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Motivated by the study of an important data set for understanding
the large-scale structure of the universe, this work considers the estima-
tion of the reduced second-moment function, or K function, of a stationary
point process on � observed over a large number of segments of possibly
varying lengths. Theory and simulation are used to compare the behavior
of isotropic and rigid motion correction estimators and some modifications
of these estimators. These results generally support the use of modified
versions of the rigid motion correction. When applied to a catalog of astro-
nomical objects known as absorbers, the proposed methods confirm results
from earlier analyses of the absorber catalog showing clear evidence of
clustering up to 50 h−1 Mpc and marginal evidence for clustering of mat-
ter on spatial scales beyond 100 h−1 Mpc, which is beyond the distance at
which clustering of matter is now generally accepted to exist.

1. Introduction. One way to describe a stationary spatial point process is
through some measure of clumpiness of the events of the process. A commonly
used measure of clumpiness is the reduced second-moment function K�t�,
defined as the expected number of events within distance t of a typical event
of the process divided by the intensity of the process. For a homogeneous
Poisson process on �d�K�t� = µdtd, where µd is the volume of a unit ball in d
dimensions. Thus, values ofK�t� greater than µdtd are indicative of a process
that is clumpier than Poisson and values less than µdtd are indicative of a
process that is more regular than Poisson. When estimating K�t� based on
observing a process within a bounded window W, a central problem is that
for any event in W that is within t of the boundary of W, we do not know for
sure how many other events are within t of it. Baddeley (1998) describes a
number of ways of accounting for these edge effects. Although there is quite a
bit of asymptotic theory for how these estimators behave when the underlying
process is Poisson [Ripley (1988) and Stein (1993)], much less is known for
non-Poisson processes.

An interesting aspect of asymptotic theory for point processes is how one
should take limits. Ripley (1988) and Stein (1993) consider a single growing
window, which might appear to be the obvious way to take limits. However,
Baddeley, Moyeed, Howard and Boyde (1993) describe applications in which
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point processes are observed in many well-separated windows. For this set-
ting, Baddeley and Gill (1997) argue that it is natural to consider taking limits
by keeping the size of these windows fixed and letting their number increase.
As they point out, one advantage of this approach is that the edge effects do
not become negligible in the limit, since for any fixed t, the fraction of events
that are within t of a window boundary does not tend to 0. Thus, for compar-
ing different approaches for handling edge effects, increasing the number of
windows may be more informative than allowing a single region to grow in
all dimensions, for which the fraction of events that are within t of a window
boundary does tend to 0. Another advantage of taking limits by letting the
number of windows increase is that if the process is independent in differ-
ent regions, then limit theorems are easier to prove. This is particularly the
case when the windows are all well-separated translations of the same set so
that the observations of the process on the multiple windows can be reason-
ably modeled as iid realizations. Baddeley and Gill (1997) use this approach
to obtain weak convergence results for estimators of K and other functions
describing point process behavior. The resulting limiting variances are difficult
to evaluate and Baddeley and Gill (1997) only give explicit results for what
they call the sparse Poisson limit, in which the intensity of a homogeneous
Poisson process tends to 0.

This work studies the estimation of K for a process on � when the win-
dows are segments of varying lengths. The fact that the windows are one-
dimensional greatly simplifies the calculation of estimators and permits the
explicit derivation of some of their properties. The fact that the segment
lengths vary provides for an interesting wrinkle on the approach of Baddeley
and Gill (1997). Notably, simulation results in Section 6 show that the differ-
ences between certain estimators are much greater when the segment lengths
the unequal.

Section 2 describes a cosmological problem that motivated the present
study. Vanden Berk, Quashnock, York and Yanny (1996) put together a cat-
alog of what are known as absorption-line systems, or absorbers, detected
along the lines of sight of QSO’s (quasi-stellar objects, or quasars). This cata-
log, a preliminary version of which can be obtained from Daniel Vanden Berk
(danvb@fnal.gov), provides important evidence about the large-scale structure
of the universe. To a first approximation, in appropriate units, the locations of
these absorbers along the lines of sight can be viewed as multiple realizations
of a stationary point process along segments of varying length.

Section 3 describes the estimators ofK used in this paper and gives explicit
expressions for the commonly used rigid motion correction and isotropic cor-
rection estimators when the observation region is a collection of line segments
of varying lengths. In addition, Section 3 provides an explicit expression for
a modification to the rigid motion correction advocated in Stein (1993). The
fact that this estimator can be calculated explicitly is in contrast to the situa-
tion in more than one dimension, in which case calculating this modified rigid
motion correction requires numerous numerical integrations even for simple
regions such as circles and rectangles. Finally, following on an idea of Picka
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(1996), Section 3 introduces another approach to modifying the rigid motion
correction and isotropic correction. When the underlying process is homoge-
neous Poisson, Picka’s modification of the rigid motion correction has similar
properties to the estimator proposed in Stein (1993), but theoretical results
in Section 5 and simulation results in Section 6 suggest that his approach
may have some advantage and we recommend the adoption of the resulting
estimator for routine use.

When the underlying process is homogeneous Poisson, Section 4 derives
some asymptotic theory for the various estimators as the number of seg-
ments on which the process is observed increases. As in the case of a sin-
gle growing observation window studied in Stein (1993), the modified rigid
motion correction asymptotically minimizes the variance of the estimator of
K�t� among a large class of estimators possessing a type of unbiasedness
property. Furthermore, if the segments are of equal length, then it is pos-
sible to give explicit comparisons between various estimators. In particular,
the ratio of the asymptotic mean squared error of the ordinary rigid motion
correction to that of the modified rigid motion correction equals 1 plus a
positive term proportional to the expected number of events per line seg-
ment. Thus, the benefit of the modification is modest when this expectation
is small, around 1, say, but can be quite substantial when this expectation is
large.

Section 5 considers asymptotic results when the underlying process is not
necessarily homogeneous Poisson, the segments are all of equal length and the
processes on different segments are independent. In this case, it is essentially
trivial to obtain a central limit theorem for the estimators of K used here.
From the general result, it is difficult to make comparisons between the vari-
ous estimators. However, if the processes on the different segments are each
homogeneous Poisson but with intensities that vary from segment to segment
according to some sequence of iid positive random variables, it is possible to
give simple expressions for the asymptotic variances of the rigid motion cor-
rection and the two modifications of this estimator. These results show that
the modification in Stein (1993) has strictly smaller asymptotic variance than
the ordinary rigid motion correction. Furthermore, the modification of Picka
(1996) has strictly smaller asymptotic variance than the modification in Stein
(1993) unless the random intensities have zero variance, in which case the
two modified estimators have equal asymptotic variance.

Section 6 reports on the results of a simulation study comparing the ordi-
nary rigid motion correction and the two modifications for both Poisson and
non-Poisson processes and equal and unequal segment lengths. While there is
no theory showing the general superiority of the modified estimators for non-
Poisson processes, the modified estimators do, for the most part, outperform
the unmodified estimator. The advantage of the modified estimators tends to
be larger when the process is more regular than Poisson, when the segment
lengths are unequal and when t is near the length of the longest available
segment.
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Section 7 applies the rigid motion correction and the two modifications of
it described in Section 3 to the estimation of K for the absorber catalog. In
addition, approximate confidence intervals are obtained using bootstrapping
based on viewing the segments as the sampling units. All three estimates
are similar and confirm the finding in Quashnock and Stein (1999) of clear
evidence of clustering up to at least 50 h−1 Mpc. In addition, the confidence
intervals based on the modified procedures produce a slightly stronger case
for clustering of absorbers beyond 100 h−1 Mpc. Whether there is clustering of
matter at such large scales and for the high redshifts in the absorber catalog
is a critical issue in modern cosmology, since presently used models for the
evolution of the universe have difficulty explaining such clustering [Steidel,
Adelberger, Dickinson, Giavalisco, Pettini and Kellogg (1998) and Jing and
Suto (1998)].

