
The Annals of Statistics
2000, Vol. 28, No. 6, 1561–1569

THE PROBLEM OF LOW COUNTS IN A SIGNAL
PLUS NOISE MODEL

By Michael Woodroofe1 and Hsiuying Wang2

University of Michigan and Academia Sinica

Consider the model X = B + S, where B and S are independent
Poisson random variables with means µ and ν, ν is unknown, but µ is
known. The model arises in particle physics and some recent articles have
suggested conditioning on the observed bound on B; that is, if X = n
is observed, then the suggestion is to base inference on the conditional
distribution of X given B ≤ n. This conditioning is non-standard in that
it does not correspond to a partition of the sample space. It is examined
here from the view point of decision theory and shown to lead to admissible
formal Bayes procedures.

1. Introduction. In some problems a signal S may be superimposed on a
background B, leaving an observed count X = B+S. Here we suppose that B
and S are independent Poisson random variables with means µ and ν, so that
X has a Poisson distribution with mean θ = µ+ν; ν is regarded as an unknown
parameter, but µ is assumed to be known, as might be appropriate if there
were historical data on the background. What special techniques, if any, are
appropriate if the observed count X is smaller than the expected background?
A problem of this nature has arisen recently in physics. The KARMEN 2
Group has been searching for a neutrino oscillation, reported earlier from an
experiment at the Los Alamos Neutrino Detector. As of Summer 1998, they had
expected to see about 3± �1 background events and at least one signal event,
based on the earlier findings (and using rounded values), but had observed
nothing. See Zeitnitz et al. (1998). What inference about ν is appropriate here?
Can the hypothesis H0 � ν ≥ 1 be rejected? A naive analysis suggests that it
can. If µ = 3 is regarded as a known quantity and the hypothesis is rewritten
as H0 � θ ≥ 4, then the p value is Pθ�X ≤ 0� ≤ e−4 for θ ≥ 4, and this is
less than the usual levels of significance. But this analysis is suspect, because
if X = 0, then both B and S must be zero; and P4�S ≤ 0� = e−1, which is
not less than the usual levels of significance. The second value is obtained by
conditioning on the ancillary variable B = 0 and seems right in this context.

The problem becomes much more interesting when the observed count is
non-zero but smaller than the expected background, since then it is no longer
possible to recover the value of B. Roe and Woodroofe (1999) argue that if
X = n, then it is appropriate to base inferences on the conditional distribu-
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tion of X given B ≤ n. In effect, they argue that B ≤ n provides a more
appropriate reference set, since “it seems unfair to include smaller than ex-
pected background radiation as evidence againstH0.” The Particle Data Group
(1992) [PDG] and Read (2000) have made related suggestions. This type of con-
ditioning does not correspond to a partition of the sample space and, so, there
is no obvious relation between conditional and unconditional properties. The
purpose of this paper is to study such conditional inference from a decision
theoretic point of view. In Section 2, it is shown that the usual p-value for test-
ing θ ≥ θ0 is inadmissible, in the terminology of Hwang et al. (1992), when
X ∼ Poisson�θ� and θ ≥ µ > 0. Also, an admissible modification is constructed
using conditional probability given that B is at most the observed value of X.
Given the close association between hypothesis tests and confidence sets, the
(in)admissibility results for p-values have implications for confidence sets, but
it is possible to formulate the entire question in terms of confidence sets. This
is done in Section 3, where the problem of finding an upper confidence bound
is formulated as a decision problem. It is shown that the bound obtained from
the modified p-value is admissible formal Bayes in the latter problem.

As noted above, the problem is of current interest to particle physicists,
and there is some controversy. A competing method is the unified method
of Feldman and Cousins (1996), which consists of regions of high relative
likelihood. Roe and Woodroofe (1999) criticized the unified method, because
the intervals may depend on µ when B = 0; and Cousins has criticized the
Roe Woodroofe approach, finding that it produces a lower boundary that is
much too large when applied to a related problem. By focusing on the one-
sided case, we have changed the formulation of Roe and Woodroofe (1999),
whose interest was in confidence intervals, and we do not address Cousins’
criticism. Our results do support the non-standard conditioning, however, and
have clear implications for the PDG Method.

