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TWO ESTIMATORS OF THE MEAN OF A COUNTING PROCESS
WITH PANEL COUNT DATA
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We study two estimators of the mean function of a counting process
based on “panel count data.” The setting for “panel count data” is one in
which n independent subjects, each with a counting process with common
mean function, are observed at several possibly different times during a
study. Following a model proposed by Schick and Yu, we allow the number
of observation times, and the observation times themselves, to be random
variables. Our goal is to estimate the mean function of the counting process.

We show that the estimator of the mean function proposed by Sun and
Kalbfleisch can be viewed as a pseudo-maximum likelihood estimator when
a non-homogeneous Poisson process model is assumed for the counting pro-
cess. We establish consistency of both the nonparametric pseudo maximum
likelihood estimator of Sun and Kalbfleisch and the full maximum likeli-
hood estimator, even if the underlying counting process is not a Poisson
process. We also derive the asymptotic distribution of both estimators at a
fixed time t, and compare the resulting theoretical relative efficiency with
finite sample relative efficiency by way of a limited Monte-Carlo study.

1. Introduction. Suppose that N = �N�t� � t ≥ 0� is a univariate count-
ing process. In many applications, it is important to estimate the expected
number of events which will occur by the time t, ��t� = EN�t�, the mean
function of N.

In practice, a number of subjects are under study. Each subject is observed
several times during the study. At the observation times, only the counts of
events up to that time are observable; the exact times of events are unknown.
The number of observation times and the observation times themselves are
allowed to vary across the subjects. This kind of data often appear in de-
mographic studies, system reliability, and clinical trials. Data of this type are
sometimes referred to as Panel Count Data. Examples are given by Kalbfleisch
and Lawless (1985), Gaver and O’Muircheataigh (1987), Thall and Lachin
(1988), Thall (1988) and Sun and Kalbfleisch (1995).

In some situations, there is only one event recorded by the counting pro-
cess for each subject; for example, death or onset of disease. Then panel count
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data are often referred to as interval-censored data. There is a large literature
on statistical methods for interval-censored data and applications thereof; for
examples of interval-censored data see, for example, Diamond and McDonald
(1992), Diamond, McDonald and Shah (1986), Finkelstein (1986) and Finkel-
stein and Wolf (1985). Some theoretical results are also available. However,
most of those results are limited to the special case in which each subject
has the same number of observation times: see, for example, Groeneboom and
Wellner (1992), Huang (1996) and Huang and Wellner (1995) for cases when
each subject is only observed once or twice, while Wellner (1995) gives a pre-
liminary study of the NPMLE for the case when each subject is observed k
times. Schick and Yu (1999) show the consistency of the NPMLE for interval
censoring when each subject is allowed to have different number of observa-
tion times and the counting process is a simple indicator (one jump) counting
process. In this paper, we extend the formulation of the sample space given
by Schick and Yu (1999) to study panel count data for general counting pro-
cesses. We study both a pseudo-likelihood estimator �̂psn and the full maximum
likelihood estimator �̂n of the mean function �0 based on a non-homogeneous
Poisson process model, that is,

P�N�t� = k� = exp�−�0�t��
�k0�t�
k!


 k = 0
1
2
 � � � 
(1.1)

where �0�t� = E�N�t��, the mean function of the counting processN. We also
establish asymptotic properties of the proposed estimators without assuming
any model for the counting process N, thereby demonstrating an important
robustness property of both estimators. Our proofs of the asymptotic results
rely strongly on the generality in choice of sample space allowed by modern
empirical process theory.

The pseudo-likelihood estimator we study was proposed by Sun and Kalb-
fleisch (1995), who constructed the estimator based on isotonic regression con-
siderations. The pseudo-likelihood estimator ignores the dependence between
counts in the counting process as successive observation times, treating these
successive counts as if they were independent random variables to form a
“pseudo likelihood.” On the other hand, the full Non-Parametric Maximum
Likelihood Estimator (NPMLE) of the mean function �0 involves taking ac-
count of the dependence of the successive counts, and under the assumption
that the counting process is a (nonhomogeneous) Poisson process, this is easily
accomplished via independence of the increments of the process

P�N�t1� = k1
 � � � 
N�ts� = ks� =
s∏
j=1

��0�tj� − �0�tj−1��kj−kj−1
�kj − kj−1�!

(1.2)
× exp
−��0�tj� − �0�tj−1���

where 0 < t1 < · · · < ts
0 ≤ k1 ≤ · · · ≤ ks and t0 = k0 ≡ 0 by convention. We
show that the NPMLE �̂n of the mean function �0 based on (1.2) is consistent
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under mild restrictions even when the underlying true counting process is
not a Poisson process. We also show that it is more efficient than the Sun-
Kalbfleisch estimator, both when the nonhomogeneous Poisson assumption
holds and when it fails.

