
The Annals of Statistics
2000, Vol. 28, No. 3, 922–947

MAXIMUM LIKELIHOOD ESTIMATION OF SMOOTH
MONOTONE AND UNIMODAL DENSITIES

By P. P. B. Eggermont and V. N. LaRiccia

University of Delaware

We study the nonparametric estimation of univariate monotone and
unimodal densities using the maximum smoothed likelihood approach. The
monotone estimator is the derivative of the least concave majorant of the
distribution corresponding to a kernel estimator. We prove that the map-
ping on distributions � with density ϕ,

ϕ �−→ the derivative of the least concave majorant of ��

is a contraction in all LP norms (1 ≤ p ≤ ∞), and some other “distances”
such as the Hellinger and Kullback–Leibler distances. The contractivity
implies error bounds for monotone density estimation. Almost the same
error bounds hold for unimodal estimation.

1. Introduction. We investigate the nonparametric estimation of mono-
tone and unimodal densities from the maximum smoothed likelihood point of
view. The estimation of monotone densities has a long history, dating back
to Grenander (1956), and has many applications; see Barlow, Bartholomew,
Bremner and Brunk (1972). It is one of only a few instances of density esti-
mation problems where nonparametric maximum likelihood estimation works
without smoothing or roughness penalization. On the down side, for smooth
densities these estimators do not achieve the usual L1 convergence rates. In
this paper we set out to repair this deficiency by using a smoothed version of
the maximum likelihood procedure, which gives the usual convergence rates
of kernel density estimators for both nonsmooth and smooth densities. The
natural extension to unimodal density estimation is considered also.

Let X1�X2� � � � �Xn be nonnegative iid random variables with common
probability density function (pdf ) fo, assumed to be monotone on (0�∞). LetFn
denote the empirical distribution function of theXi. The maximum likelihood
estimator fn of fo, is the (unique) solution to

minimize −
∫ ∞

0
log f�x� dFn�x��

subject to f is a monotone pdf on �0�∞��
(1.1)
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The pdf constraint in (1.1) is somewhat of a pain, but an old trick of Silverman
(1982) comes to the rescue: problem (1.1) has the same solution as

minimize −
∫ ∞

0
log f�x� dFn�x� +

∫ ∞

0
f�x�dx�

subject to f ∈ L1�0�∞�� f ≥ 0� f monotone on �0�∞��
(1.2)

The estimator fn is characterized in terms of its distribution function,
denoted by Fn; Fn is the least concave majorant of the empirical distribu-
tion Fn. This is due to Grenander (1956), whence fn is usually designated as
the Grenander estimator. It is well known that fn is a step function, with
jumps at (some of ) the order statistics. This makes sense for an arbitrary
monotone density, but less so for a continuous monotone density. Birgé (1989)
shows that if fo has compact support [0, B] and �fo�′ is continuous, then

Ɛ�fn − fo1� ≤ cnλ�fo�n−1/3�(1.3)

where cn −→ 3, for n→∞, and

λ�f� =
∫ ∞

0
� 12f�x�f′�x��1/3dx�(1.4)

See also Birgé (1987a, b). Prior to this, Groeneboom (1985) had indicated that
if in addition �fo�′ < 0 everywhere and �fo�′′ is bounded, then

n1/6
{
n1/3fn − fo1 − cλ�fo�

} −→d Y ∼N�0� σ2��(1.5)

for known c �c ≈ 0�82� and σ �σ2 ≈ 0�17�. For the actual proof see Groeneboom,
Hooghiemstra and Lopuhaä (1999). So in this case, the convergence rate is
n−1/3, and the extra smoothness implies asymptotic normality, but not better
rates.

The remedy proposed here is to start with any “good” estimator for smooth
densities, and use its distribution function in (1.2), instead of Fn. For defi-
niteness, say we take a boundary kernel estimator �h dFn depending on a
smoothing paramater h,

�h dFn�x� =
∫ ∞

0
ah�x�y�dFn�y�� x ≥ 0�(1.6)

with ah�x�y� nonnegative; see, for example, Devroye (1987) or Jones (1993).
The choice

ah�x�y� = h−1
{
A
(
h−1�x− y�� +A�h−1�x+ y�)}� x� y > 0�(1.7)

with A a nonnegative kernel on the line (symmetric, finite moments of all
orders) will work, though not optimally; see Hall and Wehrly (1991), Müller
(1993) and references therein. Then

�h dFn − fo1 =as � �n−2/5�� n→∞�(1.8)

for h � n−1/5, provided fo satisfies the usual nonparametric assumptions
��fo�′′ ∈ L1�0�∞�� and Ɛ�Xκ1� <∞ for some κ > 1�; see, for example, Devroye
(1991), Devroye, Györfi and Lugosi (1996). Here=as denotes almost sure equal-
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ity, and likewise for ≤ as� ≥ as. Moreover, one’s favorite procedure for selecting
the smoothing parameter will work here as well.

We assume that �h dFn is continuous and nonnegative. The maximum
smoothed likelihood estimator of fo is now given as the solution to

minimize −
∫ ∞

0
�h dFn�x� log f�x�d�x� +

∫ ∞

0
f�x� dx�

subject to f ∈ L1�0�∞�� f ≥ 0� f monotone on �0�∞��
(1.9)

The solution of (1.9) is denoted by fnh. Note that without the monotonicity
constraint the solution of (1.9) would be f = �h dFn; see Eggermont and
LaRiccia (1995). This interpretation of the kernel estimator is at least part
of the motivation for the study of (1.9). Analogous to the nonsmoothed case
(1.2), it is well known that the solution of (1.9) is such that its corresponding
distribution is the least concave majorant of the distribution corresponding to
�h dFn; see, for example, Mammen (1991), Bickel and Fan (1996).

We now come to the crux of the matter. First some notation. For � a distri-
bution function that is, � nonnegative, increasing and bounded on (0�∞), we
let

LCM��� ≡ the least concave majorant of ��(1.10)

and if � has density ϕ then

lcm�ϕ� =
{
the left continuous function which is
equal to the derivative of LCM��� a.e.(1.11)

The operation LCM has some remarkable contractivity properties, the first
one of which hinted at by Marshall (1970), that is, for distributions �� �,

LCM��� − LCM���∞ ≤ �−�∞�(1.12)

Here  · ∞ denotes the sup norm. However, it holds for many other distances,
the most useful of which is the total variation norm, which is just the L1

norm on the corresponding densities (if they exist). If the distributions � and
� have densities ϕ and ψ (with respect to Lebesgue measure), then

lcm�ϕ� − lcm�ψ�1 ≤ ϕ− ψ1�(1.13)

An obvious and important implication is that

fnh − fo1 ≤ �h dFn − fo1�(1.14)

so that the monotone estimator is at least as accurate as the kernel estimator.
In particular, if (1.8) holds then

fnh − fo1 =as � �n−2/5�� n→∞�(1.15)

It is interesting in its own right that the analogue of (1.13) holds for all Lp

norms �1 ≤ p ≤ ∞�, as well as the Hellinger, Kullback–Leibler, and Pearson’s
ϕ2 distances. The proofs of all these are based on the pool-adjacent-violators-
algorithm for simple densities (step functions), followed by the usual limiting
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argument. We note that Fougères (1997) observes these properties for mono-
tone rearrangements, referring to Lieb and Loss (1996). It should be noted
that Brunk (1965) proves a general result which contains the contractivity
in the L2 norm and Kullback–Leibler distance as special cases. For a precise
description, see Section 3.