2. The absorber catalog. The cosmological principle, which states that
on large enough spatial scales the distribution of matter in the universe is
homogeneous and isotropic, is a central tenet of modern cosmology [Peebles
(1993)]. In cosmology, it is convenient to measure distances in units of h−1 Mpc,
where Mpc, or megaparsec, is 3�26×106 light years and h is an inexactly known
dimensionless number that is believed to be between 0.5 and 0.75. As is com-
mon in the cosmological literature, in reporting distances determined from
redshifts, we will assume that Hubble’s constant, H0, equals 100 h km s−1

Mpc−1. To help calibrate one’s thinking about such distances, 1 h−1 Mpc is a
typical distance between neighboring galaxies. It is now generally agreed that
galaxies cluster up to scales of 10–20 h−1 Mpc [Davis and Peebles (1983) and
Loveday, Maddox, Efstathiou and Peterson (1995)]. Furthermore, clustering
on such scales can be reproduced by computer simulations of the evolution of
the universe based on our present understanding of this evolution [see Zhang,
Meiksin, Anninos and Norman (1998) and the references therein]. However,
there is some evidence of clustering of matter on scales of up to 100 h−1 Mpc
[see Quashnock, Vanden Berk and York (1996) and the references therein]
and a few cosmologists have speculated that clustering may exist at all spa-
tial scales [Coleman and Pietronero (1992) and Sylos Labini, Montuori and
Pietronero (1998)], despite the fact that clustering at all scales contradicts
both the cosmological principle and the considerable evidence that supports
it [Peebles (1993), pages 20, 45 and 221]. Thus, determining the extent to
which clustering of matter is present is of fundamental importance to modern
cosmology.

One way to measure the clustering of matter is through the direct observa-
tion of large numbers of galaxies. Several galaxy surveys in various regions
of the sky have been done in recent years [Martı́nez (1997)]; Pons-Borderı́a,
Martı́nez, Stoyan, Stoyan and Saar (1999) describe recent work on estimat-
ing second-moment structures of galaxy locations from such surveys. The
presently ongoing Sloan Digital Sky Survey will be by far the largest such
survey and will contain roughly 108 galaxies, approximately 106 of which
will have spectroscopically measured redshifts [Margon (1999)]. An object’s
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redshift gives its velocity relative to the Earth, which, using Hubble’s law,
yields its approximate distance from the Earth. Galaxy surveys are limited by
the fact that galaxies are difficult to observe directly beyond several hundred
h−1 Mpc. QSO’s, on the other hand, are extremely bright and focused objects
that can be readily detected at distances of several thousand h−1 Mpc, going
back to nearly the beginning of the universe. Matter that falls on the line of
sight between the QSO and the Earth can absorb light from the QSO and
thus be detected from the Earth, even though this matter cannot be directly
observed. Certain types of matter absorb light in a characteristic pattern of
frequencies that can be used to identify the matter and, through the redshift
of this absorption pattern, the relative velocity of this matter to the Earth.
Astronomical objects detected in this way are called absorption-line systems,
or absorbers. As noted by Crotts, Melott and York (1985), catalogs of absorbers
provide a means for estimating the clustering of matter over very large spatial
scales. Vanden Berk, Quashnock, York and Yanny (1996), Quashnock, Vanden
Berk and York (1996) and Quashnock and Vanden Berk (1998) make use of
an extensive catalog of heavy-element absorption-line systems drawn from the
literature to investigate the clustering of matter at various scales. York, Yanny,
Crotts, Carilli, Garrison and Matheson (1991) describe an earlier version of
this catalog and a preliminary version of an updated catalog is available from
Daniel Vanden Berk (danvb@fnal.gov). Here we will use the same absorber
catalog as in Quashnock and Stein (1999), who examined clustering in 352
C iv absorbers (absorbers detected from the absorption-line patterns of C iv,
or triply ionized carbon) along 274 QSO lines of sight. Although the relation-
ship between C iv absorbers and galaxies is unclear, they do appear to track
the general spatial patterns of galaxies [Lanzetta, Bowen, Tytler and Webb
(1995) and Quashnock and Vanden Berk (1998)], and hence provide a plausible
means for assessing the clustering of visible matter on large scales.

Because the universe expands over time and, due to the finite velocity of
light, the more distant an object the further in the past we observe it, the
method used for converting redshifts into distances from Earth is critical to the
analysis of this catalog. Redshifts are generally denoted by z and, according to
Hubble’s law, an object observed at redshift z is seen at a time when distances
between objects were approximately �1 + z�−1 times their present values. To
correct for the expansion, here, as in Quashnock and Stein (1999), we use
what are called comoving coordinates, which scale up all distances to what
they would be today if all the matter in the universe moved exactly with the
Hubble flow [Peebles (1993)]. Thus, in examining the clustering of absorbers
in comoving coordinates, we have removed the most important effects of the
universe’s expansion. If one did not make this correction, the volume density
of absorbers would drop approximately like �1 + z�3 as z decreases and we
move toward the present.

For various reasons, it is only possible to detect C iv absorbers along a
segment of each line of sight. The mean length of these segments in comov-
ing units is 303�3 h−1 Mpc, with a range of 7�5 h−1 Mpc to 439�8 h−1 Mpc.
For this catalog, the median redshift of the absorbers is about 2.2, with the
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bulk of absorbers having redshifts from about 1.5 to 3. Our analysis acts as
if clustering is both stationary in time and homogeneous in space. We are
more accurately examining an average clustering over the range of redshifts
in the sample at a cosmic epoch corresponding to a characteristic redshift
of 2.2 (when the universe was about 1/3 its present scale and about 1/6 its
present age). Section 7 provides further discussion of this issue and its possi-
ble influence on our results.

As in Quashnock and Stein (1999), we will act as if the absorber catalog
can be viewed as multiple partial realizations of some stationary point process
on � along a series of segments. In particular, we will not attempt to use any
information about the physical location of these segments in three-dimensional
space. Using this simplification, we will then be able to apply the methods
described in the next section to the absorber catalog.

3. Methodology. Suppose M1� � � � �Mp are simple, stationary point pro-
cesses on � with a common probability law having intensity λ and reduced
second-moment function K. We do not necessarily assume that M1� � � � �Mp

are independent. For a Borel subset A of �, let Mj�A� be the number of
events of Mj contained in A. If �0�Qj� is the interval on which we observe
Mj, then we can write the observation domain as D = ⋃p

j=1	�0�Qj�� j
,
so that �x� l� ∈ D implies l ∈ 	1� � � � � p
 and x ∈ �0�Ql�. Define Nj =
Mj��0�Qj���N+ = ∑p

j=1Nj and denote the realized value of N+ by n. For
j = 1� � � � �N+� let �Xj�Lj� be the random locations of these observed events
with realized values �xj� lj� for j = 1� � � � � n.

The basic principle behind all edge-corrected estimators of K described by
Ripley (1988) is to first find an exactly unbiased estimator of λ2 × volume of
observation domain ×K�t� and then to divide by an estimator of (λ2×volume).
Here, the volume of the observation domain isQ+ = ∑p

j=1Qj. For a symmetric
function φ on D × D, define T�φ� = ∑

j �=k φ��Xj�Lj�� �Xk�Lk��. Then the
unbiasedness constraint requires that

ET�φ� = λ2Q+K�t�(1)

for any reduced moment function K. Estimating λ2 by N+�N+ − 1�/Q2
+

yields

K̃�t� =




Q+T�φ�
N+�N+ − 1� � if N+ > 1�

0� otherwise,

as a natural estimator of K�t�.
There is an infinite array of functions φ satisfying (1). Two popular choices

are the rigid motion correction [Ohser and Stoyan (1981)] and the isotropic
correction [Ripley (1976)]. Asymptotic results in Sections 4 and 5 suggest that
modified versions of the rigid motion correction have good large-sample proper-
ties when the underlying process is Poisson, so we focus on this correction here,
although we also give some results for the isotropic correction for comparison.
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It is fairly elementary to prove that the rigid motion correction satisfies (1)
when the observation domain D is a subset of � . First, for a stationary point
process M on � with intensity λ, define the reduced second-moment mea-
sure � by λ2� �ds�dx = 2E	M�dx�M�x + ds�
, in which case the reduced
second-moment function K is given by K�t� = ∫

�0� t� � �ds�. Denote the indi-
cator function by 1	·
 and use �A� to indicate the Lebesgue measure of the
set A ⊂ � and As to indicate the set A translated by the amount s. The rigid
motion correction is given by