When the counting process for each individual is observed at just one time
(current status data), the estimator of Sun and Kalbfleisch (1995) is shown
to be the NPMLE if the counting process has just one jump (a simple indica-
tor counting process) or if it is a non-homogeneous Poisson process. Thus our
results extend previous results for current status data (or interval censoring
case 1) for interval censored data due to Groeneboom (1991) and Groeneboom
and Wellner (1992). When the counting process for each individual is observed
exactly twice, the estimator of Sun and Kalbfleisch (1995) differs from the
NPMLE and provides an alternative to the NPMLE studied in the case of
a simple counting process by Groeneboom (1991), Groeneboom and Wellner
(1992), Wellner (1995) and Groeneboom (1996). When the counting process for
each individual is observed a random number of times [“mixed case” inter-
val censoring in the terminology of Schick and Yu (1999)], then our results
generalize and extend those of Schick and Yu (1999) in several directions.

The outline of the rest of paper is as follows: In Section 2, we characterize
the two estimators �̂psn and �̂n. In Section 3, we provide algorithms for compu-
tation of the estimators: computation of the non-parametric maximum pseudo
likelihood Estimator (NPMPLE) �̂psn can be accomplished in one step. On the
other hand, computation of the NPMLE �̂n requires an iterative convex mino-
rant algorithm (ICM). In Section 4, we state the main asymptotic results for
both estimators: strong consistency and pointwise asymptotic distributions.
These results are proved in Section 7 by use of tools from empirical process
theory. In Section 5, we present an example involving data from a bladder
tumor study in which we compute and compare both estimators. In Section 6,
we present the results of simulation studies to compare the two estimators.

2. Characterization of two nonparametric estimators. Suppose that
N = �N�t� � t ≥ 0� is a counting process with mean functionEN�t� = �0�t�,K
is an integer-valued random variable andT = {

Tk
j
 j = 1
 � � � 
 k
 k = 1
2
 � � �
}

is a triangular array of potential observation times. We assume throught that
N and �K
T� are independent, and Tk
j−1 ≤ Tk
j for j = 1
 � � � 
 k and
k = 1
2
 � � � � Let X = �NK
TK
K�, with a possible value x = �nk
 tk
 k�,
where Nk = �Nk
1
 � � � 
Nk
k� with Nk
j = N�Tk
j�, j = 1
2
 � � � 
 k and Tk
is the kth row of the triangular array T. Thus the sample space for one
observation is � = ∪∞k=1��k × �0
∞�k × �k��. Suppose we observe n i.i.d.

copies of X; X1
X2
 � � � 
Xn, where Xi = �N�i�
Ki

T

�i�
Ki

Ki�, i = 1
2
 � � � 
 n.

Here �N�i�
T�i�
Ki�, i = 1
2
 � � � are the underlying i.i.d. copies of �N
T
K�.
Our goal is to construct nonparametric estimators of �0 and study the prop-

erties of these estimators.
If we assume the non-homogeneous Poisson process model (1.1) and ignore

the dependency of the events within a subject, we can form a “pseudo log-



782 J. A. WELLNER AND Y. ZHANG

likelihood function” for � given by

lpsn ���X� =
n∑
i=1

Ki∑
j=1

{
N

�i�
Ki
j

log��T�i�
Ki
j

� − ��T�i�
Ki
j

�
}

(2.1)

omitting the parts that are irrelevant in estimating �0.
Let s1 < s2 < · · · < sm denote the ordered distinct observation time points

in the set of all observation time points
{
TKi
j


 j = 1
 � � � 
Ki
 i = 1
 � � � 
 n
}
.

For l ∈ �1
 � � � 
m�, we define

wl =
n∑
i=1

Ki∑
j=1

1{
T
�i�
Ki
j

=sl
}
 N̄l =

1
wl

n∑
i=1

Ki∑
j=1
N

�i�
Ki
j

1{
T
�i�
Ki
j

=sl
}


and �l = ��sl�, and write � = ��1
 � � � 
 �m�. Then (2.1) can be rewritten, with
a slight abuse of notation, as

lpsn ���X� = lpsn ���X� =
m∑
l=1
wl

[
N̄l log�l − �l

]

(2.2)

and a nonparametric estimator �̂psn of �0 can be defined to be a nondecreas-
ing step function with possible jumps only occurring at si
 i = 1
 � � � 
m, that
maximizes (2.2). (Of course only �1
 � � � 
 �m are identifiable, and our choice of
�̂
ps
n as a step function with jumps at s1
 � � � 
 sm is arbitrary; other conventions

are also possible.) The following two lemmas characterize the nonparametric
estimator �̂psn of �0. The proofs rely on Theorem 2.1 below, directly follow the
same lines as those of Propositions 1.1 and 1.2 of Groeneboom and Wellner
(1992) and are therefore omitted. Let

�+ =
{
y ∈ Rm+ � 0 ≤ y1 ≤ y2 ≤ · · · ≤ ym

}
�(2.3)

Lemma 2.1. Suppose that N̄1 > 0 and � = ��1
 � � � 
 �m� ∈ �+. Then �
maximizes (2.2) over �+ if and only if

∑
j≥l
wj

{
N̄j

�j
− 1

}
≤ 0 for l = 1
 � � � 
m(2.4)

and

m∑
l=1
wl�l

{
N̄l

�l
− 1

}
= 0�(2.5)