2. (In)Admissible P-Values. It is convenient to let fθ and Fθ denote the
probability mass function and distribution function of the Poisson distribution
with mean θ, so that fθ�n� = �1/n!�θne−θ and Fθ�n� = fθ�0� + · · · + fθ�n� for
n = 0�1�2� � � �. As in the Introduction, suppose that X ∼ Fθ, where µ ≤ θ < ∞
and µ ≥ 0 is known. Thus, the parameter space is � = �µ�∞�. For testing
H0 � θ ≥ θ0, where θ0 > µ, the usual p-value is

φ0�n� = Fθ0
�n� = Pθ0

�X ≤ n��

Hwang et al. (1992) suggest regarding φ0 as an estimator of the indicator
function of �0 = �θ0�∞� and introduce the risk function

r�ψ� θ� = Eθ

{�ψ�X� − 1�0
�θ��2}

for estimators ψ of this indicator function. Below, the phrase “admissible p-
value” means an admissible estimator of 1�0

with respect to squared error
loss. If π is a not necessarily proper prior distribution, then the integrated
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risk of an estimator ψ with respect to π is denoted by

r̄�ψ�π� =
∫
�
r�ψ� θ�π�dθ��(1)

and a ψ0 is said to be Bayes with respect to π if r̄�ψ0�π� = infψ r̄�ψ�π� = r̄�π�,
say. It is easily seen that if ψ0 is Bayes with respect to π �= 0, and r̄�π� < ∞,
then ψ0 is admissible. See, for example, Berger (1985), page 255. The main
result of Hwang et al. provides a converse. When specialized to the present
context, it asserts: Let ψ0 be an admissible estimator. Suppose that ψ0�n� is
non-decreasing in n and that there are −1 ≤ n1 < n2 ≤ ∞ for which ψ0�n� = 0
for n ≤ n1, 0 < ψ0�n� < 1 for n1 < n < n2, and ψ0�n� = 1 for n ≥ n2. Then
there are sigma-finite measures π0 and π1 on �0 = �θ0�∞� and �1 = �µ� θ0�
for which ∫

�0

fθ�n�π0�dθ� +
∫
�1

fθ�n�π1�dθ� < ∞(2)

and

ψ0�n� =
∫
�0

fθ�n�π0�dθ�∫
�0

fθ�n�π0�dθ� + ∫
�1

fθ�n�π1�dθ�(3)

for n1 < n < n2. Hwang et al. (1992) show that the usual p-value for testing
θ ≤ θ0 is admissible when µ = 0 by showing that it is formal Bayes’ with
respect to dθ/θ. The modified p-value

φµ�n� =
Fθ0

�n�
Fµ�n�

= Pθ0
�X ≤ n�B ≤ n�(4)

for testing θ ≥ θ0 may be analyzed in a similar manner. Repeated use is made
of the following identity below: If Gn is the gamma distribution function with
shape parameter n and unit scale parameter, then

1−Gn�θ� =
∫ ∞

θ

ωn−1

�n− 1�!e
−ωdω = Fθ�n− 1�(5)

for all n ≥ 1 and θ > 0. The identity may be derived by repeated integrations
by parts.

Proposition 1. For each 0 ≤ µ < θ0, φµ is an admissible p-value for the
parameter space � = �µ�∞�.

Proof. Let π be the restriction of Lebesgue measure to �µ�∞�. Then the
marginal mass function of X is

f̄�n� =
∫ ∞

µ

1
n!

θne−θdθ = Fµ�n��

by (5), and the posterior probability of �θ0�∞� given X = n is

1

f̄�n�
∫ ∞

θ0

1
n!

θne−θdθ = Fθ0
�n�

Fµ�n�
= φµ�n��
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So, φµ is Bayes with respect to π. Moreover, the total Bayes risk is finite, since
r̄�π� = ∑∞

n=0 φµ�n��1−φµ�n��Fµ�n� ≤
∑∞

n=0�1−Fθ0
�n�� ≤ θ0.

Slightly more was proved than claimed: if 0 < µ < µ′ < θ0, then φµ′ is
admissible for � = �µ�∞�. However, φ0 is not admissible when µ > 0.

Theorem 1. If 0 < µ < θ0 < ∞, then φ0 is an inadmissible p-value for
testing H0 � θ ≥ θ0 when � = �µ�∞�.