φ�x�y� = 1	�x− y� ≤ t
�D�
�D ∩Dx−y�

�

we can then write

T�φ� =
∫
s∈�−t�0�∪�0� t�

∫
x∈�
M�dx�M�x+ ds�1	x ∈ D� x+ s ∈ D


�D ∩Ds�

= 2
∫
s∈�0� t�

∫
x∈�
M�dx�M�x+ ds�1	x ∈ D� x+ s ∈ D


�D ∩Ds�
�

so that

E
{
T�φ�} = 2

∫
s∈�0� t�

∫
x∈�

1
2
λ2� �ds�1	x ∈ D� x+ s ∈ D


�D ∩Ds�
dx

= 2
∫
s∈�0� t�

1
2
λ2

�D ∩Ds�
�D ∩Ds�

� �ds�

= λ2K�t��
One way to view the setting where D is a collection of line segments is

to think of these segments as being widely spaced intervals on �, in which
case we just have a special case of the treatment in the preceding paragraph.
However, it will be helpful in the subsequent development to think of D as⋃p
j=1	�0�Qj�� j
. The rigid motion correction can then be defined by taking φ

to be

φR��x� k�� �y� l�� = Q+1	�x− y� ≤ t� k = l
∑p
j=1�Qj − �x− y��+ �

To write the isotropic correction in terms of a symmetric function, let

φI��x� k�� �y� l�� = Q+1	x− y� ≤ t� k = l
{αl�x�y� + αl�y�x�}
Q+ −∑p

j=1 min
{�2�x− y� −Qj�+�Qj} �(2)

where αl�x�y�−1 = 1	x + �y − x� < Ql
 + 1	x − �y − x� > 0
. Define K̃R�t� =
Q+T�φR�/	N+�N+ − 1�
 and K̃I�t� = Q+T�φI�/	N+�N+ − 1�
, where it
is understood that K̃R�t� = K̃I�t� = 0 for N+ ≤ 1. We have used Ohser’s
extension of the isotropic correction to cover the case t > 1

2 min�Q1� � � � �Qp�
[Ohser (1983)]. As Ripley [(1988), page 32] notes, this extension is generally
not of much practical value when there is a single contiguous observation
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window. However, when there are multiple windows of various sizes, the
extension is critical. For the absorber catalog, for example, one is certainly
interested in estimating K at distances greater than 3�75 h−1 Mpc, the value
of 1

2 min�Q1� � � � �Qp� in the catalog.
Note that φI��x� k�� �y� l�� = φR��x� k�� �y� l�� = 0 if k �= l, which just says

that pairs of observations on different segments do not contribute to the esti-
mate of K�t�. Since we have made no assumption about the joint distribution
ofM1� � � � �Mp, for (1) to be valid, it is necessary to assume φ��x� k�� �y� l�� = 0
whenever k �= l. Thus, throughout this work, we will only consider φ satisfying

(A) φ��x� k�� �y� l�� = 0 for k �= l�

We next show how to apply to the present setting the method developed in
Stein (1993) for improving upon any estimator ofK of the formQ+T�φ�/	N+×
�N+ − 1�
 with φ satisfying (1). Suppose �X�L� is uniformly distributed
on D in the sense that P�L = l� = Ql/Q+ and the density of X given
L = l is uniform on �0�Ql�. Then M1� � � � �Mp stationary with common dis-
tribution imply that, for any real-valued function g for which E�g�X�L�� <
∞�E∑N+

j=1 g�Xj�Lj� = λQ+Eg�X�L�, so that
∑N+
j=1	g�Xj�Lj� −Eg�X�L�


is an unbiased estimator of 0. The idea in Stein (1993) is to choose g to
minimize

varn

[
T�φ� −

n∑
j=1

{
g�Xj�Lj� −Eg�X�L�

}]
�

where varn means to compute the variance under binomial sampling:N+ = n
is fixed and, for j = 1� � � � � n� �Xj�Lj� are independent and all have the same
distribution as �X�L�. Proposition 1 in Stein (1993) shows that, for n ≥ 1
and �y�m� ∈ D, a minimizing g is 2�n−1�h�y�m�φ�/Q+, where h�y�m�φ� =∑p
l=1

∫Ql
0 φ��x� l�� �y�m��dx.Under (A),h�y�m�φ� = ∫Qm

0 φ��x�m�� �y�m��dx.
Now define

T∗�φ� = T�φ� − 2�N+ − 1�
Q+

N+∑
j=1

{
h�Xj�Lj�φ� −Eh�X�L�φ�

}
�

Note that if φ satisfies (1), Eh�X�L�φ� = 2t. Under binomial sampling, we
always have varn	T∗�φ�
 ≤ varn	T�φ�
. This suggests that the estimator
K̂�t� = Q+T∗�φ�/	N+�N+−1�
 forN+ > 1 and 0 otherwise may be preferred
over K̃�t�. As with the unmodified estimators, K̂R�t� indicates that φ = φR
and K̂I�t� indicates that φ = φI.

Picka (1996) suggests another approach to modifying estimates of second-
moment measures. He considered random sets for which the probability of
any fixed point being in the random set is positive, but his approach can
also be applied to point processes, for which this probability is 0. For point
processes, his idea corresponds to using an estimator of λQ+ other than N+
in K̃. For any real-valued function c on D satisfying

∑p
l=1

∫Ql
0 c�x� l�dx =
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Q+, λ̂c = Q−1
+

∑N+
j=1 c�Xj�Lj� is an unbiased estimator of λ. Let us consider

estimators of K�t� of the form Q+T�φ�/	λ̂cQ+�λ̂cQ+ − 1�
. It is not generally
possible to calculate the exact variance of such estimators under binomial
sampling. However, for Q+ sufficiently large, λ̂c − λ and Q−1

+ T�φ� − λ2K�t�
should be small in probability, which suggests using a first-order Taylor series
approximation to obtain

Q+T�φ�
λ̂cQ+�λ̂cQ+ − 1� ≈ 1

λ2Q+
T�φ� − 2K�t�

λ
�λ̂c − λ��(3)

For a given φ and subject to c satisfying the unbiasedness constraint, now con-
sider minimizing the variance of the right-hand side of (3) whenM1� � � � �Mp

are iid Poisson processes with intensity λ. It is a straightforward variational
problem to show that a minimizing c is given by c�x� l�φ� = h�x� l�φ�/�2t�.
Define

K̆�t� = Q+T�φ�∑N+
j=1 c�Xj�Lj�φ�

{∑N+
j=1 c�Xj�Lj�φ� − 1

}
forN+ > 1 and K̆�t� = 0 otherwise. As with K̃and K̂, subscripts R or I on K̆
indicate that φ = φR or φ = φI.

WhenM1� � � � �Mp are iid Poisson processes, K̂�t� and K̆�t� should behave
similarly. To see this, first use Taylor series to obtain

K̂�t� ≈ 1
λ2Q+

T�φ� − 2
λQ+

N+∑
j=1
h�Xj�Lj�φ� + 2

{
2t−K�t�} N+

λQ+
+ 2K�t��

From this approximation and (3), when K�t� = 2t, both K̂ and K̆ are approx-
imately

1
λ2Q+

T�φ� − 2
λQ+

N+∑
j=1
h�Xj� Lj� φ� + 4t�

Thus, for Q+ large, the two estimators will be similar when M1� � � � �Mp are
iid Poisson processes, but they are not necessarily similar otherwise.