The results concerning monotone density estimation extend to unimodal
density estimation, almost. Let the univariate density fo be unimodal with
mode mo, that is, fo is increasing on �−∞�mo� and decreasing on �mo�∞�.
Here we use increasing to mean nondecreasing, and decreasing to mean non-
increasing. Thus, the mode of a unimodal density need not be unique, but the
set of all modes of a unimodal density is a closed interval. For later reference,
the distribution corresponding to fo is denoted by Fo. Now let X1�X2� � � � �Xn
be an iid random sample, with common density fo, and let

Ah ∗ dFn�x� =
∫
�
h−1A

(
h−1�x− y�)dFn�y�� x ∈ ��(1.16)

be a kernel density estimator of fo, where A is a symmetric, continuous log-
concave pdf, and h is the smoothing parameter. The log-concavity requirement
is sensible since thenAh∗dFo is unimodal whenever fo is unimodal, by the cel-
ebrated result of Ibragimov (1956). Some examples of continuous log-concave
kernels are the Epanechnikov kernel; see, for example, Devroye and Györfi
(1985), and the Gaussian and the two-sided exponential densities.

The unimodal estimator fnh is now defined as the solution to the maximum
smoothed likelihood problem,

minimize −
∫
�
Ah ∗ dFn�x� log f�x�dx+

∫
�
f�x�dx�

subject to f ∈ L1���� f ≥ 0� f unimodal�
(1.17)

Actually, the solution need not be unique, though in practice it usually is. The
theoretical nonuniqueness is best illustrated by the case n = 2 with A having
compact support, such as the Epanechnikov kernel. If h is small enough then
(1.17) has two solutions, one with mode at X1, the other with mode at X2.
The practical significance is that (1.17) may have many local minima. It also
suggests that these local minimizers have their modes at (some of ) the local
maxima of Ah ∗ dFn, which is indeed the case.

Concerning error bounds, we show that for any of the solutions fnh of (1.17),
with mode mnh,

fnh − fo1 ≤ Ah ∗ dFn − fo1 + cnh�mnh −mo�Ah ∗ �dFn − dFo�∞�(1.18)

with cnh −→as

√
32. Under the usual nonparametric assumptions and a very

mild sharpening of the unimodality assumption this implies (roughly) that for
h � n−β �0 < β < 1�,

fnh − fo1 ≤as
(
1+ o�1�)Ah ∗ dFn − fo1� n→∞�(1.19)

It is clear from (1.18) that for estimating a unimodal density the mode must
be estimated, but that it need not be very accurate. The optimal estimation
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of the mode is entirely different from estimating the density. Estimating the
mode of fo by the mode of Ah ∗ dFn goes back all the way to Parzen (1962),
who used kernel estimators, and Chernoff (1964), who used clustering ideas.
Eddy (1980), improving on Chernoff (1964), shows asymptotic normality of this
estimator of the mode when the third derivative of fo is absolutely continuous,
and f′′o�mo� < 0 (so the mode is unique). The optimal smoothing parameter for
mode estimation is h � n−1/7, as opposed to h � n−1/5 for density estimation;
see Eddy (1980) and Grund and Hall (1995). Finally, it is not clear to the
authors whether the bound (1.18) in terms of the sup norm of Ah ∗�dFn−dFo�
is sharp. As pointed out by a referee, it would seem that with a bit of work the
sup norm over the line can be replaced by the sup norm over a small interval
around mo, but we shall not pursue this.

Finally, a comment on the choice of L1 error to ascertain the effectiveness
of the estimators. For the monotone density estimation problem this choice
seems to be traditional, and to a lesser extent this applies to unimodal density
estimation. For general density estimation, Devroye and Györfi (1985) make
an eloquent case for the advantages of the use of the L1 error, not the least one
of which is its invariance under monotone transformations. The disadvantage
is that what happens in the tails is largely ignored. If tail estimation were
more important, then perhaps the Hellinger, Kullback–Leibler or Pearson’s
ϕ2 distances, defined, respectively, by

H�ϕ�ψ� = √ϕ−
√
ψ22�(1.20)

D�ϕ�ψ� =
∫
�

(
ϕ�x� log

{
ϕ�x�
ψ�x�

}
− ψ�x� + ϕ�x�

)
dx�(1.21)

P�ϕ�ψ� =
∫
�

�ϕ�x� − ψ�x��2
ψ�x� dx(1.22)

could be used. They, too, are invariant under monotone transformations, but
are not easy to work with. Note that Kullback–Leibler distance could be +∞.
See Devroye and Györfi (1985). We should mention the general Lp norms
�p ≥ 1�,

ϕ− ψpp =
∫
�
�ϕ�x� − ψ�x��p dx�(1.23)

with the supremum norm being the limiting case p→∞.
In Section 3 we formulate the assumptions and results alluded to above.

The contractivity property (1.13) is stated in full generality, and proved in
Section 4 and 5 via a detailed analysis of the pool-adjacent-violators algorithm
and a limiting argument. In Section 6 we consider unimodal estimation, and
prove (1.18). Some ridiculously slow convergence rates for the estimator of the
mode are shown under minimal conditions, which are good enough to show
essentially (1.19). In the next section we discuss some alternative estimators
for unimodal densities and report on some simulations.
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2. Comparisons with other unimodal estimators. In this section we
discuss some alternative estimators of unimodal densities. Some experimental
comparisons are presented at the end of this section, but the conclusions are
briefly alluded to throughout. The first two concern alternative methods for
the estimation of the mode.

(a) One can consider estimating the mode of fo by the modem of the kernel
density estimator, and then estimate the unimodal density by solving (1.17)
with the mode fixed at m. This amounts to two Grenander estimators, one
to the left of m and one to the right. We denote the solution by fnh�·�m�.
It appears that the resulting density estimator satisfies the same asymptotic
and just about the same small sample behavior as the smoothed maximum
likelihood estimator.

(b) One can also consider various minimum distance estimators of the
mode. One choice is to use the solution to

minimize fnh�· �m� −Ah ∗ dFn1 subject to m ∈ ��(2.1)

The solution, denoted by ψnh, exists since the local minima occur again at
some of the modes of Ah ∗dFn, and (1.18) and (1.19) hold for ψnh also, by the
same arguments under the same assumptions as for the smoothed maximum
likelihood estimator. The accuracy of this estimator, too, is just about the same
as for the maximum smoothed likelihood estimator.

(b) The approach of Fougères (1997) suggests replacing fnh�· �m� by what
may be called the unimodal rearrangement of Ah∗dFn, that is, the decreasing
rearrangement ofAh∗dFn�x�� x ≥m, on �m�∞� and the increasing rearrange-
ment of Ah ∗Fn�x�� x < m, on �−∞�m�. Here for nonnegative ϕ ∈ L1�m�∞�,
the decreasing rearrangement of ϕ is defined to be the nonincreasing function
ϕ∗ on �m�∞� for which the sets

�x > m� ϕ�x� > α� and �x > m� ϕ∗�x� > α�
have the same Lebesgue measure for all α > 0; see Hardy, Littlewood, and
Pólya (1951). The increasing rearrangement of an L1�−∞�m� function on
�−∞�m� is defined similarly. The resulting unimodal estimator is denoted as
ϕnh�· �m�. It seems to be both a strength and a weakness of this estimator
that it is extremely insensitive to outliers: in its simplest form, when A is
symmetric and has compact support, for n = 1 and X1 � m, the unimodal
rearrangement with mode m of Ah�x−X1�, x ∈ �, is given by

ϕ1� h�x�m� =
{
Ah

( 1
2�x−m�

)
� x > m�

0� x < m�

and the outlier has disappeared without trace. As before, two natural choices
for the mode are the mode of Ah ∗ dFn and the solution of

minimize ϕnh�· �m� −Ah ∗ dFn1 subject to m ∈ ��(2.2)
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Simulations suggest that both of these estimators are quite similar to each
other, but behave quite differently from the smoothed maximum likelihood
estimator.

(d) Birgé (1997) considers any estimator fnh�· �µ� (as per the above) with
distribution Fnh�· �µ� for µ �=Xi� i = 1� � � � � n, which satisfies

Fnh�· �µ� −Fn∞ ≤ min
m

Fnh�· �m� −Fn∞ + η�(2.3)

for η = o�n−1/2�, say. For this estimator Birgé (1997) shows bounds similar
to (1.3). This method is not competitive for smooth unimodal densities.