Lemma 2.2. Let H∗ be the greatest convex minorant of the points(∑
j≤l
wj


∑
j≤l
wjN̄j

)
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on 
0
∑m
l=1wl�; that is, for t ∈ 
0
∑m

l=1wl�,

H∗�t� = sup

{
H�t� � H

(∑
j≤l
wl

)
≤ ∑
j≤l
wjN̄j

for each l
 0 ≤ l ≤m
H�0� = 0 and H is convex

}
�

Moreover, let �̂
ps
i be the left derivative of H∗ at

∑
j≤i wj. Then �̂

ps = ��̂ps1 
 � � � 

�̂
ps
m � is the unique vector maximizing (2.2) over �+.

The left derivative of the greatest convex minorant in Lemma 2.2 can be
explicitly solved by the “max-min” formula

�̂
ps
l = �̂psn �sl� = max

i≤l
min
j≥l

∑
i≤p≤j wpN̄p∑
i≤p≤j wp


 l = 1
 � � � 
m�(2.6)

The estimator �̂psn �sl� given in (2.6) based on the “pseudo log-likelihood
function” (2.2) is exactly that of Sun and Kalbfleisch (1995). They derived
(2.6) based on isotonic regression considerations introduced in Barlow, Bar-
tholomew, Bremner and Brunk (1972). The relationship between the NPMLE
for case 1 interval-censored data and isotonic regression is also developed in
Groeneboom and Wellner [(1992), page 43].

If we assume the nonhomogeneous Poisson process with joint distribution
given by (1.2), it follows that the log likelihood function for � is given by

ln���X� =
n∑
i=1

Ki∑
j=1

(
N

�i�
Ki
j

−N�i�
Ki
j−1

)
log

[
��T�i�

Ki
j
� − ��T�i�

Ki
j−1�
]

−
n∑
i=1
��T�i�

Ki
Ki
�


(2.7)

omitting the parts that do not depend on �.
Much as in the case of the pseudo-likelihood, for 1 ≤ l′ < l ≤m set

Al
l′ =
n∑
i=1

Ki∑
j=1

(
N

�i�
Ki
j

−N�i�
Ki
j−1

)
1
TKi
j=sl
TKi
j−1=sl′ �

and, for l ∈ �1
 � � � 
m�,

Bl =
n∑
i=1

1
T�i�
Ki
Ki

=sl��

Then we can rewrite ln���X� in (2.7), with a slight abuse of notation, as

ln���X� = ln���X� =
m∑
l′=1

m∑
l=l′+1

Al
l′ log��l − �l′ � −
m∑
l=1
Bl�l(2.8)
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and the NPMLE of �0 is defined to be the non-decreasing, non-negative step
function with possible jumps only occurring at sj
 j = 1
2
 � � � 
m, that maxi-
mizes (2.8). (Once again only �1
 � � � 
 �m are identifiable, and our choice of �̂n
as a step function with jumps at s1
 � � � 
 sm is arbitrary; other conventions are
also possible.)

Necessary and sufficient conditions characterizing the solution of the max-
imization problem �̂ = argmax�∈�+ln���X� are easily formulated using the
following version of the Fenchel duality theorem. The theorem below is stated
in Groeneboom (1996); see also Lemma 3.1 of Wellner and Zhan (1997) and
Jongbloed (1995, 1998).

Theorem 2.1. Let φ: �n → �∪�−∞� be a continuous concave function. Let
� ⊂ Rn be a convex cone and let �0 =� ∩φ−1���� Suppose �0 is nonempty
and φ is differentiable on �0. Then x̂ ∈ �0 satisfies φ�x̂� = maxx∈� φ�x� if
and only if

�x̂
�φ�x̂�� = 0(2.9)

and

�x
�φ�x̂�� ≤ 0
(2.10)

for all x ∈� .

For notational ease and to match notation with the theorem, we define

φ�u� ≡ ln�u�X�
 u ∈ ��(2.11)

Since the convex cone � is generated by the finite subset �1j � j = 0
 � � �m�,
where 1j = �0 · · ·0︸ ︷︷ ︸

m−j
1 · · ·1︸ ︷︷ ︸
j

�, it follows that in our current problem (2.10) is

equivalent to

m∑
j=i

∂φ�x̂�
∂xj

≤ 0 for i = 1
2
 � � � 
m�(2.12)

The equivalence between (2.10) and (2.12) can be proved by following the same
argument as given on pages 39–40 of Groeneboom and Wellner (1992).

Denote

φl�u� =
∂φ�u�X�
∂ul

for l = 1
2
 � � � 
m 


φl�u� can be computed explicitly from (2.11) and (2.8). Then the NPMLE of
the mean function, �̂n can be characterized by the following:

m∑
l=1
φl��̂��̂l = 0(2.13)
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and
m∑
l=p
φl��̂� ≤ 0 for all p = 1
2
 � � � 
m�(2.14)

3. Computation of the estimators. As noted in Section 2, the NPM-
PLE �̂psn can be computed in one step via the max-min formula (2.6). Our
proposed method for computation of the NPMLE �̂n characterized by (2.13) –
(2.14) involves the iterative convex minorant algorithm (ICM). This algorithm
has proved, by experience, to be numerically stable and rapidly convergent
in many similar problems; see, for example, Groeneboom and Wellner (1992),
Jongbloed (1998) and Wellner and Zhan (1997).