Even for simple regions in two or more dimensions, calculating h�·� φ�
requires numerical integrations. However, when the observation region is
D = ⋃p

j=1	�0�Qj�� j
, it is possible to give an explicit expression for h�x� l�φR�
for �x� l� ∈ D. For convenience, we will assume that the Qj’s have been
arranged in increasing order. For r < Qp, define j�r� = min1≤j≤p	j � Qj ≥ r

and let U�r� = ∑p

j=1�Qj − r�+. For j = 1� � � � � p� let Uj = U�Qj� and set
Q0 = 0 so that U0 = Q+. Furthermore, define

κ�x� t� =
j�x∧t�−1∑
j=1

1
p− j+ 1

log
(
Uj−1
Uj

)
+ 1
p− j�x ∧ t� + 1

log
{
Uj�x∧t�−1
U�x ∧ t�

}
�
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where a sum whose upper limit is less than its lower limit is defined to be 0
and x ∧ t is the minimum of x and t. Then

Q−1
+ h�x� l�φR� = κ�x� t� + κ�Ql − x� t�(4)

(see the Appendix). If the segment lengths are all equal, then κ�s� t� =
p−1 log�Q/	Q− �x ∧ t�
��

It is also possible to evaluate h�x� l�φI� explicitly, but the resulting expres-
sion is rather cumbersome. If t < 1

2 min�Q1� � � � �Qp�, then the denominator
in the definition of φI in (2) equals Q+ whenever �x − y� ≤ t, which greatly
simplifies matters. In this case, it is possible to show that

h�x� l�φI� = t+ �x ∧ t� + {�Ql − x� ∧ t}− 1
2

(
x

2
∧ t

)
− 1

2

(
Ql − x

2
∧ t

)
�

A second special case yielding a simple result is when Q1 = · · · = Qp = Q.
When t < 1

2Q, the preceding expression for h applies and, for t ≥ 1
2Q,

h�x� l�φI� = 3Q
4

+ {
x ∧ �Q− x�}+Q log

[ 1
2Q

	x ∧ �Q− x�
 ∨ �Q− t�
]
�

where x ∨ y is the maximum of x and y.
There is a considerable literature in astrophysical journals on estimating

second-order characteristics of galaxy locations based on galaxy surveys in
large, contiguous regions of the sky. Martı́nez (1997) and Stoyan and Stoyan
(2000) provide two recent reviews of this work. Astrophysicists have generally
focused on estimating the pair correlation function, which is, after a normal-
ization, just the derivative of the K function. For example, for a stationary
point processM on �, assuming K is differentiable, the pair correlation func-
tion is 1

2K
′. Similar to K̂ here, Landy and Szalay (1993) make use of unbiased

estimators of 0 to modify estimators of second-order characteristics. Moreover,
similar to K̆, Hamilton (1993) describes estimators of the pair correlation
function of the form T�φ�/λ̂2 in which λ2 is estimated by something other
than the obvious estimator. We prefer to estimate K rather than the pair cor-
relation function because it separates the problem of handling edge effects
from that of density estimation and the consequent smoothing problem. If one
wants to estimate the pair correlation function, we recommend first comput-
ing an appropriately edge-corrected estimate of K and then differentiating a
smoothed version of this estimate.

4. Asymptotic theory when the truth is Poisson. There are a num-
ber of ways one might take limits to study the properties of the estimators
proposed in the previous section. One possibility would be to fix p and let the
Qj’s tend to ∞. In this approach, the fraction of the observation region within
a fixed distance of an endpoint of a segment tends to 0, and, as in Ripley
(1988) and Stein (1993), the variance of all reasonable estimators of K�t� for
fixed t have the same first-order asymptotic behavior under binomial sam-
pling. However, for the absorber catalog, in which p = 274 and the number
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of absorbers per line is 1.28, a more relevant choice is to uniformly bound the
Qj’s and let p→ ∞. This limiting approach keeps the fraction of the observa-
tion region within a fixed distance of an endpoint of a segment bounded away
from 0 with the result that the differences between various estimators under
binomial sampling show up in the leading terms for the asymptotic variance.
Hansen, Gill and Baddeley (1996) and Baddeley and Gill (1997) take a simi-
lar asymptotic approach for studying estimators of properties of spatial point
processes based on observing the process in an increasing number of identical
and distantly spaced windows.

We now consider adapting the asymptotic results in Ripley (1988) and Stein
(1993) to the present setting. First, we give exact expressions for the variance
under binomial sampling of both K̃�t� and K̂�t�. Following Ripley (1988), for
a symmetric function φ on D×D satisfying (A), define

S�φ� =
p∑
j=1

∫ Qj
0

∫ Qj
0
φ��x� j�� �y�j��dxdy�

S1�φ� =
p∑
j=1

∫ Qj
0

{ ∫ Qj
0
φ��x� j�� �y�j��dx

}2

dy

and

S2�φ� =
p∑
j=1

∫ Qj
0

∫ Qj
0
φ��x� j�� �y�j��2 dxdy�

Under (A) [Ripley (1988)],

varn
{
T�φ�}

= 2n�n− 1�
Q2

+

{
S2�φ� +

2n− 4
Q+

S1�φ� −
2n− 3

Q2
+
S�φ�2

}
(5)

and [Stein (1993)]

varn
{
T∗�φ�} = 2n�n− 1�

Q2
+

{
S2�φ� −

2
Q+
S1�φ� +

1

Q2
+
S�φ�2

}
�(6)

We now want to study what happens as p → ∞. Suppose Q1�Q2� � � � is
a sequence of positive numbers and the subscript p is used to indicate the
dependence of a term on the number of segments observed, so that Dp =⋃p
j=1	�0�Qj�� j
�Q+p = ∑p

j=1Qj and N+p is the total number of events on
Dp. Suppose 	φp
 is a sequence of functions for which the domain of φp is
Dp×Dp and φp is symmetric for all p. In addition to φp satisfying (A) for all
p, we will assume the following regularity conditions:

(B) The φp’s are uniformly bounded.
(C) For each p�φp satisfies the unbiasedness constraint in (1).
(D) The Qj’s are bounded away from 0 and ∞.
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Under (A)–(D), we haveS�φp� = 2tQ+p = O�p�� S1�φp� = O�p� andS2�φp� =
O�p� but not o�p�. It follows that, as p→ ∞,

S2�φp� −
2
Q+p

S1�φp� +
1

Q2
+p
S�φp�2 = S2�φp�	1+O�p−1�
�(7)

Comparing (6) and (7) suggests that minimizing S2�φp� subject to (A)–(D) is
nearly the same as minimizing varn	T∗�φp�
. Stein (1993) shows that, subject
to (C), the rigid motion correction gives a minimizer of S2�φp�. The Appendix
gives an explicit expression for S2�φR� in terms of elementary functions.

We next obtain an analog to Proposition 2 in Stein (1993), which demon-
strates the asymptotic optimality under the Poisson model for K̂R among a
certain class of estimators as the dimensions of a single observation window
increase. For a sequence of functions 	φp
 on Dp × Dp and a sequence of
functions 	gp
 on Dp × 	0�1� � � �
� define the statistic .�φp�gp� by

.�φp�gp� =
Q+p

N+p�N+p − 1�
[
T�φp� −

N+p∑
j=1

{
gp��Xj�Lj��N+p�

− 1
Q+p

p∑
l=1

∫ Ql
0
gp��x� l��N+p�dx

}]

if N+p > 1 and 0 otherwise. Write Eλ to indicate expectations assuming
M1�M2� � � � are independent Poisson processes with constant intensity λ inde-
pendent of p. All ensuing asymptotic results in the rest of this section involve
expectations over the Poisson model and can be proven by first conditioning
on N+p, by using the fact that under this model the conditional distribution
of the observed events on Dp follows binomial sampling and, finally, by aver-
aging over the distribution of N+p, which follows a Poisson distribution with
mean λQ+p.

Proposition 1. Suppose 	φp
 satisfies (A)–(C), Eλ	
∑N+p
j=1 �gp��Xj�Lj�,

N+p��
 < ∞ for all p, the Qj’s satisfy (D) and p−1∑�Qj − t�+ is bounded
away from 0 as p→ ∞. Then

p2
[
Eλ	K̂R�t� − 2t
2 −Eλ

{
.�φp�gp� − 2t

}2]

is bounded from above as p→ ∞.

The assumption that p−1∑�Qj − t�+ is bounded away from 0 as p → ∞
guarantees that 	φRp
 satisfies (B). Since, under the conditions of Proposition

1,Eλ	K̂R�t�−2t
2 = O�p−1� as p→ ∞, this result says that, when the under-
lying processes are independent Poisson with equal intensity, K̂R asymptoti-
cally minimizes the mean squared error among all sequences of estimators of
the form considered in the proposition.
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Let us now make some comparisons of the asymptotic mean squared errors
of some estimators of K�t� under the Poisson model when all Qj’s equal Q
and s = t/Q. From (6), we get

Eλ	K̂�t� − 2t
2 ∼ 2
λ2p2Q2

S2�φp��

Thus, (17) in the Appendix implies

Eλ
{
K̂R�t� − 2t

}2 ∼ − 4
λ2p

log�1− s�(8)

and (20) in the Appendix implies

Eλ	K̂I�t� − 2t
2 ∼ 4
λ2p

×




s+ 3
4s

2� if 0 < s ≤ 1
3 ,

1
12 + 1

2s+ 3
2s

2� if 1
3 ≤ s ≤ 1

2 ,

17
24 − log 2− log�1− s�� if 1

2 ≤ s < 1.