(e) Bickel and Fan (1996) propose solving the maximum likelihood-like
problem

minimize − 1
n− 1

n∑
i=1
i�=j

log f�Xi� +
∫
�
f�x� dx�

subject to f ∈ L1���� f ≥ 0� f unimodal, with mode at Xj�

(2.4)

where the minimization is also over j = 1�2� � � � � n. They prove the pointwise
consistency of the estimator, except at the modemo, analogous to the monotone
case; see Wegman (1970) and Woodroofe and Sun (1993). However, the L1

convergence rate is still � �n−1/3�, and, indeed, the method is not competitive
for smooth densities.

(f) Bickel and Fan (1996) also consider “grouping” the observations followed
by maximum likelihood estimation. This is quite close to considering (1.17)
with the kernel estimator Ah ∗dFn (for small h) approximated by a step func-
tion on a fine partition of �. The resulting estimator fn is � �n−1/3� accurate,
so is not competitive for smooth unimodal densities. What is very competi-
tive is its smoothed version Ah ∗ fn. This is analogous to results for isotone
regression; see Mammen (1991).

On to the simulation experiments comparing the unimodal density esti-
mators. Regarding computations, the authors find it expedient to replace the
kernel estimator Ah ∗ dFn by a step function on a fine grid, as follows. Let
δ > 0, and define the intervals

ωj = �jδ� �j+ 1�δ�� j ∈ ��(2.5)

Now approximate Ah ∗ dFn by Bh dFn, defined as

Bh dFn�x� =
1
δ

∫
ωj

Ah ∗ dFn�y�dy� x ∈ ωj� j ∈ ��(2.6)

For h � δ there is a quite a difference between Ah ∗ dFn and its approxi-
mation, but for h � δ the difference is negligible. Thus, δ should be chosen
to be smaller than “good” values of h. In practice, only a finite number of ωj
need consideration, depending possibly on the sample X1�X2� � � � �Xn. The
computational advantage of the above approximation is then obvious: Bh dFn
is a finite-dimensional object; it is always a pdf, and the complexity of its
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(straightforward) computation does not depend on the specific value of h > 0.
If h = 0, then Bh dFn may be interpreted as a histogram estimator on the
partition ωj� j ∈ �. Finally, for unimodal estimation we may restrict the
choice of modes to the points jδ, and then, as is readily seen, fnh�· �jδ� and
ϕnh�· �jδ� are step functions on the partition (2.5) as well. The computations
involve the determination of the mode according to the various criteria, which
we implement by inspection of the local modes of BhdFn. For the estimators
based on fnh�· �m� this is proved later on; see Theorem (6.5). For the unimodal
rearrangements we just assume it.

In the experiments we compare the various estimators to each other. The
estimators are based on fnh�· �m� and on ϕnh�· �m�, which we denote by MLE
and UR (unimodal rearrangement). The mode m may be chosen by maximum
likelihood, minimum L1 distance, or as the mode of Bh dFn. We emphasize
that all estimators are based on Bh dFn rather than Ah ∗ dFn. The specific
methods considered are:

(i) MLE-MLE: fnh, the solution of (1.11).
(ii) MODE-MLE: fnh�·� µnh�, with µnh the mode of Bh dFn.
(iii) DIST-MLE: fnh�·� λnh�, the solution of the minimum L1 distance prob-

lem (2.1).
(iv) Ah ∗MLE, the smoothed version of the maximum likelihood estimator

using grouped data, analogous to the regression case of Mammen (1991); see
Section 2.6 above.

(v) MODE-UR: ϕnh�·� µnh�, the unimodal rearrangement of Bh dFn with
mode µnh as the mode of BhdFn.

(vi) DIST-UR: ϕnh�· �ηnh�, the solution of the minimumL1 distance problem
(2.2).

In the experiments, the simulated data correspond to various unimodal den-
sities, restricted to the interval [0, 10]. Here φ�·� µ� σ� denotes the Gaussian
density with mean µ and standard deviation σ , and ψ�x�α� is the density cor-
responding to the Weibull distribution��x�α� = 1−exp�−xα+�, and θ�x�α�β� =
xα−1+ �1−x�β−1+ /B�α�β� the standard Beta density. The specific densities under
consideration are:

(i) A normal density φ�· �5�1�.
(ii) The Weibull density fo�x� = σ−1ψ�x − γ � α�; with α = 1�1� γ = 1 and

σ = 0�5.
(iii) The uniform density on [3, 8].
(iv) The mixture of two Beta densities 9

10θσ�x− γ�α�β� + 1
10θs�x− c�a� b�,

with α = 2�1� β = 2�45� γ = 1 and σ = 1�5, and a = 1�0� b = 1�5� c = 1 and
s = 8. Here, θσ�x� · · ·� = σ−1θ�σ−1x� · · ·�.

(v) The mixture of two normals 4
5φ�x�5� �1� + 1

5φ�x�5�1�8�.
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Table 1

Estimated minimum L1 errors, for various unimodal estimators of various densities, for sample
size 100� based on 1000 replications1

Beta normal
normal Weibull uniform mix mix

opt. Ah ∗ dFn 0.126 0.250 0.216 0.200 0.319
corr.MLE-MLE 0.126 0.232 0.207 0.165 0.211
corr.DIST-UR 0.126 0.220 0.215 0.188 0.268

MLE-MLE 0.126 0.214 0.181 0.162 0.200
DIST-MLE 0.126 0.214 0.164 0.162 0.200
MODE-MLE 0.126 0.210 0.160 0.162 0.200

DIST-UR 0.122 0.175 0.215 0.186 0.267
MODE-UR 0.121 0.178 0.215 0.186 0.267

Ah∗MLE 0.108 0.212 0.207 0.160 0.192

1The minimality refers to the minimum over h. The interval [0,10] was divided into 400 subinter-
vals. The entry “corr.MLE-MLE” refers to the L1 error of the MLE-MLE estimator for the value
of h optimal for Bh dFn. Likewise for corr.DIST-UR.

In Table 1 we report on the estimated quantities Ɛ�minh fnh�· �m�−fo1� for
the various choices of the mode m and likewise for ϕnh. The sample standard
deviations of the L1 loss were similar for each density and were all in the
0.4–0.7 range.

The following conclusions may be drawn. For smooth densities with light
tails, the unimodal rearrangement method à la Fougères (1997) works best,
although we are at a loss to explain the large improvement for the Weibull
distribution. For smooth densities with heavy tails, simulated by the mix-
ture of Beta densities and the mixture of normals, the smoothed maximum
likelihood method (the Ah∗MLE method) works the best, with the maximum
smoothed likelihood method a close second. The wonderful performance of the
Ah∗MLE method for the normal density is noteworthy, as is its less than
wonderful performance on the uniform density. Perhaps it should be recalled
[see Groeneboom(1985)] that when the Grenander (monotone) estimator is
used to estimate a uniform density, then

√
nfn − fo1 converges in distribu-

tion. The same is true for the unimodal (unsmoothed) maximum likelihood
estimator, but only for a deterministic choice of the mode. For the uniform
density on �3�8�, with mode fixed at m = 3 the estimated expected L1 error of
fnh�· �m� is 0.117, as opposed to 0.210 for fnh�· �mnh�, that is, when the mode
is chosen by maximum likelihood.

A final word about the selection of the smoothing parameter. In Table 1
we also report on the errors of the MLE-MLE and DIST-UR methods corre-
sponding to the optimal Bh dFn, that is, for the value of h that minimizes the
error Bh dFn−fo1 in each replication. See the headings “corr.MLE-MLE” and
“corr.DIST-UR” in Table 1. This shows that the smoothing parameter should



ESTIMATION OF MONOTONE AND UNIMODAL DENSITIES 931

be different when the unimodal estimator is used. In fact, the optimal h was
always substantially smaller for the various unimodal estimators. However,
it is not clear to the authors how this “optimal” h may be estimated in a
rational way.