Proof. It is shown that assuming admissibility of φ0 leads to a contra-
diction. If φ0 were admissible, then there would be sigma-finite measures π0
and π1 for which (2) and (3) hold for all 0 ≤ n < ∞. Let π = π0 + π1,

H�dθ� = e−θπ�dθ�
c

�

Hi�dθ� = e−θπi�dθ�
c

�

i = 0�1� where c is so chosen that H is a probability distribution. Then
H0��� = φ0�0�H��� = φ0�0� from (3) with n = 0, and H1��� = 1 − φ0�0�.
Define H̃0 and H̃1 by H̃0 = H0/φ0�0� and H̃1 = H1/�1−φ0�0��. Then H̃0 and
H̃1 are probability distributions and H = φ0�0�H̃0+ �1−φ0�0��H̃1. With this
notation,

n!
1−φ0�n�
1−φ0�0�

∫ ∞

µ
θnH�dθ� = n!

∫ θ0

µ
θnH̃1�dθ�(6)

for all n = 0�1�2� � � � � by (3). Next, let Y� Z� #0 and #1 be independent
random variables for which Y = 0 or 1 with probabilities φ0�0� and 1−φ0�0�,
Z has the standard exponential distribution, #0 ∼ H̃0 and #1 ∼ H̃1, and let
# = �1−Y�#0 +Y#1. Then # ∼ H. Now E�Zn� = n! and

E�Zn�Z ≤ θ0� =
1

1− e−θ0

∫ θ0

0
zne−zdz = n!

1−φ0�n�
1−φ0�0�

for all n, by (5). So, (6) may be rewritten as E�Zn�Z ≤ θ0�E�#n� =
E�Zn�E�#n�Y = 1� or, equivalently,

E��Z#�n�Z ≤ θ0� = E��Z#�n�Y = 1�
for all n. That is, the moments of the two conditional distributions are the
same. The magnitude of these moments is at most n!θn

0 from the right side
of (6). So, the moments uniquely determine the conditional distributions and,
therefore, P�Z# ≤ z�Z ≤ θ0� = P�Z# ≤ z�Y = 1� for all z. See, for example,
Billingsley [(1995), pages 388-389]. Since P�Y = 1� = 1 − e−θ0 = P�Z ≤ θ0�
and P�Z# ≤ z� = P�Z# ≤ z�A�P�A� + P�Z# ≤ z�A′�P�A′� for any event
A, it then follows that P�Z# ≤ z�Z > θ0� = P�Z# ≤ z�Y = 0� for all z. This,
however, is impossible, since the right side is positive for all z > 0 and the left
side vanishes for 0 < z < µθ0.
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From Proposition 1, the usual p-value is Bayes with respect to the uniform
distribution on �0�∞�. So, freely mixing points of view, the following derivation
of φµ suggests itself. Use of φ0 is consistent with a uniform prior; if there is a
known lower bound for θ, then the prior distribution of θ should be conditioned
to reflect this knowledge, and that leads to φµ. That the modified and usual
p-values may be very different was illustrated in the Introduction.

For testing H0 � θ ≤ θ0, the usual p-value φ̃0�n� = 1 − Fθ0
�n − 1� is inad-

missible for � = �µ�∞� for any 0 < µ < θ0, by an argument similar to the
proof of Theorem 1. If µ > 0, then the p-value obtained by restricting the
prior π�dθ� = dθ/θ to �µ�∞� is φ̃µ�n� = 1 − Fθ0

�n − 1�/Fµ�n − 1� for n ≥ 1
and φ̃µ�0� < 1. This is admissible for � = �µ�∞�, as is 1 − φµ. For testing
H0 � θ = θ0, the usual p-value is complicated and inadmissible, even when
µ = 0. See Theorem 4.3 of Hwang et al. (1992)

Of course, it does not follow from Theorem 1 that φµ dominates φ0; and it
does not, since φµ�n� > φ0�n� for all n. The risk functions of the two estimators
are compared in Figure 1 below for b = 5 and θ0 = 2.

3. Confidence bounds. Let us write φ
θ0
µ �n� for the modified p-value in

(4). Then formally applying the relationship between one sided tests and con-
fidence bounds [e.g., Lehmann (1986), pages 89–95] to the modified p-values

theta

r
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Fig. 1. For b = 5 and θ0 = 2; solid line is risk of φ0; dotted line is risk of φµ
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leads to sets of the form �θ � φθ
µ�n� ≥ α�, where 0 < α < 1. The latter

set is easily seen to be the interval �µ� b
µ
n�, where b

µ
n solves the equation

Fb�n� = αFµ�n�. Equivalently, Gn+1�b� = 1−αFµ�n�, where Gn is the gamma
distribution function with shape parameter n and scale parameter 1, as in (5).
This is essentially the argument used by Roe and Woodroofe (1999).