(9)

From Proposition 1, the right-hand side of (9) must be at least as large as
the right-hand side of (8) for all s ∈ �0�1�. In fact, it is a straightforward
exercise to show analytically that the right-hand side of (9) is strictly greater
than the right-hand side of (8) for all s ∈ �0�1�. Thus, as p → ∞, the mod-
ified rigid motion estimator K̂R performs nonnegligibly better than either
the ordinary or the modified isotropic estimator for any t ∈ �0�Q� under the
Poisson model, although the improvement over the modified isotropic estima-
tor is minor. Figure 1 shows the ratio of the asymptotic variances for K̂I�t� and
K̂R�t� under the Poisson model, which reaches a maximum of approximately
1.032 near t = 0�247Q. The asymptotic results in (8) and (9) are unchanged if
K̆R and K̆I replace K̂R and K̂I.

Fig. 1. Ratio of asymptotic mean squared error (amse) of K̂I�t� to that of K̂R�t� for p segments
of length Q as p→ ∞ under Poisson model.
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We next compare the modified and unmodified rigid motion estimators as
p→ ∞ when all Qj’s equal Q. From (5),

Eλ	K̃�t� − 2t
2 ∼ 2
λ2p2Q2

S2�φp� +
4

λp2Q2
S1�φp� −

16t2

λpQ
�

Using (17) and (18) in the Appendix then yields

Eλ	K̃R�t� − 2t
2 ∼ 4
λ2p

[− log�1− s� + 4λQ
{
γ�s� − s2}]�(10)

where

γ�s� = 1
4

∫ 1

0

[∫ 1

0

1	�x− y� ≤ s

1− �x− y� dy

]2
dx�(11)

Equation (19) in the Appendix gives a more explicit expression for γ. Note
that

γ�s� − s2 = 1
4

∫ 1

0

[∫ 1

0

1	�x− y� ≤ s

1− �x− y� dy− 2s

]2
dx�

which is strictly positive for all s ∈ �0�1�.
Comparing (8) and (10) shows that, in terms of mean squared error, the

asymptotic relative advantage of either modified rigid motion estimator over
the unmodified rigid motion estimator is proportional to λQ, the expected
number of events per segment. Figure 2 plots 4	γ�s� − s2
/	− log�1 − s�
,
which is less than 0.124 for all s ∈ �0�1� and is less than 0.061 for all s < 0�9.
Thus, at least for equal Qj’s, we should not expect a large improvement under
the Poisson model due to the modifications when there are only 1.28 events
per segment as in the absorber catalog. Simulation results in Section 6 show
that larger improvements can occur with unequal Qj’s.

Fig. 2. Plot of 4	γ�s�−s2
/	− log�1−s�
. Multiplying this ratio by λQ gives the relative increase

in asymptotic mean squared error as p→ ∞ due to using K̃R�t� rather than K̂R�t� for p segments
of length Q under the Poisson model with s = t/Q.
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5. Some asymptotic theory for non-Poisson processes. There is a
decided lack of asymptotic theory that permits useful comparisons of estima-
tors of K when the underlying process is not Poisson. Stein (1995) derives
results showing the advantage of estimators like K̂ over those like K̃, but
the asymptotic approach taken there requires that the distance t at which
one is estimating K be large compared to the distances at which the under-
lying process shows nontrivial dependence. When the observation window is
made up of many segments, especially if the Qj’s are equal and theMj’s are
independent, it appears feasible to develop some useful asymptotic results for
non-Poisson processes. This section describes some general asymptotic results
for the estimators K̃� K̂ and K̆ described in Section 3. These results are used
to demonstrate that ifM1�M2� � � � are, conditional on 01� 02� � � � � independent
Poisson processes withMj having intensity 0j, where the 0j’s are iid positive

random variables, then, as p → ∞� K̆R�t� is superior to K̂R�t�, which is in
turn superior to K̃R�t�.

Suppose M1�M2� � � � are iid simple, stationary point processes on � with
intensity λ and reduced second-moment function K. Assume Q = Q1 =
Q2 = � � � and let X1j� � � � �XNjj

be the locations of the Nj events from Mj

on (0�Q). For a bounded, symmetric function φ on �0�Q� × �0�Q�, define
1j = ∑

k �=l φ �Xkj�Xlj�. Analogous to (1), suppose E1j = λ2QK�t� for any
reduced second-moment function K for theMj’s. Define

Gj = �2t�−1
Nj∑
k=1

∫ Q
0
φ�Xkj�y�dy�

so that EGj = λQ. Using these definitions, the estimators described in
Section 3 are given by

K̃�t� = pQ
∑p
j=11j∑p

j=1Nj

(∑p
j=1Nj − 1

) �
K̂�t� = K̃�t� − 4t

∑p
j=1Gj∑p

j=1Nj

+ 4t

and

K̆�t� = pQ
∑p
j=11j∑p

j=1Gj
(∑p

j=1Gj − 1
) �

Furthermore, since 	Nj�1j�Gj
∞j=1 is an iid trivariate sequence, we can read-
ily derive the limiting distribution of these estimators. Specifically, if E�N4

1� <
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∞, then 11 and G1 have finite second moments, so, as p→ ∞,

p1/2




1
p

p∑
j=1
Nj − λQ

1
p

p∑
j=1
1j − λ2QK�t�

1
p

p∑
j=1
Gj − λQ




�→N�0� 3��

where
�→ indicates convergence in distribution and

∑
is the 3× 3 covariance

matrix of �N1�11�G1�. Using first-order Taylor series, we get λQp1/2	K̃�t� −
K�t�
 �→ N�0� Ṽ�� λQp1/2	K̂�t� − K�t�
 �→ N�0� V̂� and λQp1/2	K̆�t�−
K�t�
 �→N�0� V̆�, where

Ṽ = 4K�t�2 var�N1� +
1
λ2

var�11� −
4K�t�
λ

cov�N1�11��(12)

V̂ = 4
{
K�t� − 2t

}2var�N1� +
1
λ2

var�11�

+16t2 var�G1� −
4
{
K�t� − 2t

}
λ

cov�N1�11�(13)

− 8t
λ
cov�11�G1� + 16

{
K�t� − 2t

}
cov�N1�G1�

and

V̆ = 4K�t�2 var�G1� +
1
λ2

var�11� −
4K�t�
λ

cov�11�G1��(14)

As expected, V̆ = V̂ when K�t� = 2t.
To calculate the limiting behavior of these estimators for any given φ, Q

and law of M1, we only have to compute the covariance matrix
∑

and plug
the results into (12)–(14). In some limited cases this computation can be done
analytically or more often by numerical integration; otherwise,

∑
is easily

approximated by simulation wheneverM1 can be readily simulated.
We now consider a simple setting in which

∑
can be explicitly derived. Sup-

poseM1�M2� � � � are, conditional on 01� 02� � � � � independent Poisson processes
withMj having intensity 0j, where the 0j’s are iid positive random variables.
Such a model could serve as an approximation for a Cox process [Daley and
Vere-Jones (1988), Section 8.5] observed over widely spaced segments where
the random intensity function 0�·� of the process has little variation over
distances of length Q but the segments are sufficiently spaced so that the
behavior of 0�·� in different segments is essentially independent.

Next, suppose φ�x�y� = Q1	�x−y� ≤ t
/�Q−�x−y��, so that we are using
the rigid motion estimator. In this case, the elements of

∑
can be readily
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calculated in terms of the moments of 01. Writing mj for E�0j1�, we have
λ =m1�K�t� = 2tm2/m

2
1,

var�N1� = Qm1 +Q2�m2 −m2
1��

var�11� = 16Q3γ

(
t

Q

)
m3 − 4Q2 log

(
1− t

Q

)
m2

+4t2Q2�m4 −m2
2��

var�G1� =
Q3

t2
γ

(
t

Q

)
m1 +Q2�m2 −m2

1��

cov�N1�11� = 4tQm2 + 2tQ2�m3 −m1m2��
cov�N1�G1� = Qm1 +Q2�m2 −m2

1�
and

cov�11�G1� =
4Q3

t
γ

(
t

Q

)
m2 + 2tQ2�m3 −m1m2��

Each of these results can be obtained by conditioning on 01. For example,

var�11� = E
{
var�11�01�

}+ var
{
E�11�01�

}
= E

[
403

1

∫ Q
0

{∫ Q
0
φ�x�y�dy

}2

dx+ 202
1

∫ Q
0

∫ Q
0
φ�x�y�2dxdy

]

+ var�2t02
1Q�

= 16Q3γ

(
t

Q

)
m3 − 4Q2 log

(
1− t

Q

)
m2 + 4t2Q2�m4 −m2

2��

where the second step follows from (10) in Ripley [(1988), page 30] and the
last step uses (17) and (18) in the Appendix.