3. Assumptions and theorems.

Monotone densities. We begin by stating the contractivity of the mapping
ϕ �−→ lcm�ϕ� in full generality. Let �+ = �0�∞�. We consider “distances” of
the form

��ϕ�ψ� =
∫ ∞

0
J
(
ϕ�x�� ψ�x�)dx�(3.1)

where J� �+ × �+ −→ �+ ∪ �+∞� satisfies
J�x�y� is continuous on �+ × �0�∞�� and(3.2)

J�b�p� −J�a�p�
b− a ≤ J�c� q� −J�b� q�

c− b
for all 0 ≤ a < b < c�
and all p ≥ q > 0�(3.3)

Upon taking p = q, condition (3.3) says that J�x�y� is convex in x for every
y > 0. When J�x�y� is twice continuously differentiable, the condition is
equivalent to

∂2J

∂x2
�x�y� ≥ 0�

∂2J

∂x∂y
�x�y� ≤ 0 for all x�y > 0�(3.4)

We also require condition (3.3) for the reverse function �x�y� �−→ J�y�x� (but
with different boundaries),

J�p� b� −J�p�a�
b− a ≤ J�q� c� −J�q� b�

c− b
for all p ≥ q ≥ 0�
and all 0 < a < b < c�(3.5)

as well as

J�x�y� is convex in x�y jointly�(3.6)

It is not clear to the authors whether all these conditions are independent,
but we shall not pursue the point. Abusing notation somewhat, we say that �
satisfies (3.2) if � is given by (3.1) and J satisfies (3.2), etc.

The standard examples of functions J satisfying (3.2) through (3.6) are
constructed as follows. Let f be a nonnegative, convex function on �, with
f�0� = 0, and define J by

J�x�y� = f�x− y�� x ≥ 0� y ≥ 0�(3.7)

The choice f�x� = �x�p �p ≥ 1� covers the Lp distances (1.23). Alternatively,
for f a nonnegative, convex function on �+, with f�1� = 0, define J by

J�x�y� =



yf�x/y�� x ≥ 0� y > 0,

x lim inf
t→∞

t−1f�t�� x > 0� y = 0,

0� x = 0� y = 0.

(3.8)
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Thus, J�x�0� = ∞ for all x > 0 or J�x�0� <∞ for all x. Note that

x lim inf
t→∞

t−1f�t� = lim inf
y→0+

yf�x/y�� x > 0�

The choices f�x� = �√x− 1�2, x log x+ 1−x, and �x− 1�2 cover the Hellinger,
Kullback–Leibler and Pearson ϕ2 distances; see (1.20)–(1.22).

A general class of functions J satisfying (3.2) and (3.3), but not necessarily
(3.5) and (3.6), are functions of the form

J�x�y� = f�x� − f�y� − f′�y��x− y�(3.9)

for (differentiable) convex functions f; for example, if f�x� = −√x� x ≥ 0, then
(3.5) and (3.6) fail, since J�x�y� is not convex in y.

We are now ready for the statement of the contractivity theorem.

Theorem 3.1 (Contractivity Theorem). (a) Suppose that � satisfies (3.2)
and (3.3). Then for all nonnegative ϕ ∈ L1�0�∞� and for all decreasing ψ ∈
L1�0�∞�,

�
(
lcm�ϕ�� ψ) ≤ ��ϕ�ψ��

(b) If � satifies (3.2) through (3.6) then for all nonnegative ϕ�ψ ∈ L1�0�∞�,
�
(
lcm�ϕ�� lcm�ψ�) ≤ ��ϕ�ψ��

We note that Brunk (1965) proves part (a) of the above theorem for functionals
J of the form (3.9).

The contractivity theorem implies error bounds on monotone density esti-
mators. For reasons indicated in the introduction, we concentrate on L1 error.
Note that the solution of (1.9) is given by fnh = lcm��h dFn�.

Corollary 3.1. Let fo be monotone on �0�∞�. If �h dFn ≥ 0 a.e., then

fnh − fo1 ≤ �h dFn − fo1�

Convergence rates thus follow from the known rates for boundary kernels,
under the usual assumptions on fo; see, for example, Devroye (1987) or Jones
(1993).

Unimodal densities. The basic assumptions are

fo is a continuous unimodal density, and(3.10)

the kernel A is symmetric, continuous and log-concave.(3.11)

The purpose of (3.11) is to guarantee that Ah ∗ fo is continuous and uni-
modal, and thatAh∗dFn is continuous. At times we shall explicitly repeat this
assumption. To obtain convergence rates, the usual nonparametric assump-
tions are required

[
see, e.g., Devroye and Györfi (1985)

]
,

�fo�′′1 <∞�(3.12)

Ɛ��X1�κ� <∞ for some κ > 1�(3.13)
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Also, the density fo is required to drop off from its set of modes in a certain
manner. For any unimodal density f let

M�f�def=�m�m is a mode of f�(3.14)

be the interval of modes of f. We assume that

there exists an open neighborhood 4 ofM�fo��
such that f′′o �x� ≤ 0 for all x ∈ 4(3.15)

and

lim inf
�x−m�→0

(
fo�m� − fo�x�

)
exp

(
ε

�x−m�
)
> 0 for all ε > 0�(3.16)

where m is the point inM�fo� closest to x.
Some simple sufficient conditions for (3.15) and (3.16) to hold are

f′′o is continuous on 4 and f′′o �mo� < 0(3.17)

or

f′′o �x� = −c�x−mo�p for all x ∈ 4�(3.18)

for some c > 0, p > 0 (and then the mode is unique).

Theorem 3.2. Let h � n−β for some 0 < β < 1, and let fnh be the solution
of (1.17). Under assumptions (3.10) and (3.11), for all mnh ∈ M�fnh� and
mo ∈M�fo�,

��fnh − fo��1 ≤ ��Ah ∗ dFn − fo��1 + cnh�mnh −mo� ��Ah ∗ �dFn − dFo���∞�
with cnh→as

√
32.

Theorem 3.3. Let h � n−β, with 0 < β < 1. Under assumptions (3.10),
(3.11), (3.13), (3.15) and (3.16), for all mnh ∈M�fnh�,

�mnh −m� =as o
(�log n�−1)� n→∞�

where m is the point inM�fo� closest to mnh.

Now (3.12) implies the a.s. bound of Silverman (1978), for h � n−β

�0 < β < 1�,
��Ah ∗ �dFn − dFo���∞ =as �

(�nh�−1/2 log�1/h�)�
and then Theorem 3.2 implies the corollary [see Devroye (1991)].

Corollary 3.2. Under assumptions (3.10), (3.11), (3.12), (3.13), (3.15) and
(3.16), for h � n−1/5,

��fnh − fo��1 ≤as ��Ah ∗ dFn − fo��1 + o�n−2/5� =as � �n−2/5��

The corollary says that asymptotically at least the unimodal estimator is not
worse than the kernel estimator.
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4. The contractivity for simple functions. Here we set out to prove the
contractivity theorem. We begin by proving it first for simple step functions,
defined here as nonnegative, integrable step functions on (0�∞). Precisely,
consider adjacent intervals A1�A2� � � � �An of the form

Aj = �xj−1� xj�� j = 1�2� � � � � n�(4.1)

where 0 = x0 < x1 < · · · < xn < ∞. A function is a simple function if it is
nonnegative and can be written as

ϕ�x� =
{
ϕj� x ∈ Aj� j = 1�2� � � � � n�
0� x > xn�

(4.2)

or, equivalently,

ϕ�x� = ∑
j∈I
ϕj��x ∈ Aj�� x ∈ �0�∞��(4.3)

where I = �1�2� � � � � n�, and in which ϕj ≥ 0 for all j. The corresponding
distributions are called simple distributions. We do not insist on the simple
functions being probability density functions, nor on the ϕj being distinct.