For any u = �u1
 u2
 � � � 
 um� ∈ �
 define

φll�u� =
∂2φ�u�X�
∂u2l

for l = 1
2
 � � � 
m 


φll�u� can be computed explicitly from (2.11) and (2.8). We define two processes
G�u
 ·� and V�u
 ·� by G�u
0� = 0,

G�u
p� =
p∑
l=1

�−φll�u�� for p = 1
2
 � � � 
m
(3.1)

V�u
0� = 0 and

V�u
p� =
p∑
l=1


φl�u� + ul �−φll�u��� for p = 1
2
 � � � 
m�(3.2)

Theorem 3.1. A vector �̂ satisfies (2.13) and (2.14) if and only if �̂ is the left
derivative of the convex minorant of the cumulative sum-diagram consisting of
the following points:

P0 = �0
0�

Pl = �G��̂
 l�
V��̂
 l��
 l = 1
2
 � � � 
m�

This theorem is actually Theorem 4.3 of Wellner and Zhan [(1997), page
952]. In general, Theorem 3.1 does not give an explicit solution �̂ as simple as
that we have seen in Lemma 2.2 for the maximum pseudo likelihood estimator.
Solving for �̂ typically requires an iterative procedure as follows.

Iterative convex minorant algorithm. Let

"i
j�u� =
V�u
 i� −V�u
j�
G�u
 i� −G�u
j� 


and η be the accuracy parameter.

Step 1. Select an initial guess u0 ∈ �.
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Step 2. Update the solution by

uk+1l = max
j≤l

min
i≥l
"i
j�uk�
 l = 1
2 � � � 
m
 k = 0
1
2
 � � � �

Step 3. If ∣∣∣∣∣ m∑
l=1

[
n∑
i=1
φi
l�uk+1�

]
uk+1l

∣∣∣∣∣ > η
or

max
1≤p≤m

m∑
l=p

n∑
i=1
φi
l

(
uk+1

)
> η


go back to Step 2, otherwise stop the iteration here.

Although the ICM works well in many applications, it is not guaranteed
to be globally convergent. To avoid this potential problem, Jongbloed (1998)
devised the “modified iterative convex minorant algorithm (MICM)” by insert-
ing a binary line search procedure into the ICM. He proved that the MICM
algorithm converges globally. The essence of the line search procedure is to
keep the iterations in the feasible region. Our experience with the MICM al-
gorithm is that inclusion of the line search (Armijo’s rule) is very important.
See Jongbloed (1998) for a proof of global convergence of the modified ICM
algorithm.

4. Asymptotic theory: Results. Although the estimator �̂psn described
by (2.6) is also given in Sun and Kalbfleisch (1995), the properties and behavior
of this estimator are still unknown. For the consistency of the estimator �̂psn ,
Sun and Kalbfleisch (1995) referred to some results for isotonic regression
given by Brunk (1970). In the present problem, however, the average counts
N̄l
 l = 1
 � � � 
m are not independent, and hence do not satisfy the conditions
of Brunk’s theorems. The estimator �̂n is described here for the first time.

Here we will use empirical process theory to study the properties of the esti-
mators �̂psn and �̂n. We establish consistency of both estimators in L2-metrics
related to the observation scheme, and establish the asymptotic distribution
of the estimators at fixed time points under some mild conditions.

First some notation. Let � denote the collection of Borel sets in � and let
�
0
τ� = �B ∩ 
0
 τ� � B ∈ ��. On �
0
 τ�
�
0
τ�� we define measures µ, µ2 and
ν, as follows: for B
B1
B2 ∈ �
0
τ�, set

µ�B� =
∞∑
k=1
P�K = k�

k∑
j=1
P�Tk
j ∈ B�K = k�

= E
{
K∑
j=1

1B�TK
j�
}



(4.1)
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µ2�B1 ×B2� =
∞∑
k=1
P�K = k�

k∑
j=1
P�Tk
j−1 ∈ B1
Tk
j ∈ B2�K = k�

= E
{
K∑
j=1

1B1
�TK
j−1�1B2

�TK
j�
}(4.2)

and

ν�B� =
∞∑
k=1
P�K = k�P�Tk
k ∈ B�K = k� = E {

1B�TK
K�
}
�(4.3)

Let � be the class of functions

� ≡ �� � 
0
∞� → 
0
∞�∣∣� is nondecreasing
 ��0� = 0� 
(4.4)

and let d be the L2�µ� metric on � ; thus for �1
 �2 ∈ � ,

d��1
 �2� =
[∫

��1�t� − �2�t��2dµ�t�
]1/2

�

We also define a metric d2 on � in terms of µ2:

d2��1
 �2� =
[∫ ∫

��1�v� − �1�u� − ��2�v� − �2�u���2dµ2�u
 v�
]1/2

�

The metrics d and d2 are closely related and if P�K ≤ k0� = 1 for some
k0 <∞, then they are equivalent:

1
2d2��1
 �2� ≤ d��1
 �2� ≤ k0d2��1
 �2��(4.5)

Moreover, with µ̃ defined by

µ̃�B� =
∞∑
k=1
P�K = k� 1

k2

k∑
j=1
P�Tk
j ∈ B�K = k� 
(4.6)

the corresponding metric d̃ defined by d̃2��1
 �2� =
∫ 
�1�t� − �2�t��2dµ̃�t�

satisfies

d̃��1
 �2� ≤ d2��1
 �2��(4.7)

[Proofs of (4.5) and (4.7) will be given along with the proof of Theorem 4.2 in
Section 7.] The measure µ was introduced by Schick and Yu (1999); note that
µ and µ2 are finite measures if E�K� <∞. Also note that d2��1
 �2� can also
be written in terms of an expectation as

d2��1
 �2� = E
[
K∑
j=1

(
�1�TK
j� − �2�TK
j�

)2]
�(4.8)

To prove consistency of the maximum pseudo likelikehood estimator �̂psn
and the maximum likelihood estimator �̂n we will use the following regularity
conditions on the true mean function �0 and the underlying distribution of
observation times.
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Conditions.

A. The observation timesTk
j
 j = 1
 � � � 
 k
 k = 1
2
 � � � are random variables
taking values in the bounded set 
0
 τ� where τ ∈ �0
∞� and E�K� <∞.

B. The true mean function �0 satisfies �0�τ� ≤ M for some M ∈ �0
∞� and
�0�t� = EN�t�, 0 ≤ t <∞.

C. The function Mps
0 defined by Mps

0 �X� ≡ ∑K
j=1NK
j log�NK
j� satisfies

PM
ps
0 �X� <∞.

D. The function M0 defined by M0�X� ≡ ∑K
j=1 "NK
j log�"NK
j� satisfies

PM0�X� <∞.

Note that Condition C holds if P�∑K
j=1�NK
j�1+δ� < ∞ for some δ > 0.

Both Condition C and the sufficient condition can be expressed in terms of the
measure µ since PMps

0 = ∫
E
N�t�� log�N�t���dµ�t� and P�∑K

j=1�NK
j�1+δ� =∫
E
�N�t��1+δ�dµ�t�. Similarly, Condition D holds if P�∑K

j=1�"NK
j�1+δ� <∞
for some δ > 0 and both Condition D and the sufficient condition can be
expressed in terms of the measure µ2 since we have PM0 =

∫ ∫
E
�N�v� −

N�u�� log�N�v� −N�u���dµ2�u
 v� and P�
∑K
j=1�"NK
j�1+δ� =

∫ ∫
E
�N�v� −

N�u��1+δ�dµ2�u
 v� .
In the current setting, our two consistency theorems for the pseudo like-

lihood estimator �̂psn and the full maximum likelihood estimator �̂n are as
follows.

Theorem 4.1 (Consistency of the NPMPLE). Suppose that A, B and C
hold. Then, for every b < τ for which µ�
b
 τ�� > 0,

d��̂psn 1
0
b�
 �01
0
b�� −→ 0 a.s. as n→∞ �

In particular, if µ��τ�� > 0, then

d��̂psn 
�0� −→ 0 a.s. as n→∞�

This conclusion also holds if

lim sup
n→∞

�̂psn �τ� <∞ a.s.(4.9)

Note that by the max-min definition of �̂psn , (4.9) holds if

lim sup
n→∞

max
1≤i≤n

N�i��τ� <∞ a.s.,

and this is always true if the counting processes N�i� have at most finitely
many jumps.



ESTIMATORS FOR PANEL COUNT DATA 789

Theorem 4.2 (Consistency of the NPMLE). Suppose that A, B and D hold.
Then, for every b < τ for which ν�
b
 τ�� > 0,

d��̂n1
0
b�
 �01
0
b�� −→ 0 a.s. as n→∞ �
In particular, if ν��τ�� > 0, then

d��̂n
 �0� −→p 0 as n→∞�

These consistency theorems have a number of important corollaries con-
cerning consistency of the estimators in stronger metrics under additional
hypotheses on the mean function �0 and the observation scheme just as in
the treatment by Schick and Yu (1999) of “mixed case interval censoring,” but
we will forego those corollaries here.

We now turn to asymptotic distribution theory at a fixed point t0.

Further Conditions E.

E1. There is an α > 0 andM1 > 0, such that E�K2+α� <∞ and

E�N2+α�t�� ≤M1 for all t ∈ Sµ�

E2. For a fixed t0 ∈ Sµ ≡ supp�µ�, there is a neighborhood of t0, such
that Gk
j is differentiable, and G′

k
j�s� is continuous in this neighbor-
hood. Moreover, G′

k
j�t� is positive and uniformly bounded for all j =
1
2
 � � � 
 k
 k = 1
2
 � � � .