Plugging these results into (12)–(14) yields

ṼR = 1

m2
1

var�11� − 16t2Q
m2

2

m3
1

+ 16t2Q2m2�m2
2 −m1m3�
m4

1

�

V̂R = 1

m2
1

var�11� − 16t2Q
�m2 −m2

1�2
m3

1

−16Q3γ

(
t

Q

)(
2m2

m1
−m1

)
+ 16t2Q2m2�m2

2 −m1m3�
m4

1

and

V̆R = 1

m2
1

var�11� − 16Q3γ

(
t

Q

)
m2

2

m3
1

+ 16t2Q2m2�m2
2 −m1m3�
m4

1

�
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where the subscript R indicates that the asymptotic variance is for the appro-
priate version of the rigid motion estimator. Thus,

ṼR − V̂R = 16Q3
(
2m2

m1
−m1

){
γ

(
t

Q

)
− t2

Q2

}
�(15)

which is positive on �0�1� since γ�s� − s2 > 0 for s ∈ �0�1� and m2 ≥ m2
1.

Furthermore,

V̂R − V̆R = 16Q3 �m2 −m2
1�2

m3
1

{
γ

(
t

Q

)
− t2

Q2

}
�(16)

which is positive on �0�1� wheneverm2 > m
2
1. Thus, V̂R > V̆R unless var01 =

0, in which case m2 =m2
1 and V̂R = V̆R.

The arguments in this section largely carry over to estimators for the
reduced second-moment function of iid point processes on �d observed over⋃p
j=1	A�j
 for some A ⊂ �d. In particular, (12)–(14) still hold if, at the appro-

priate places, 2t is replaced by µdtd, the volume of a ball of radius t in �d.
Furthermore, the comparisons between ṼR� V̂R and V̆R in (15) and (16) still
hold after replacing γ�t/Q� − t2/Q2 by

∫
A	

∫
A φ�x�y�dy− µdtd
2 dx.

6. Simulation study. The asymptotic results in the preceding two sec-
tions provide only limited information about the relative advantages of the var-
ious estimators, especially for non-Poisson processes or unequal Qj’s. Because

the estimators K̃R� K̂R and K̆R can all be explicitly calculated, it is fairly
straightforward to study the behavior of these estimators via simulation. This
section reports some results from a simulation study that considers equal
and unequal Qj’s and three models for the law of the point processes. For
the unequal segment length case, p = 50 and Qj = 0�1j for j = 1� � � � � p
and for the equal segment length case, p = 50 and each Qj = 2�55, so that
Q+ = 127�5 in both cases. The three processes reported on here are all station-
ary renewal processes; that is, the waiting times between consecutive events
are iid random variables. In each case, the intensity of the process is 1, so that
EN+ = 127�5 in all simulations. Stationary renewal processes are straight-
forward to simulate on an interval �0�Q�. If F is the cdf (cumulative distri-
bution function) for the waiting times and µ < ∞ is the mean waiting time,
then to obtain a stationary process on �0�∞�, use µ−1 ∫ x

0 	1 − F�y�
dy for
the cdf of the time of the first event after 0 [Daley and Vere-Jones (1988),
page 107]. Simulate a random variable from this distribution; if it is greater
than Q, then one is done and there are no events in �0�Q� for this realiza-
tion of the process. If not, simulate random waiting times with cdf F until
one gets the first event after Q and use the preceding events as the realiza-
tion of the process on �0�Q�. Here, we consider waiting time densities f that
are exponential with mean 1 (in which case the Mj’s are Poisson processes),
f�x� = 4xe−2x for x > 0 (a gamma density with parameters 2 and 1

2 ) and
f�x� = 24/�2 + x�4 for x > 0. Figure 3 plots K�t� − 2t for renewal processes
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Fig. 3. Plots of K�t� − 2t for the renewal processes with waiting time densities 4xe−2x for x > 0
(solid line) and 24/�2+ x�4 for x > 0 (dashed line).

with the last two waiting time densities, which shows that the first of these
corresponds to a process more regular than the Poisson and the second is
more clumped than the Poisson. For the gamma waiting times, it is possible
to show that, for x �= 0, P	M1�dx� = 1 �M1�	0
� = 1
 = 1 − e−4x and hence
that K�t� = 2t − 1

2�1 − e−4t�. For the third waiting time density, we cannot
give an analytic expression for K�t�, although Theorem 1 in Feller (1971),
page 366, implies that K�t� − 2t → 2 as t → ∞. The values for K�t� in
Figure 3 for this process were obtained by simulation. Since the mean waiting
times are all equal, the variances of the waiting times provide another mea-
sure of clumpiness with larger variances corresponding to a clumpier process.
For the exponential waiting times, the variance is 1, for the gamma case, the
variance is 1

2 and for the last case, the variance is 3.
Figures 4–6 show the results of simulations for both sets of segment lengths

and all three processes. For each scenario, the three estimators were calculated
at a range of distances for 10,000 simulations. Generally speaking, K̂R and

Fig. 4. Mean squared errors for K̂R for three renewal processes and unequal or equal segment
lengths. The waiting time densities are: e−x for x > 0 (dotted line), 4xe−2x for x > 0 (solid line)
and 24/�2+ x�4 for x > 0 (dashed line).
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Fig. 5. Relative differences in mean squared errors of K̃R and K̂R: mse�K̃R�/mse�K̂R�−1. Line
types have same meaning as in Figure 4.

K̆R behave similarly and are superior to K̃R, especially at longer distances
when theQj’s are unequal. Figure 4 shows the mean squared errors for K̂R. In
all cases, the contributions of the squared biases to the mean squared errors
are practically negligible and are always less than 0.5%. As expected, the
mean squared errors grow with t, especially for the unequal segment length
case as t gets near 5, the longest segment length available. Another expected
result is that the mean squared errors increase with increasing clumpiness
of the underlying process. Figure 5 compares K̃R and K̂R. We see that K̂R

is generally superior, although K̃R is sometimes slightly better for smaller t.

Fig. 6. Relative differences in mean squared errors of K̆R and K̂R: mse�K̆R�/mse�K̂R�− 1. Line
types have same meaning as in Figure 4.
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The relative advantage of K̂R (and K̆R) over K̃R tends to be greater for more
regular processes, which qualitatively agrees with the asymptotic results in
Stein (1995). The advantage also tends to be greater for unequal segment
lengths, demonstrating that theoretical results obtained for equal segment
lengths may not accurately reflect the differences between estimators when
segment lengths are unequal. Figure 6 compares K̂R and K̆R. From the the-
oretical results in the previous section, we should expect these estimators to
behave similarly when the waiting time density is exponential so that the
underlying model is Poisson. The simulations show that the estimators also
tend to behave very similarly for some non-Poisson models, especially when the
segment lengths are equal. Neither estimator dominates the other, although
K̆ tends to be silghtly superior for t nearly as large as the longest segment
length.

For highly regular processes, K̂R can be substantially inferior to either
K̃R or K̆R for t sufficiently small. The problem is caused by the fact that, in
such circumstances, having a pair of events within t of each other is rare, so
that var	T�φ�
 is much smaller than under a Poisson model with the same
intensity, whereas the variance of

T�φ� −T∗�φ� = 2�N+ − 1�
Q+

N+∑
j=1

{
h�Xj�Lj�φ� −Eh�X�L�φ�

}
is not much different for a highly regular process than for a Poisson process.
As a consequence, subtracting off T�φ�−T∗�φ� from T�φ� tends to inflate the
variance of the estimator. As an example of a highly regular process, consider
the stationary renewal process with waiting time density �66/5!�x5e−x/6 for
x > 0, a gamma density with parameters 6 and 1

6 . This waiting time distri-
bution has mean 1 and variance 1

6 and corresponds to a highly regular point
process. It is possible to show that

K�t� = 2t− 5
6
+ 1

6
e−12t + 1

3
cos�33/2t��e−9t + e−3t�

+ 1
31/2

sin�33/2t�
(
1
3
e−9t + e−3t

)

for this process. Figure 7 shows that K̂R is notably inferior to either K̃R or
K̆R for t sufficiently small; for larger t, it is competitive with K̆R and clearly
superior to K̃R. The overall winner is K̆R, which performs well for all t.