The proofs to follow are based on a judicious use of the pool-adjacent-
violators-algorithm (p-a-v-a); see Barlow, Bartholomew, Bremner and Brunk
(1972). We recall some of its properties. Let the density ϕ be given by (4.3), on
adjacent intervals A1�A2� � � � �An as in (4.1). The “basic step” of the algorithm
consists of locating a violation of the assumption that ϕ is decreasing, and fix-
ing it. That is, find a pair of adjacent intervals Aj�Aj+1 on which ϕj < ϕj+1,
and replace ϕ by ϕnew,

ϕnew�x� =



ϕ�x�� x �∈ Aj ∪Aj+1�
�Aj�ϕj + �Aj+1�ϕj+1

�Aj� + �Aj+1�
� x ∈ Aj ∪Aj+1�

(4.4)

The basic step is concluded by pooling the intervals Aj and Aj+1 into one
interval.

It is helpful to introduce notation to indicate where the “new” function came
from, that is,

ϕnew = lcm�ϕ�Aj ∪Aj+1��(4.5)

and the corresponding distribution �new by LCM���Aj ∪ Aj+1�. Likewise,
after a number of steps of p-a-v-a we denote the computed ϕ as lcm�ϕ�B�,
where B is the union of all the ‘violating’ intervals Aj�Aj+1. In general, if �
is a distribution function with density ϕ,

lcm�ϕ�B� =



the left continuous function which
is a.e. equal to the derivative of the
least majorant of � which is concave
on each interval contained in B�

(4.6)

The p-a-v-a works because

lcm
(
lcm�ϕ�Aj ∪Aj+1�

) = lcm�ϕ��(4.7)
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so after repeated applications of the basic step until there are no more vio-
lations of the monotonicity requirement, then lcm�ϕ� has been computed.
Finally, the p-a-v-a terminates after a finite number of steps, since, due to
the “pooling,” the number of intervals (the Aj) is decreased by one after each
step.

We are now ready to prove Theorem 3.1 for simple functions.

Lemma 4.1. Theorem 3.1(a) holds for all simple functions ϕ�ψ, with ψ
decreasing.

Proof. Suppose ϕ and ψ are supported on (0�T), for some T > 0, and
write ϕ as

ϕ�x� = ∑
j∈I
ϕj��x ∈ Aj�� x ∈ �0�∞��

for adjacent intervals A1�A2� � � � �An, with
⋃
j Aj = �0�T�. We may sup-

pose that ��ϕ�ψ� < ∞, since otherwise there is nothing to prove. Then also
J
(
ϕ�x�� ψ�x�) <∞ for all x > 0.
We compute lcm�ϕ� using the p-a-v-a. Thus we find two adjacent intervals

Aj and Aj+1 such that ϕj < ϕj+1 and compute ϕnew by (4.4). We show that

��ϕnew� ψ� ≤ ��ϕ�ψ��(4.8)

It suffices to consider the contributions of Aj∪Aj+1 only, that is, to show that∫
Aj∪Aj+1

J�ϕnew�x�� ψ�x��dx ≤
∫
Aj

J�ϕj�ψ�x��dx+
∫
Aj+1
J�ϕj+1� ψ�x��dx�

which may be rewritten as∫
Aj

{
J
(
ϕnew�x�� ψ�x�)−J(ϕj�ψ�x�)}dx

≤
∫
Aj+1

{
J
(
ϕj+1� ψ�x�

)−J(ϕnew�x�� ψ�x�)}dx�(4.9)

It is annoying that the two integrals may be over intervals of different lengths.
Using a simple change of variables to transform the intervals of integration
Aj and Aj+1 into, respectively, [−1�0] and [0,1], gives

�Aj�
∫ 0

−1

{
J
(
ϕnew� ψ1�x�

)−J(ϕj�ψ1�x�
)}
dx

≤ �Aj+1�
∫ 1

0

{
J
(
ϕj+1� ψ2�x�

)−J(ϕnew� ψ2�x�
)}
dx�

(4.10)

where ψ1�x� is the appropriate scaled version of ψ�x� on Aj and ψ2�x� the
scaled version of ψ�x� on Aj+1, and where we dropped the argument of ϕnew,
since it is constant on Aj ∪Aj+1. Now note that

ϕnew − ϕj =
�Aj+1�

(
ϕj+1 − ϕj

)
�Aj� + �Aj+1�

� ϕj+1 − ϕnew =
�Aj�

(
ϕj+1 − ϕj

)
�Aj� + �Aj+1�

�
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and ϕj+1 − ϕj > 0, so that (4.10) is equivalent to∫ 0

−1

J
(
ϕnew� ψ1�x�

)−J(ϕj�ψ1�x�
)

ϕnew − ϕj
dx

≤
∫ 1

0

J
(
ϕj+1� ψ2�x�

)−J(ϕnew� ψ2�x�
)

ϕj+1 − ϕnew
dx�

(4.11)

Thus, we are done if (4.11) holds. Since ψ is decreasing, then

ψ1�−x� ≥ ψ1�0� ≥ ψ2�0� ≥ ψ2�t� for all x� t ∈ �0�1�
and ϕj ≤ ϕnew ≤ ϕj+1, condition (3.3) implies that (4.11) holds, and so does
(4.8).

The proof is concluded by running the p-a-v-a to completion. By (4.8), each
step decreases ��ϕ�ψ�, and after finitely many steps we are done. ✷

We now turn our attention to proving Theorem 3.1(b), but still for simple
functions ϕ�ψ. Of course, Lemma 4.1 covers the case where ψ is decreasing.
It also covers the reverse case; that is,

if ϕ is decreasing and J satisfies (3.2) and (3.5),
then ��ϕ� lcm�ψ�� ≤ ��ϕ�ψ��(4.12)

The other extreme case, where ψ is increasing, is useful in establishing the
general result.

Lemma 4.2. Suppose � satisfies (3.2), (3.3), (3.5) and (3.6). Let ϕ and ψ be
simple functions on the same partition, that is, there exist adjacent intervals
A1�A2� � � � �An, such that

⋃
j Aj = �0�T� for some T > 0 and

ϕ�x� = ∑
j∈I
ϕj��x ∈ Aj�� ψ�x� = ∑

j∈I
ψj��x ∈ Aj�� x ∈ �0�∞��

Let 0 ≤ P < Q ≤ T, and assume that ψ is increasing on �P�Q�. Then
�
(
lcm�ϕ� �P�Q��� lcm�ψ� �P�Q��) ≤ ��ϕ�ψ��

Proof. We may assume that ��ϕ�ψ� <∞, so that J�ϕ�x�� ψ�x�� <∞ for
all x. We may also assume that �P�Q� = �0�T�.

We apply the p-a-v-a to ϕ and ψ simultaneously. That is, we find intervals
Aj, Aj+1 such that ϕj < ϕj+1, and compute ϕnew = lcm�ϕ�Aj∪Aj+1�. Since ψ
is increasing, then ψj ≤ ψj+1, and we do the “same” step on ψ, so we compute
ψnew = lcm�ψ�Aj ∪Aj+1�. Note that after pooling the intervals Aj and Aj+1,
both ϕ and ψ are simple functions on the new set of adjacent intervals.

Now we show that

�
(
ϕnew� ψnew) ≤ ��ϕ�ψ��(4.13)

Again, only the contributions of the intervals Aj and Aj+1 need to be con-
sidered, and all functions in question are constant on these intervals. Thus it
suffices to show that(�Aj� + �Aj+1�

)
J�ϕnew� ψnew� ≤ �Aj�J�ϕj�ψj� + �Aj+1�J�ϕj+1� ψj+1��
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and this holds by the convexity of J�x�y� in x�y jointly.
This describes one step of p-a-v-a applied to ϕ, and simultaneously on ψ.