E3. In the neighborhood of t0 described in E2, the true mean function �0 is
differentiable, and its derivative �′0 is continuous and strictly positive.

E4. Suppose that Gk
i
j�s
 t� = P�Tk
i ≤ s
Tk
j ≤ t� is differentiable with
respect to s and t, and in a neighborhood of �t0
 t0�

gk
i
j�s
 t� =
∂2

∂s∂t
Gk
i
j�s
 t�

exists and is uniformly bounded for all i
 j = 1
2
 � � � 
 k
 k = 1
2
 � � �.

E5. σ2�t� ≡ Var�N�t�� is continuous in a neighborhood of t0.

Theorem 4.3 (Asymptotic distribution, NPMPLE). Suppose that Condi-
tions A–C and E1–E5 hold. Then

n1/3
(
�̂psn �t0� − �0�t0�

)
−→d

[
σ2�t0��′0�t0�

2G′�t0�
]1/3

2 argmax
h

{
��h� − h2} 
(4.10)

where G′�t� = ∑∞
k=1P�K = k�∑k

j=1G
′
k
j�t�, and � is a two-sided Brownian

motion process, starting from zero.
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Now we will study the “toy estimator” �̂�0�n corresponding to �̂n. As in
Groeneboom and Wellner (1992), this is defined to be the result of carrying out
one step of the iterative convex minorant algorithm starting with the truth,
namely �0. For progress in the study of the full NPMLE of the distribution
function F in the case of interval censored data, see Groeneboom [(1996), Sec-
tion 4.2]. While it seems clear that the toy version of the NPMLE and the full
NPMLE will be asymptotically equivalent, at least under “strict separation
hypotheses” on the observation time distributions, the complete proof of this
will require more effort. We postpone this to future research. Moreover, for
the moment we will establish the pointwise asymptotic distribution of �̂�0�n
only when the hypothesized non-homogeneous Poisson process model used to
derive the estimator is valid.

Suppose that the distributions Gk
j
j′ have densities gk
j
j′ with respect to
Lebesgue measure on �2, and define functions Hi
k
j, i = 1
2, j = 1
 � � � 
 k,
k = 1
2
 � � � and H as follows:

H1
k
j�tk
j� =
∫ tk
j
0

1
�0�tk
j� − �0�tk
j−1�

gk
j−1
j�tk
j−1
 tk
j�dtk
j−1


H2
k
j�tk
j� =
∫ ∞

tk
j

1
�0�tk
j+1� − �0�tk
j�

gk
j
j+1�tk
j
 tk
j+1�dtk
j+1

and

H�t� =
∞∑
k=1
P�K = k�

{
k−1∑
j=1

[
H1
k
j�t� +H2
k
j�t�

]+H1
k
k�t�
}
�(4.11)

We will assume that all the Hi
k
j’s, and hence also H, are finite. We also
define

H1
k
j�tk
j
 ε� ≡
∫ tk
j
0

1
�0�tk
j� − �0�tk
j−1�

1
1/��0�tk
j�−�0�tk
j−1��>ε�

×gk
j−1
j�tk
j−1
 tk
j�dtk
j−1 


H2
k
j�tk
j
 ε� ≡
∫ ∞

tk
j

1
�0�tk
j+1� − �0�tk
j�

1
1/��0�tk
j+1�−�0�tk
j��>ε�

×gk
j
j+1�tk
j
 tk
j+1�dtk
j+1
and

H�t
 ε� ≡
∞∑
k=1
P�K = k�

[
k−1∑
j=1

{
H1
k
j�t
 ε� +H2
k
j�t
 ε�

}+H1
k
k�t
 ε�
]
�

Then we will assume the following asymptotic negligibility condition:

α
∫
�t0
t0+t/α�

H�u
 εα�du→ 0 as α→∞(4.12)

for each ε > 0 and t > 0.
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Further Conditions F.

F1. E�K2+α� <∞ for some α > 0 and the asymptotic negligibility condition
(4.12) holds.

F2. The counting processN is a nonhomogeneous Poisson process with mean
function �0.

F3. Suppose that the function H defined in (4.11) is continuous and strictly
positive in a neighborhood of t0.

Theorem 4.4 (Asymptotic distribution, NPMLE toy version). Suppose
that A, B, D, E2, E3 and F1–F3 hold. Then

n1/3
(
�̂
�0�
n �t0� − �0�t0�

)
−→d

[
�′0�t0�
2H�t0�

]1/3

2 argmax
h

{
��h� − h2} 
(4.13)

where � is a two-sided Brownian motion process, starting from zero.

Remark 1. It should be emphasized that the hypotheses of Theorems 4.1–
4.3 do not require that the true counting process N be a (non-homogeneous)
Poisson process. Thus these results yield a very strong robustness property of
both the pseudo-likelihood estimator �̂psn and the NPMLE �̂n.