We are unaware of any circumstances in which K̆R performs substantially
worse than either K̂R or K̃R. Thus, we recommend routinely using K̆R to
estimate K, although routine adoption for processes in more than one dimen-
sion will require the development of the necessary software.

7. Application to the absorber catalog. Figure 8 displays the estima-
tors K̃R� K̂R and K̆R as applied to the absorber catalog described in Section 2.
The three estimators are very similar and, as expected, show clear evidence of
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Fig. 7. Relative differences in mean squared errors of K̃R and K̂R (solid line) and of K̆R and

K̂R (dashed line) for renewal process with waiting times having density �66/5!�x5e−x/6 for x > 0
and for equal and unequal segment lengths. Where the dashed line is not visible, it coincides with
the solid line.

clustering of absorbers. To obtain some idea about the uncertainty of these
estimates, as in Quashnock and Stein (1999), approximate 95% pointwise
confidence intervals were obtained by bootstrapping using the 274 segments
as the sampling units. Specifically, using the notation in Section 5, simu-
lated absorber catalogs were produced by sampling with replacement from
�Qj�X1j� � � � �XNjj

� for j = 1� � � � �274, so that when one selects a segment,

Fig. 8. Three estimates of K�t� − 2t for the absorber catalog and 95% confidence intervals based
on bootstrapping lines of sight.
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one automatically selects the absorber locations that go with this segment. The
confidence bands displayed in Figure 8 are then what Davison and Hinkley
[(1997), page 29] call the basic bootstrap confidence limits and are based on
999 simulated catalogs. All three estimators yield similar confidence intervals,
which is disappointing but perhaps not unexpected given the strong clustering
that exists in the absorber catalog and the finding in the simulation study
that the advantage of the modifications decreases as clustering increases.
For these bootstrapping intervals to be appropriate, �Qj�X1j� � � � �XNjj

� for
j = 1� � � � �274 should be iid random objects. Since the segments are of widely
varying lengths, if the Qj’s are viewed as fixed, the identically distributed
assumption is false. However, if we view the Qj’s as being a sequence of iid
positive random variables that are independent of the locations of absorbers,
then the identically distributed assumption may be reasonable. Whether or
not the independence assumption is reasonable depends on the spatial extent
of clustering among absorbers. If there is no spatial dependence in absorber
locations beyond, say, 100 h−1 Mpc, then the independence assumption is not
seriously in error, since few pairs of segments are within this distance of each
other. If, however, nonnegligible clustering exists well beyond 100 h−1 Mpc,
then the independence assumption is more problematic.

Analyses of galaxy surveys [Davis and Peebles (1983) and Loveday,
Maddox, Efstathiou and Peterson (1995)] show that visible matter clusters
on scales of up to 20 h−1 Mpc. Thus, it is more interesting to investigate how
K�t� − 2t changes at distances beyond 20 h−1 Mpc than to look at K itself.
Figure 8 shows that K̂R�t� − 2t generally increases until about 200 h−1 Mpc
and it is important to assess the uncertainty in this pattern. Applying the
bootstrapping procedure to K̃R�t� − K̃R�t0� for t0 = 20�50�100 and 150 h−1

Mpc, Quashnock and Stein (1999) concluded that there was strong evidence
for clustering from 20 to 50 h−1 Mpc and from 50 to 100 h−1 Mpc, but at
best marginal evidence for clustering beyond 100 h−1 Mpc. The results with
the modified estimates (not shown) confirm the clear evidence for clustering
from 20 to 50 h−1 Mpc and from 50 to 100 h−1 Mpc. Figure 9 shows the lower
bounds for pointwise 95% confidence intervals for K�t�−K�100�−2�t−100�.
The modified estimators yield slightly stronger evidence of clustering beyond
100 h−1 Mpc, which is mostly due to the fact that the modified estimates of
K�t� −K�100� − 2�t− 100� are slightly larger than the unmodified estimates
for t around 200 and not because the modified intervals are narrower. If one
used 99% pointwise confidence intervals in Figure 9, then, for all t > 100
and all three estimators, the lower confidence bounds are negative. Thus, the
conclusion in Quashnock and Stein (1999) that there is perhaps marginal evi-
dence for clustering beyond 100 h−1 Mpc is not altered by using the modified
estimators.

As discussed in Section 2, the broad range of redshifts in the absorber cata-
log implies that we are looking at the universe at a broad range of times. The
use of comoving units largely equalizes the intensity of absorbers across red-
shifts, but it does not equalize the clustering. Indeed, by dividing the absorber
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Fig. 9. Lower limits of 95% confidence intervals for K�t� −K�100� − 2�t− 100� for the absorber
catalog.

catalog into groups based on their redshift, Quashnock and Vanden Berk
(1998) found evidence that as the redshift decreases, clustering on the scales of
1 to 16 h−1 Mpc strongly increases across the range of redshifts in the absorber
catalog. Quashnock and Vanden Berk (1998) further note that this increase in
clustering with decreasing redshift is consistent with what is known through
theory and simulations about how gravity should affect the evolution of the
clustering of absorbers over time. Using the various forms of the rigid motion
estimator of K described here on groups of the absorber catalog with similar
redshifts, we also find that on the scale of a few tens of h−1 Mpc, clustering
increases substantially with decreasing redshift over the range of redshifts in
the absorber catalog (results not shown). Thus, on these shorter scales, our
estimates of K measure an average clustering over the range of redshifts in
the absorber catalog.

In contrast, Quashnock, Vanden Berk and York (1996) found no evidence
that clustering at scales of 100 h−1 Mpc changes over the redshift range in the
absorber catalog. Similarly, when looking at, say, K̆R�t�−K̆R�100� for t > 100
based on higher and lower redshift parts of the catalog, we find no systematic
difference in the estimates as a function of redshift. For example, dividing the
274 segments in the catalog into two groups of size 137 based on redshift,
K̆R�150� − K̆R�100� equals 150.8 for the lower redshift group and 151.4 for
the higher redshift group. Thus, we do not believe that the modest evidence
we find for clustering at these larger scales is due to inhomogeneities across
time in the distribution of absorbers.

8. Summary. For studying the behavior of edge-corrected estimators of
the K function of a point process, taking the observation domain to be a
sequence of segments has a number of desirable consequences. First, explicit
expressions are available for a number of the more popular estimators, which
is often not the case for regions in more than one dimension. The availability
of such explicit expressions eases the study of the properties of these estima-
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tors via both theory and simulation. In addition, studying settings in which
the number of segments is large yields results that highlight the differences
between the various methods of edge correction. In particular, simulation
results show that allowing the segment lengths to vary generally increases
the differences between estimators. The overall conclusion about the merits of
the various estimators is that K̆R, a modification of the rigid motion estimator
based on an approach suggested by Picka (1996), is the estimator of choice.

The absorber catalog studied here shows that multiple windows of vary-
ing size can arise in practice. Although it is somewhat disappointing that the
bootstrap confidence intervals for the ordinary rigid motion corrected estima-
tor and its modifications are very similar, this result is not too surprising
in light of the simulation results showing that the benefit of the modifica-
tions is smaller for clustered processes. The simulation results indicate that
the modified estimators can have substantially smaller mean squared errors
for Poisson or more regular processes, especially if the segment lengths vary
substantially.

