of Theorem 3 implies
that RIIn �δn� ≤ o�1�l�n−1�. Since δnis an equalizer, RIn�δn� also satisfies the
same inequality, and this is in contradiction with the assumption that the pair
� and l�·� determines a difficult selection problem. The theorem is proved. ✷

5. Discussion. We will discuss now our results in light of the results
obtained by Schwarz (1978). There is a fundamental difference since under
the Schwarz approach Cn → ∞, while under our approach Cn are usually
bounded. A key difference is that in the development of Schwarz the prior is
fixed throughout the asymptotics, while we, by taking minimax procedures for
every n, consider implicitly statistical problems with an increasing difficulty
which is scaled with n. Our approach, considering more difficult problems as
n increases, is common in asymptotic theory.
The interplay between the likelihood function in normal models and the

squared error prediction loss is important for establishing our results. Sim-
ilar types of results for general prediction error losses and general compet-
ing models (which induce competing collections of predictors), would require
adjustments of the selection methods. A possible approach is a criterion that
is based on the performance of the “empirically best” predictor in each of the
competing collections of predictors, together with a dimension penalty. See
further development in this direction in Greenshtein (2000).
Finally we will briefly indicate how to extend the results to the case of more

then two competing models. In order to simplify notations we consider only the
generalization under l�θ� = �θ�. Let ��j	 be a set of nested competing models,
which induce the parameters θjn� j = 1� � � � � J for each G ∈ � . Denote θon =
minj θ

j
n. Define the loss function

Ln��θ1n� � � � � θJn �� i� = θin − θ0n
for choosing model i. The extension of "cn to more than two models, by intro-
ducing a vector of dimension penalties, is obvious. We define

Rn�G�δn� = Rn��θ1n� � � � � θJn �� δn� = EGnLn��θ1n� � � � � θJn �� δn��
Our results are readily generalized to this setting.
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