After finitely many steps we have thus computed lcm�ϕ�. Denote the corre-
sponding ψ by ψlast. By induction, using (4.13), it follows that

�
(
lcm�ϕ�� ψlast) ≤ ��ϕ�ψ��

Now, if ψlast = lcm�ψ� we are done. If ψlast �= lcm�ψ�, then we still have
lcm�ψ� = lcm�ψlast�, and since lcm�ϕ� is obviously decreasing, (4.12) implies

�
(
lcm�ϕ�� lcm�ψ�) ≤ �

(
lcm�ϕ�� ψlast) ≤ ��ϕ�ψ��

This concludes the proof. ✷

Theorem 4.1. Theorem 3.1(b) holds for all simple functions ϕ�ψ.

Proof. Assume that ��ϕ�ψ� < ∞. Suppose that ψ is a step function on
the adjacent intervals Aj, j = 1�2� � � � � n. We apply a basic step of p-a-v-a
to ψ and find adjacent intervals Aj and Aj+1 such that ψj < ψj+1. Thus ψ
is increasing on Aj ∪Aj+1. Since ϕ is a simple function, ϕ and ψ are simple
functions on the adjacent intervals Bi, i = 1�2� � � � �m, with⋃

1≤i≤m
Bi = Aj ∪Aj+1�

So Lemma 4.2 applies, and gives

�
(
lcm�ϕ�Aj ∪Aj+1�� lcm�ψ�Aj ∪Aj+1�

) ≤ ��ϕ�ψ��(4.14)

After finitely many steps of p-a-v-a applied to ψ, the algorithm terminates,
and we have computed lcm�ψ� as well as lcm�ϕ�B�, where B is the union of
all the violating subintervals Aj, Aj+1. By induction, using (4.14), we thus
obtain that

�
(
lcm�ϕ�B�� lcm�ψ�) ≤ ��ϕ�ψ��

Since lcm�ψ� is obviously decreasing, Lemma 4.1 applies, so that

�
(
lcm�ϕ�� lcm�ψ�) ≤ �

(
lcm�ϕ�B�� lcm�ψ�) ≤ ��ϕ�ψ�� ✷

5. The general contractivity result. The next step is to extend Lem-
mas (4.8) and (4.16) to arbitrary densities. Going from simple distributions
to arbitrary ones is of course effected by a limiting process. The L1 case is a
simple consequence of the following lemma and is instrumental in proving the
general case.

Lemma 5.1. Let �o be a distribution on �0�∞� with density ϕo, and let
��n�n be a sequence of simple distributions with densities ϕn, with ��ϕn −
ϕo��1 −→ 0. Then

��lcm�ϕn� − lcm�ϕo���1 −→ 0�
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Proof. Let �n = LCM��n�, and ψn = lcm�ϕn�. Now Lemma 4.1 gives

��ψn − ψm��1 ≤ ��ϕn − ϕm��1�
so that �ψn�n is a Cauchy sequence. Thus, there exists a ψo ∈ L1�0�∞� with
��ψn − ψo��1 −→ 0, and all we need to show is that ψo = lcm�ϕo�, or that
�o = LCM��o�, where �o is the distribution corresponding to ψo.

Since

���n −�o��∞ ≤ ��ψn − ψo��1 −→ 0�(5.1)

then �o is the pointwise limit of a sequence of concave distributions, and it
follows that �o is concave. Also, since �n ≥ �n for all n, then �o ≥ �o. Thus,
ψo is a concave majorant of �o.

Let 9 be any concave majorant of �o. Then 9 ≥ �n − εn, where εn =
���n −�o��∞. This implies that 9+ εn is a majorant of �n, and it is concave.
So, it dominates the least concave majorant, 9+ εn ≥ LCM��n�, and

9+ εn ≥ �n ≥ �o − εn�
with εn as before. This implies that 9 ≥ �o − 2εn. Since εn → 0 [see (5.1)],
then 9 ≥ �o, and so �o = LCM��o�. ✷

The L1 case of Theorem 3.1(b) follows immediately from Lemma 5.1. The
proof for general distances is somewhat more complicated.

Proof of Theorem 3.1(b). Assume that ��ϕ�ψ� < ∞. The proof is an
exercise in measure theory; see Wheeden and Zygmund (1977). That is, we
approximate ϕo and ψo by simple functions ϕn and ψn, and take limits in the
inequality

�
(
lcm�ϕn�� lcm�ψn�

) ≤ ��ϕn�ψn��
Let n ∈ �. Since ϕo, ψo and Jo ≡ J�ϕo�·�� ψo�·�� are nonnegative elements of
L1�0�∞�, there exists a T = T�n� > 0 such that∫ ∞

T

(
ϕo�x� + ψo�x� +Jo�x�

)
dx <

1
n
�

By Lusin’s theorem, there exists a closed set F ⊂ �0�T�, with relative com-
plement G = �x ∈ �0�T�� x �∈ F�, such that ϕo�ψo and Jo are uniformly
continuous relative to F, and

�G� < 1
n
�

∫
G

(
ϕo�x� + ψo�x� +Jo�x�

)
dx <

1
n
�

The uniform continuity relative to F means that

∀ ε > 0 ∃ δ > 0 ∀ x�y ∈ F� �x− y� < δ $⇒ �ϕo�x� − ϕo�y�� < ε�
Now ϕo may be approximated by step functions in the following manner. For
k ∈ �, let

Aik =
(
i/k� �i+ 1�/k]� i = 0�1�2� � � � �
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and let I�k� = �i� �Aik ∩F� > 0�. Then for arbitrary θik ∈ Aik ∩F,

lim
k→∞

∑
i∈I�k�

∫
Aik∩F

�ϕo�θik� − ϕo�x��dx = 0�

Also, since ϕo is bounded on F, being a continuous function on a compact set,

lim sup
k→∞

∑
i∈I�k�

∣∣�x ∈ Aik� x �∈ F�∣∣ ϕo�θik� ≤ cn�
where c = max�ϕo�x�� x ∈ F�. Now choose k = k�n� so large that

∑
i∈I�k�

∫
Aik∩F

�ϕo�θik� − ϕo�x��dx <
1
n
�

∑
i∈I�k�

��x ∈ Aik� x �∈ F��ϕo�θik� <
2c
n
�

Arranging things so that the same inequalities hold for ψo and Jo, we define

ϕn�x� =
∑
i∈I�k�

ϕo�θik���x ∈ Aik��

ψn�x� =
∑
i∈I�k�

ψo�θik���x ∈ Aik��(5.2)

Jn�x� = J
(
ϕn�x�� ψn�x�

)
� x > 0�

This completes the construction of the approximating sequences.
We now take limits. First

ϕn − ϕo1 ≤
∫ ∞

T
ϕo�x�dx+

∫
G
ϕo�x�dx

+
∫
F
�ϕk�x� − ϕo�x��dx+

∑
i∈I�k�

∣∣�x ∈ Aik� x �∈ F�∣∣ϕo�θik�
and thus

ϕn − ϕo1 <
1
n
+ 1
n
+ 1
n
+ 2c
n
�

so ϕn−→ϕo in L1. The same arguments give ψn−→ψo and Jn−→Jo in L1. By
Lemma (5.1), then also lcm�ϕn�−→ lcm�ϕo� in L1, and so, for a subsequence,
lcm�ϕn�−→lcm�ϕo� almost everywhere. Likewise, along a subsequence of the
subsequence,

lcm�ψn� −→ lcm�ψo�� Jn −→ Jo almost everywhere.

By Fatou’s lemma along the appropriate subsequence,

�
(
lcm�ϕo�� lcm�ψo�

) ≤ lim inf
n→∞ �

(
lcm�ϕn�� lcm�ψn�

)
�
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Finally, since Jn −→ Jo in L1, then limn→∞ ��ϕn�ψn� = ��ϕo�ψo�. The theo-
rem follows. ✷

The proof of Theorem 3.1(a) follows likewise. We finish this section with
useful and obvious results.