Remark 2. We call the distribution of argmaxh
{
��h� − h2}, which appears

in Theorems 4.3 and 4.4, Chernoff’s distribution. It has recently been computed
and tabled by Groeneboom and Wellner (1999). This enables construction of
pointwise confidence sets for ��t0� given consistent estimators of σ2�t0�, �′�t0�
and G′�t0�.

Remark 3. Suppose that for each i = 1
2
 � � �, G′
k
i�t� are all equal to G′

i

for k = i
 i+ 1
 � � �. Then G′�t� in Theorem 4.3 can be rewritten as

G′�t� =
∞∑
i=1
G′
i�t�

∞∑
k=i
P�K = k� =

∞∑
i=1
G′
i�t�P�K ≥ i� ≥ G′

1�t��

Hence G′�t� is bigger than G′
1, the density function of observation time in the

case of current status data, the case K = 1 with probability 1. Hence under
the above condition the estimator �̂psn of the mean function �0 based on panel
count data has smaller variance than the estimator based only on current
status data; that is, multiple observation times help in estimating �0 under
the above condition. Since the numerator of the constant appearing in (4.10)
depends only on the the counting processN, whenever the denominator G′�t0�
is bigger than the corresponding term in the denominator g�t0� in the case of
current status data, the asymptotic variance is smaller.

The following examples illustrate the generality of Theorems 4.1–4.4 and
relate them to previous results in several important special cases.
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Example 4.1 [Current status data, simple (one event) counting process].
Suppose that the counting process N is the simple counting process N�t� =
1
Y≤t� whereY is a non-negative random variable with distribution functionF.
Then �0�t� = F�t�, and σ2�t� = F�t��1−F�t��. If K = 1 with probability one,
then our model reduces to “current-status data” for Y [or “interval censoring
case 1” in the terminology of Groeneboom and Wellner (1992)]. Moreover it is
easily seen that the estimator �̂psn �t� of �0�t� = F�t� is exactly the NPMLE of
F studied in Groeneboom and Wellner (1992), and the convergence in distri-
bution in Theorem 4.3 agrees exactly with Theorem 5.1 of Groeneboom and
Wellner [(1991), page 89] upon noting that

σ2�t0��′0�t0�
2G′�t0�

= F�t0��1−F�t0��f�t0�
2g�t0�

in this case (with G′ ≡ g).
Example 4.2 (Interval censoring case 2; simple counting process). Sup-

pose that N is a simple indicator counting process (so that �0�t� = F�t�
and σ2�t� = F�t��1 − F�t��) as in Example 1, but now suppose that K = 2
with probability one so that G�t� = G2
1�t� + G2
2�t�, the sum of the two
marginal distributions of T2 = �T2
1
T2
2�. In this case the estimator �̂psn �t�
of �0�t� = F�t� differs from the NPMLE of F studied by Groeneboom (1991),
Groeneboom and Wellner (1992), Wellner (1995) and Groeneboom (1996), and
is somewhat inefficient, even under the “separation type” hypotheses under
which the NPMLE �̂n�t� converges to F�t� at rate n1/3; cf. Wellner (1995)
and Groeneboom (1996). [Under non-separation, ‘positive density along the
diagonal’-type hypotheses on the distribution G2 of T2, the arguments of
Groeneboom (1991) and Groeneboom and Wellner (1992) suggest that �̂n�t�
converges to F�t� at rate �n log n�1/3.] For example, if

g2�t1
 t2� ≡
∂2

∂t1∂t2
G2�t1
 t2� = �α+ 2��α+ 1��t2 − t1�α1
0≤t1≤t2≤1�

as in Example 2 of Wellner [(1995), page 276] and if F�x� = x, 0 ≤ x ≤ 1,
then the asymptotic relative efficiency of the estimator �̂psn �t� relative to the
NPMLE based on the conjectured asymptotic distribution given in Wellner
(1995) is, at a point t0 ∈ �0
1�,

ARE�̂ps
�̂�t0�

= t1+α0 + �1− t0�1+α
t2+α0 + �1− t0�2+α + α−1�1+ α�

{
t0�1− t0�1+α + t1+α0 �1− t0�

}
= 2α

2α+ 1
when t0 =

1
2

and the latter ranges from 0 to 1 as α goes from 0 to ∞. When α = 0, the
current density g2 is uniform on the triangle 0 ≤ t1 ≤ t2 ≤ 1, and this is
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exactly the “positive density along the diagonal” case in which Groeneboom
and Wellner (1992) showed that the “toy” version of the NPMLE in interval
censoring case 2 converges at the faster rate �n log n�1/3. See Wellner (1995)
for further discussion. While this conjecture has not yet been proved for the
NPMLE even for interval censoring case 2, we conjecture that the faster rate
holds for the NPMLE in our current model under such positive density along
the diagonal type hypotheses, while the NPMPLE will continue to converge
at rate n1/3. These conjectures are completely consistent with the ARE = 0
when α = 0.