The confidence interval �µ� b
µ
n� can be derived directly too. Consider a deci-

sion problem in which the action space is � = � and the loss function is

L�θ� b� = �θ− b�+ + αb�(7)

where 0 < α < 1 and x+ = max�0� x�. If ξ∗ is a prior density, then it is
easily seen that

∫
� L�θ� b�ξ∗�θ�dθ = ∫∞

b �1 − +∗�θ��dθ + αb, where +∗ is the
distribution function of ξ∗. The latter is minimized when +∗�b� = 1 − α, and
with this choice of b ∫

�
L�θ� b�ξ∗�θ�dθ =

∫ ∞

b
θξ∗�θ�dθ�

This provides the solution to a no data problem. If ξ is a (possibly improper)
prior density and X = n is observed, then the (formal) Bayes solution is
obtained by letting ξ∗ = ξ∗

n be the posterior density. In particular, if ξ�θ� = 1
for µ ≤ θ < ∞, then 1−+∗

n�θ� = Fθ�n�/Fµ�n�, and the solution to the equation
1 − +∗

n�b� = α is b
µ
n. That is, the confidence interval �µ� b

µ
n� is formal Bayes

with respect to the uniform distribution on �µ�∞�. The overall Bayes risk for
the this problem is not finite, however, and admissibility is not clear.

Admissibility can be shown if the loss is changed to lessen the influence of
large θ, or equivalently large n. (Recall that the paper is about small n.) Let

L�θ�n� b� = cnL�θ� b��(8)

where cn are positive constants. This change does not affect Bayesian solutions
to the decision problem, but can affect admissibility. The risk function and
Bayes risk of a decision function b for the problem (8) are defined by

r�b� θ� =
∞∑

n=0
L�θ�n� bn�fθ�n�

and (1) (with ψ replaced by b).

Lemma 1. If r�b� θ� < ∞ for all θ, then r�b� θ� is continuous in θ.

Proof. Fix a θ0 ∈ �. To see that r�b� θ� is continuous at θ = θ0, it suffices
to show that

gn �= sup
�θ−θ0�≤1

L�θ�n� bn�fθ�n�

is summable over n ≥ 0, since continuity then follows from the Dominated
Convergence Theorem. Clearly, gn ≤ cn��θ0+1−bn�++αbn� sup�θ−θ0�≤1 fθ�n� for
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all n; and this is summable, since sup�θ−θ0�≤1 fθ�n� ≤ fθ0+1�n� for all n > θ0+1
and r�b� θ0 + 1� < ∞.

Theorem 2. If

∞∑
n=0

c2n < ∞�

then the formal Bayes solution b
µ
n (with respect to the uniform distribution) is

admissible with respect to the loss �8� when � = �µ�∞�.

Proof. First it is shown that there are finite priors πh� h > 0, for which
r̄�πh� < ∞ for all h, πh converges vaguely to Lebesgue measure as h → 0, and

lim
h→0

r̄�bµ�πh� − r̄�πh� = 0�(9)

Admissibility will follow easily. Let πh have density ξh�θ� = e−hθ for θ ≥ µ.
Then it is easily seen that the marginal mass function of X and the posterior
distribution function of θ given X = n are

f̄h�n� =
(

1
1+ h

)n+1
Fµ�1+h��n�

and

1−+∗
h�n�θ� =

Fθ�1+h��n�
Fµ�1+h��n�

�

It follows easily that the Bayes solution for πh is

b∗h�n = 1
1+ h

G−1
n+1�1− αFµ�1+h��n���(10)

This simple relation has important consequences. First, since G−1
n �u� = O�n�

for fixed 0 < u < 1, it follows that b∗h�n = O�n� as n → ∞ and, therefore, that
r̄�πh� < ∞ for each fixed h > 0. It also follows that b∗h�n ≤ b

µ
n, b∗h�n ≥ b

µ
n/�1+h�

and, therefore, that b∗h�n ≤ b
µ
n ≤ �1+ h�b∗h�n.