Lemma 5.2. Let � be a distribution on �0�∞� with continuous density ϕ.
Then the following three statements hold:

(a) lcm�ϕ� is continuous.
(b) �lcm�ϕ���0� ≥ ϕ�0�.
(c) For all x > t > 0� �lcm�ϕ� �t�∞����x� ≥ �lcm�ϕ���x�.

6. Estimating smooth unimodal densities. In this section we apply
the above results on monotone density estimation to the estimation of uni-
modal densities

We first show the existence of solutions to (1.9). In the process some nice
qualitative observations regarding the estimator of the mode are made. It is
useful to consider the estimation problem with an a priori fixed mode m, that
is,

minimize Lnh�f� over f ∈ ��m��(6.1)

where

��m� = �f ∈ L1���� f ≥ 0� f is unimodal, with mode at m��(6.2)

It is obvious that (6.1) has a unique solution, which we denote by fnh�·�m�.
Thus, the existence of solutions to (1.9) reduces to the existence of solutions of

minimize L∗nh�m�
def= min�Lnh�f�� f ∈ ��m���

subject to −∞ < m <∞�
(6.3)

Any solution of (6.3) will be denoted by mnh. Since (6.3) is a parametric prob-
lem, matters should simplify considerably, but apparently they do not.

The existence of solutions to (6.3) is established as follows. We begin with
an observation regarding solutions of (6.1). We recall that A is log-concave
and continuous, so that Ah ∗ dFn is continuous.

Lemma 6.1. Let Ah ∗ dFn be continuous, and let f�·�m� be the solution of
(6.1). Then (at least) one of the following three statements holds:

(a) f�·�m� is continuous, and f�m�m� = Ah ∗ dFn�m�.
(b) ∃ δ > 0� f�·�m� is constant on �m−δ�m� and f�m−0�m� ≥ f�m+0�m�.
(c) ∃ δ > 0� f�·�m� is constant on �m�m+δ� and f�m+0�m� ≥ f�m−0�m�.

Proof. By Lemma 5.2 we have that f�·�m� is continuous every-
where except possibly at x = m, and that f�m ± 0�m� ≥ Ah ∗ dFn�m�. If
f�m + 0�m� = f�m − 0�m� = Ah ∗ dFn�m� then case (a) holds. If it does
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not then f�m + 0�m� > Ah ∗ dFn�m� or f�m − 0�m� > Ah ∗ dFn�m�. So
suppose f�m + 0�m� > Ah ∗ dFn�m�. By the continuity of f�·�m� on (m�∞),
and the continuity of Ah ∗ dFn there exists a δ > 0 such that

f�x�m� > Ah ∗ dFn�x� for all x ∈ �m�m+ δ��
This can only happen if f�·�m� is constant on �m�m+δ�. If now f�m−0�m� =
Ah ∗ dFn�m�, then case (c) holds. If on the other hand f�m − 0�m� > Ah ∗
dFn�m�, then by the same reasoning as above f�·�m� is constant on some
interval �m− ε�m�. Then at least one of the cases (b) and (c) holds. The case
f�m− 0�m� > Ah ∗ dFn�m� goes the same way. ✷

The lemma immediately establishes the following useful (theoretically and
practically) result regarding the maximum smoothed likelihood estimator of
the mode.

Theorem 6.1. The minimum of L∗nh occurs at a local mode of Ah ∗ dFn.

Proof. Let m ∈ �, and suppose that f�·�m� is constant on the inter-
val �m�m + δ� with δ > 0 chosen as large as possible, and f�m + 0�m� ≥
f�m− 0�m�. Then f�·�m� ∈ ��η� for all η ∈ �m�m+ δ�. Consequently,

L∗nh�m� = Lnh�f�·�m�� ≥ L∗nh�η� for all η ∈ �m�m+ δ��(6.4)

Let ηo ∈ �m�m+δ� be the largest local mode of Ah ∗dFn on �m�m+δ�. There
are two possibilities: either Ah ∗ dFn�ηo� = f�m + 0�m� or Ah ∗ dFn�ηo� >
f�m+0�m�. In the first case Ah ∗dFn�x� = f�m+0�m� for all x ∈ �m�m+δ�,
and m is a local mode of Ah ∗ dFn. In the second case, it is obvious that
fnh�·�ηo� is different from fnh�·�m�, since fnh�ηo�ηo� > fnh�m+ 0�m�. Then
the uniqueness of fnh�·�ηo� shows that L∗nh�m� > L∗nh�ηo�, and in view of (6.4)
m is not a local minimum of L∗nh. The same conclusion prevails if f�·�m� is
constant on an interval �m−δ�m�, and f�m−0�m� ≥ f�m+0�m�. Thus, if m
is a local minimum of L∗nh, part (a) of Lemma 6.1 must hold, and m is a local
mode of Ah ∗ dFn. ✷

Corollary 6.1. If fnh solves (1.17), then fnh�mnh� = Ah ∗ dFn�mnh�.

The consistency of the estimator of the mode is considered next. The moment
condition in the lemma can probably be removed, but since it is needed for
the bound (1.8), there is not much point to it.

Lemma 6.2. Suppose that Ah ∗ fo is unimodal. Let h � n−β for some 0 <
β < 1. If Ɛ��X�κ� <∞ for some κ > 1 then

min��mnh −m�� m ∈M�fo�� −→a�s� 0�

Proof. Let mo be the point in M�fo� closest to mnh. Assume that mnh <
mo. Now with fnh the solution of (1.9), for all s > 1,

D�Ah ∗ dFn�fnh� ≤ D�Ah ∗ dFn�Ah ∗ dFo� =a�s� � ��nh�−1/2�log n�s��
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since fo has a finite moment of order > 1; see Eggermont and LaRiccia (1999).
Now the inequality of Kemperman (1967) for all nonnegative L1 functions
ϕ�ψ, {∫

�

2
3ϕ+ 4

3ψ

}−1{∫
�
�ϕ− ψ�

}2

≤ D�ϕ�ψ��(6.5)

gives for all s > 1
2 ,

fnh −Ah ∗ dFo1 =as � ��nh�−1/4�log n�s��
Since fo −Ah ∗ dFn1 −→ 0 for h→ 0 [see, e.g., Devroye and Györfi (1985)],
the triangle inequality then implies fnh − fo1 −→a�s� 0, and thus∫ mo

mnh

�fnh�x� − fo�x��dx −→a�s� 0�(6.6)

Now recall thatmnh < mo. On the interval �mnh�mo� the function fo is increas-
ing and fnh is decreasing. Thus, the increasing estimator of fnh on this interval
is a constant function, and it follows from Corollary 3.1 that

min
c

∫ mo
mnh

�fo�x� − c�dx ≤
∫ mo
mnh

�fnh�x� − fo�x��dx −→a�s� 0�(6.7)

By the continuity of fo then fo�mnh�−fo�mo� −→a�s� 0, and the lemma follows.
✷

On to convergence rates. We first derive the bound for the L1 error.

Proof of Theorem 3.2. Assume thatmnh < mo. (The casemnh > mo goes
the same way.) We first split the integral∫

�
�fnh − fo� =

∫ mnh
−∞

· · · +
∫ mo
mnh

· · · +
∫ ∞

mo

· · · �(6.8)

For the first integral on the right of (6.8) we have by Corollary 3.1,∫ mnh
−∞

�fnh − fo� ≤
∫ mnh
−∞

�Ah ∗ dFn − fo��

For the last integral in (6.8) the triangle inequality gives∫ ∞

mo

�fnh − fo� ≤
∫ ∞

mo

�fnh�· �mnh� − fnh�· �mo��

+
∫ ∞

mo

�fnh�· �mo� − fo��
(6.9)

and for the last integral of this, again Corollary 3.1 gives∫ ∞

mo

�fnh�· �mo� − fo� ≤
∫ ∞

mo

�Ah ∗ dFn − fo��

The first integral on the right of (6.9) requires some work. First note that

fnh�x�mo� = �lcm�Ah ∗ dFn� �mo�∞����x�� x > mo�
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and recall Lemma 5.2 to see that not only∫ ∞

mo

fnh�x�mo�dx =
∫ ∞

mo

Ah ∗ dFn�x�dx�(6.10)

but also

fnh�x�mnh� = �lcm�ψ� �mnh�∞����x�� x > mnh�

where

ψ�x� =
{
fnh�x�mo�� x > mo,

Ah ∗ dFn�x�� mnh < x < mo.