APPENDIX: PROOFS

We first derive (4) assuming, for convenience, that the Qj’s have been
arranged in increasing order. We have

1
Q+
h�x� l�φR� = 1

Q+

p∑
j=1

∫ Qj
0
φR��x� l�� �y�j��dy

=
∫ Ql
0

1	�x− y� ≤ t

U��x− y�� dy

=
∫ x
0

1	�x− y� ≤ t

U��x− y�� dy+

∫ Ql
x

1	�x− y� ≤ t

U��x− y�� dy

=
∫ x
0

1	�x− y� ≤ t

U��x− y�� dy+

∫ Ql−x
0

1	�Ql − x− y� ≤ t

U��Ql − x− y��

dy�

Thus, to verify (4), we need to show that

κ�x� t� =
∫ x
0

1	�x− y� ≤ t

U��x− y�� dy�

Now ∫ x
0

1	�x− y� ≤ t

U��x− y�� dy =

∫ x
�x−t�+

dy

U�x− y�

=
j�x∧t�−1∑
k=1

∫ x−Qk−1
x−Qk

dy∑p
j=k�Qj − x+ y�

+
∫ x−Qj�x∧t�−1
�x−t�+

dy∑p
j=j�x∧t��Qj − x+ y�

�

which equals κ�x� t� by calculus.
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We next derive S2�φR�, again assuming that the Qj’s have been arranged
in increasing order. By the symmetry of φR,

S2�φR� = 2Q2
+
p∑
j=1

∫ Qj
0

∫ x
0

1	x− y ≤ t

U�x− y�2 dydx�

so taking v = x− y and then switching the order of integration yields

S2�φR�
2Q2

+
=

p∑
j=1

∫ Qj
0

∫ x∧t
0

1
U�v�2 dvdx

=
p∑
j=1

∫ Qj∧t
0

Qj − v
U�v�2 dv

=
p∑
j=1

j∧	j�t�−1
∑
l=1

∫ Ql
Ql−1

Qj − v
	∑p

k=l�Qk − v�
2
dv

+
p∑

j=j�t�

∫ t
Qj�t�−1

Qj − v
	∑p

k=j�t��Qk − v�
2
dv

=
p∑
j=1

j∧	j�t�−1
∑
l=1

{
Qj −Ql

�p− l+ 1�Ul
− Qj −Ql−1

�p− l+ 1�Ul−1

− 1
�p− l+ 1�2 log

(
Ul
Ul−1

)}

+
p∑

j=j�t�

[
Qj − t{

p− j�t� + 1
}
U�t� −

Qj −Qj�t�−1{
p− j�t� + 1

}
Uj�t�−1

− 1{
p− j�t� + 1

}2 log
{
U�t�
Uj�t�−1

}]
�

Using the definition of U�t�, the second sum simplifies to 	p − j�t� + 1
−1 ×
log	Uj�t�−1/U�t�
 and by switching the order of summation and using the
definition of Ul, the first sum equals

j�t�−1∑
l=1

P∑
j=l

{
Qj −Ql

�p− l+ 1�Ul
− Qj −Ql−1

�p− l+ 1�Ul−1
+ 1

�p− l+ 1�2 log
(
Ul−1
Ul

)}

=
j�t�−1∑
l=1

{
Ul

�p− l+ 1�Ul
− Ul−1

�p− l+ 1�Ul−1
+ 1
p− l+ 1

log
(
Ul−1
Ul

)}

=
j�t�−1∑
l=1

1
p− l+ 1

log
(
Ul−1
Ul

)
�
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Thus,

S2�φR� = 2Q2
+
j�t�−1∑
l=1

1
p− l+ 1

log
(
Ul−1
Ul

)
+ 2Q2

+
p− j�t� + 1

log
{
Uj�t�−1
U�t�

}
�

If Q1 = · · · = Qp = Q, then, for t < Q�j�t� = 1, so

S2�φR� = −2pQ2 log
(
1− t

Q

)
�(17)

Calculating S1�φR� is more difficult and we only give the special case
Q1 = · · · = Qp = Q. Setting s = t/Q, we then have

S1�φR� = p
∫ Q
0

{∫ Q
0

Q1	�x− y� ≤ t

Q− �x− y� dy

}2

dx = 4pQ3γ�s��(18)

where γ is defined in (11). To evaluate γ, write

γ�s� = 1
2

∫ 1

0

[∫ x
0

1	x− y ≤ s

1− x+ y dy

]2
dx

+ 1
2

∫ 1

0

[∫ x
0

1	x− y ≤ s

1− x+ y dy

][∫ 1

x

1	z− x ≤ s

1− z+ x dz

]
dx

= 1
2

∫ 1

0
log2

{
1− �x ∧ s�}dx

+ 1
2

∫ 1

0
log

{
1− �x ∧ s�} log{�1− s� ∨ x}dx�

Now ∫ 1

0
log2

{
1− �x ∧ s�}dx = 2s+ 2�1− s� log�1− s�

and, for s ≤ 1
2 ,∫ 1

0
log

{
1− �x ∧ s�} log{�1− s� ∨ x}dx = − log2�1− s� − 2s log�1− s�

whereas, for s > 1
2 ,∫ 1

0
log

{
1− �x ∧ s�} log{�1− s� ∨ x}dx

= −2�1− s� log�1− s� − 2s log s log�1− s�
+

∫ s
1−s

log�1− y� log ydy�
Hence,

γ�s� = s+ �1− 2s�+ log�1− s� − 1
{
s ≤ 1

2

} 1
2 log

2�1− s�
−1

{
s > 1

2

}
s log s log�1− s�(19)

+
∫ �s−1/2�+

0
log

( 1
2 − y) log( 12 + y)dy�
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Let us next consider computing S2�φI�. Defining R�v� = Q+ −∑p
j=1�2v −

Qj�+, then, for y < x < Ql, we have

φI��x� l�� �y�m�� = 1	x− y ≤ t� l =m
Q+
R�x− y�

×
[

1
1+ 1	2x− y < Ql


+ 1
1+ 1	2y− x > 0


]
�

Thus, taking v = x− y,
S2�φI�
2Q2

+
=

p∑
l=1

∫ Ql
0

∫ x
0

1	x− y ≤ t

R�x− y�2

×
[

1
1+ 1	2x− y < Ql


+ 1
1+ 1	2y− x > 0


]2
dydx

=
p∑
l=1

∫ Ql
0

∫ x∧t
0

1
R�v�2

[
1

1+ 1	x+ v < Ql

+ 1

1+ 1	x > 2v

]2
dvdx

=
p∑
l=1

∫ t∧Ql
0

1
R�v�2

∫ Ql
v

[
1

1+ 1	x+ v < Ql

+ 1

1+ 1	x > 2v

]2
dxdv�

Now �1 + 1	x + v < Ql
�−1 + �1 + 1	x > 2v
�−1 takes on values 2, 3
2 and 1

depending on, respectively, whether none, one or both of x+v < Ql and x > 2v
are true. Thus,

S2�φI�
2Q2

+
=

p∑
l=1

{∫ t∧ 1
3Ql

0

9
42v+1�Ql−3v�

R�v�2 dv

+
∫ t∧ 1

2Ql

t∧ 1
3Ql

9
4�2Ql−4v�+4�3v−Ql�

R�v�2 dv+
∫ t∧Ql
t∧ 1

2Ql

4�Ql−v�
R�v�2 dv

}

=
p∑
l=1

{∫ t∧ 1
3Ql

0

Ql+ 3
2v

R�v�2 dv+
∫ t∧ 1

2Ql

t∧ 1
3Ql

1
2�Ql+3v�
R�v�2 dv+

∫ t∧Ql
t∧ 1

2Ql

4�Ql−v�
R�v�2 dv

}
�

While it is possible to evaluate these integrals explicitly, the resulting
expressions do not appear to simplify as in the case for the rigid motion esti-
mator. When Q1 = · · · = Qp = Q, we do obtain a fairly simple explicit result.
By taking u = v/Q, we get

S2�φI� = 2pQ2
[∫ s∧ 1

3

0

1+ 3
2u

	1− �2u− 1�+
2 du+
∫ s∧ 1

2

s∧ 1
3

1
2 + 3u

	1− �2u− 1�+
2 du

+
∫ s
s∧ 1

2

4− 4u
	1− �2u− 1�+
2 du

]

= 2pQ2
{∫ s∧ 1

3

0

(
1+ 3

2
u

)
du+

∫ s∧ 1
2

s∧ 1
3

(
1
2
+ 3u

)
du+

∫ s
s∧ 1

2

1
1− u du

}
�



ESTIMATION FOR POINT PROCESSES 1531

so that, for s = t/Q < 1,

S2�φI� = 2pQ2 ×




s+ 3
4s

2� if 0 < s ≤ 1
3 ,

1
12 + 1

2s+ 3
2s

2� if 1
3 ≤ s ≤ 1

2 ,

17
24 − log 2− log�1− s�� if 1

2 ≤ s < 1.

(20)
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