To verify the crucial relation (9), write∫
�
L�θ� bµ

n�ξ∗
h�n�θ�dθ =

∫ ∞

b
µ
n

�θ− bµ
n�ξ∗

h�n�θ�dθ+ αbµ
n

=
∫ ∞

b∗h�n

�θ− bµ
n�ξ∗

h�n�θ�dθ+
∫ b

µ
n

b∗h�n

�bµ
n − θ�ξ∗

h�n�θ�dθ+ αbµ
n

=
∫ ∞

b∗h�n

θξ∗
h�n�θ�dθ+

∫ b
µ
n

b∗h�n

�bµ
n − θ�ξ∗

h�n�θ�dθ�
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Thus,

r̄�bµ�πh� − r̄�πh� =
∞∑

n=1
cn

∫ b
µ
n

b∗h�n

�bµ
n − θ�ξ∗

h�n�θ�dθ× f̄h�n�

=
∞∑

n=1
cn

∫ b
µ
n

b∗h�n

�bµ
n − θ� 1

n!
θn exp�−�1+ h�θ�dθ

Since b∗h�n → b
µ
n as h ↓ 0 for fixed n, it is clear that

lim
h→0

m∑
n=1

cn

∫ b
µ
n

b∗h�n

�bµ
n − θ� 1

n!
θn exp�−�1+ h�θ�dθ = 0

for each fixed m. Moreover, for all large n and small h, supθ θne−θ/n! ≤ 1/
√

n,
0 ≤ b

µ
n − b∗h�n ≤ 2hn, and min�bµ

n� b
∗
h�n� ≥ n/2. So,

∞∑
n=m+1

cn

∫ b
µ
n

b∗h�n

�bµ
n − θ� 1

n!
θn exp�−�1+ h�θ�dθ

≤
∞∑

n=m+1
cn�bµ

n − b∗h�n�2 ×
1√
n
exp

{
−1
2
hn

}

≤
√√√ ∞∑

n=m+1
c2n ×

√
�2h�4

∞∑
n=1

n3 exp�−hn�

for all sufficiently large m and small h. The second factor on the right is
independent of m ≥ 1 and bounded in 0 < h < 1; the first is independent of h
and approaches 0 as m → ∞. Relation (9) follows.

To complete the proof, suppose that bµ were inadmissible. Then there would
be a b for which r�b� θ� ≤ r�bµ� θ� for all θ with strict inequality for some θ,
say θ = θ0. Since r�bµ� θ� is everywhere finite, r�b� θ� and r�bµ� θ� are both
continuous in θ. Thus, there would be ε > 0 and δ > 0 for which r�b� θ� ≤
r�bµ� θ� − ε for �θ− θ0� ≤ δ, and this is incompatible with (9). ✷

As with p-values, bµ
n is obtained from b0n, by conditioning the prior distri-

bution to account from the known bound, and the two can be quite different.

4. Remarks. As of Summer 1999, the KARMEN 2 Group had expected
to see 7�8 background events and had seen 8 events total. Based on this data
alone, it is still impossible to confirm or deny the existence of a signal.

There is a weak connection between the main results here and the func-
tional model of Dawid and Stone (1982). If the signal S of the Introduction is
represented as S = F#

ν�U�, where F#
ν denotes the Poisson quantile function,

and U is a uniformly distributed random variable that is independent of B,
then X = B+S is a function of θ = µ+ ν and E = �B�U�. This is an instance
of the functional model. For a given n ≥ 0, the set of E for which X = n for
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some θ ≥ µ is the set where B ≤ n. Dawid and Stone (1982) suggest condi-
tioning on observed constraints in their own context but require a condition
called partitionability that is not satisfied in our model.

It is likely that the inadmissibility results of Section 2 have extensions to
other one-parameter exponential families, when the natural parameter space
is restricted. Different mathematical arguments may be necessary, however,
because the use of the moment problem is special to the discrete case. For
example, if X is normally distributed with mean θ and variance one, where
θ ≤ 1, and if H0 � θ ≤ 0, then the usual p-value φ�x� = P0�X ≥ x� is
easily seen to be inadmissible by a simple argument using Theorem 3.3 of
Hwang et al (1992) and analysis of φ�x� as x → ∞. We have not pursued such
extensions here, because our interest is in examining the suggestion of Roe
and Woodroofe (1999).

The cn in Section 3 may seem a mystery. A more familiar way of accom-
plishing the same objective is to divide the loss by a function of θ, for example,
forming relative square error loss to keep the minimax risk bounded. That is
possible in our context too, but leads to slightly different answers.

Acknowledgment. Thanks to Byron Roe for helpful conversations.
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