It then follows from Lemma 5.2 that

fnh�x�mo� ≥ fnh�x�mnh� for x > mo�(6.11)

Thus, for the first integral on the right of (6.9), we obtain∫ ∞

mo

�fnh�x�mnh� − fnh�x�mo��dx =
∫ ∞

mo

{
fnh�x�mo� − fnh�x�mnh�

}
dx

=
∫ ∞

mo

{
Ah ∗ dFn�x� − fnh�x�mnh�

}
dx(6.12)

=
∫ mo
mnh

{
fnh�x�mnh� −Ah ∗ dFn�x�

}
dx�

where the first equality is by (6.11), the second one by (6.10), and the third
one again by (6.10) with mo replaced by mnh.

Finally, for the middle integral on the right of (6.8) the triangle inequality
suffices. Putting it all back together gives the inequality

fnh − fo1 ≤ Ah ∗ dFn − fo1 + 2
∫ mo
mnh

�fnh −Ah ∗ dFn��

The last remaining integral is duly bounded in the next rather technical
lemma. ✷

Note that in the above proof no use was made of the fact that fnh is the
maximum smoothed likelihood solution, or that mnh is its mode. In the next
lemma that changes.

Lemma 6.3. Under the same conditions as Lemma 6.2,∣∣∣∫ mo
mnh

�fnh −Ah ∗ dFn�
∣∣∣ ≤ cnh�mnh −mo�Ah ∗ �dFn − dFo�∞�

where cnh −→a�s�

√
8.
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Proof. We only consider the case mnh < mo. Let

ϕnh�x� =
{
fnh�x�� x �∈ �mnh�mo�,
Ah ∗ dFo�x� + δnh� x ∈ �mnh�mo�,

where δnh = Ah ∗ �dFn − dFo�∞. Below we prove that

ϕnh is unimodal�

so that ϕnh is a (presumably unsuccessful) candidate for a solution of (1.17);
that is,

D�Ah ∗ dFn�fnh� ≤ D�Ah ∗ dFn�ϕnh��
Both sides of this inequality are integrals over �−∞�∞�, but the integrands
differ only on �mnh�mo�, so that∫ mo

mnh

{
Ah ∗ dFn log

Ah ∗ dFn
fnh

+ fnh −Ah ∗ dFn
}

≤
∫ mo
mnh

{
Ah ∗ dFn log

Ah ∗ dFn
ϕnh

+ ϕnh −Ah ∗ dFn
}
�

(6.13)

The integral on the right may be bounded by Pearson’s ϕ2 distance,∫ mo
mnh

�Ah ∗ dFn − ϕnh�2
ϕnh

�

the square root of which may be bounded as

�fh�µnh��−1/2
[{∫ mo

mnh

�Ah ∗ �dFn − dFo��2
}1/2

+ �mo −mnh�1/2δnh
]

≤ 2�fh�µnh��−1/2�mnh −mo�1/2Ah ∗ �dFn − dFo�∞�
where fh�µnh� = min�fh�x�:x ∈ �mnh�mo��. The integral on the left of (6.13)
may be bounded below by [cf. (6.5)]{∫ mo

mnh

2
3Ah ∗ dFn + 4

3f
nh

}−1{∫ mo
mnh

�fnh −Ah ∗ dFn�
}2

�

and the first factor behaves as �2fo�mo��mo −mnh��−1 for nh → ∞, h → 0.
Here we used that mnh −→a�s� mo; see Lemma 6.2.

Since fh −→ fo uniformly, as nh → ∞, h → 0, putting all this together
proves the required bound.

We still must prove (6.13). Some of the crucial facts required in its proof are
that fnh�mnh�mnh� = Ah ∗ dFn�mnh�; see Corollary 6.1, and since mnh ≤ mo,
also fnh�mo�mnh� ≤ fnh�mo�mo�; see Lemma 5.2. Let m∞� h be the mode of
Ah ∗ fo, analogous to the interpretation of mnh. We distinguish between the
cases m∞� h > mo and m∞� h ≤mo.

Suppose m∞� h > mo. Then

ϕnh�mnh� = Ah ∗ fo�mnh� + δnh ≥ Ah ∗ dFn�mnh� = fnh�mnh�mnh��



ESTIMATION OF MONOTONE AND UNIMODAL DENSITIES 945

Moreover, ϕnh is increasing on �mnh�mo�. Thus, ϕnh is increasing on �−∞�mo�.
Since it is decreasing on �mo�∞�, then, as required, ϕnh is unimodal with mode
at mo.

Suppose m∞� h ≤ mo. Since Ah ∗ fo is decreasing on �mo�∞�, we now have
that

fnh�mo�mnh� ≤ fnh�mo�mo� ≤ max
x≥mo

Ah ∗ dFn�x�

≤ max
x≥mo

Ah ∗ dFo�x� + δnh

= Ah ∗ dFo�mo� + δnh = ϕnh�mo��
At x =mnh we have

ϕnh�mnh� = Ah ∗ fo�mnh� + δnh ≥ Ah ∗ dFn�mnh� = fnh�mnh�mnh��
Now ϕnh is increasing on �−∞�mnh�, decreasing on �mo�∞�, and is unimodal
on �mnh�mo�. Thus, ϕnh is unimodal. ✷

The remainder of this section consists of suitably bounding mnh −mo.

Proof of Lemma 3.2. Letmo be the point inM�fo� closest tomnh, and set

δnh = �1+ cnh� �mo −mnh � Ah ∗ �dFn − dFo�∞�(6.14)

Then the triangle inequality and Lemma 6.3 imply∫ mo
mnh

� fo�x� − fnh�x� � dx ≤ δnh +
∫ mo
mnh

� fo�x� −Ah ∗ fo�x� � dx�

Since �fo�′′ ∈ L1���, we have �fo�′ ∈ L∞���, and so for the last integral for
suitable constants k and γ,

�mo −mnh� fo −Ah ∗ fo ∞ ≤ k�mo −mnh�h  �fo�′ ∞ ≤ γ�mo −mnh�h
[see, e.g., Devroye and Györfi (1985)]. If follows that∫ mo

mnh

� fo�x� − fnh�x� � dx ≤ δnh + γ�mo −mnh�h�

and then, as in (6.7),

min
c

∫ mo
mnh

� fo�x� − c � dx ≤ δnh + γ�mo −mnh�h�(6.15)

Since f′′o ≤ 0 thenfo is increasing on �mnh�mo� and so the optimal c in (6.15)
equals c = fo�µ�, with µ = 1

2�mnh +mo�. Then∫ mo
mnh

� fo�x� − c � dx ≥
∫ mo
µ

�fo�x� − fo�µ��dx�
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Since fo is concave on �µ�mo�, geometric considerations show that the last
integral equals at least one-half the area of the rectangle with opposite vertices
�µ�fo�µ�� and �mo�fo�mo��, or

δnh + γ�mo −mnh�h ≥ 1
2�mo − µ��fo�mo� − fo�µ���

With (6.14), assumption (3.11) implies that for all ε > 0, there exists a constant
c > 0 such that

exp
(
− ε

mo − µ
)
≤ c�Ah ∗ �dFn − dFo�∞ + γh��

In view of the Silverman (1978) bound (3.13) for h � n−β, this implies asymp-
totically, for a suitable constant c′,

mo − µ ≤as c
′ε �log n�−1�

Since ε > 0 is arbitrary, the conclusion follows. ✷
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Birgé, L. (1989). The Grenander estimator: a nonasymptotic approach. Ann. Statist. 17
1532–1549.
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