Example 4.3 (Current status data, nonhomogeneous Poisson process). Sup-
pose that the counting process N is a non-homogeneous Poisson process with
mean function �0. Furthermore, suppose that K = 1 with probability one.
Then there is just one term in the inner sum in (2.1), and hence the pseudo
log-likelihood ln���X� is actually the true log-likelihood. Thus the develop-
ment in Section 2 shows that �̂psn is the NPMLE of �0�t� in this case. Our
Theorems 4.1 and 4.2 show that �̂psn and �̂n are consistent estimators of �0,
even if the counting process N is not a Poisson process.

Example 4.4 (“Mixed case” interval censored data, simple counting process).
Suppose that N is a simple indicator (one event) counting process, N�t� =
1
Y≤t�, as in examples 1 and 2, but now suppose that K is random so that
we have a variable number of observation times for each individual. This is
what Schick and Yu (1999) refer to as “mixed case” interval censored data.
The estimators �̂psn and �̂n of �0 = F both differ from the NPMLE of F in this
case (at least when Ki ≥ 2 for some i), but Theorems 4.1 and 4.2 guarantee
that they are at least consistent, and Theorems 4.3 and 4.4 give conditions
under which their (pointwise) convergence rates are n1/3.

5. An example. The data, extracted from Andrews and Herzberg (1985),
are from a bladder tumor study, conducted by the Veterans Administration
Cooperative Urological Research Group (VACURG). Previous studies of this
data set can be found in Byar, Blackard and the VACURG (1977), Byar (1980)
and Wei, Lin and Weissfeld (1989).

This was a randomized clinical trial. In the trial, all patients experienced
superficial bladder tumors when they entered the trial. They were randomly
divided into three groups: one placebo group and two treatment groups (one
group was assigned pyridoxine pills; a second group received periodic instil-
lation of a chemotherapeutic agent, thiotepa, into the bladder). The follow-
up time periods varied among patients. At each follow-up visit, any tumors
noticed were counted, measured and then removed transurethrally, and the
treatment was continued. The purpose of the study was to determine the effect
of treatment on the frequency of tumor recurrence.

We estimated the mean functions of tumor counts for the three groups by
both the pseudo maximum likelihood method (i.e., the Sun-Kalbfleisch esti-
mator) and the full maximum likelihood method as defined in Section 2. The
three estimated mean functions using the pseudo maximum likelihood method
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are shown in Figure 1. We can see that the treatment using thiotepa seems
to reduce the tumor recurrence, assuming that randomization has already
adjusted the effects of initial tumor count and size.

The three estimated mean functions using the full maximum likelihood
method are also shown in Figure 1. The estimated mean functions agree quali-
tatively with the estimated mean functions using maximum pseudo likelihood,
but there are also substantial differences. As can be seen from the plot, the
NPMLE �̂n tends to be smaller than the maximum pseudo likelihood estima-
tor �̂psn , though the shapes of the curves are basically the same. This makes
sense because the maximum pseudo likelihood estimator �̂psn is essentially a
“mean-type” estimator (it can be viewed as the “pool-adjacent-violators” esti-
mator). The shapes of the mean functions based on the NPMLEs imply that
treatment using thiotepa seems to reduce the tumor recurrence, assuming
that randomization has adjusted the effects from initial tumor count and size.

This data was also considered by Wei, Lin and Weissfeld (1989). They
treated the clinical visit times as the time of tumor recurrence and applied
marginal Cox regression models adapted to the multivariate data to estimate
the treatment effect on the marginal distribution of tumor recurrence times.
Here we treat the clinical visit times as the observation times, and take the
tumor count as the main response variable. Thus the data can be treated as

TIME SINCE THE BEGINNING OF TRIAL

N
U

M
B

E
R

 O
F

 T
U

M
O

R
S

0 20 40 60 80

0
5

10
15

20

NPMPLE

NPMLE

NPMPLE

NPMLE

NPMPLE

NPMLE

Placebo
Pyridoxine
Thiotepa

Fig. 1. Estimators of the mean functions, bladder tumors data.
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panel count data, and fits quite naturally in the setting for panel count data
introduced in Sections 1–3. Then the effect of treatment can be seen through
the comparison of the mean functions of tumor counts across the treatment
groups.

Another approach would involve development of a regression model for tu-
mor counts, and could include the treatment, initial tumor count and initial
tumor size as covariates. This would allow for semiparametric estimation of
treatment effects on tumor counts with adjustments for the initial tumor count
and size. Some work on models of this type has been carried out in Zhang
(1998, 1999).

6. Simulations. To compare the properties of the NPMPLE �̂psn and the
NPMLE �̂n, we describe two Monte Carlo studies in this section.

Before describing the Monte Carlo experiments, we first explain our ap-
proach to estimation of the asymptotic relative efficiency of two estimators in
this type of problem.

To study the asymptotic relative efficiency between two estimators, let us
suppose that the estimators âna , and b̂nb have the same asymptotic distribu-

tions up to positive constants a and b: n1/3a �ân − ā� →d a
1/3�
 and n1/3b �b̂n −

b̄� →d b
1/3�
 respectively, where � is a known random variable. Thus Var�âna�

∼= n−2/3a a2/3Var��� and Var�b̂nb� ∼= n
−2/3
b b2/3Var���. If we ask two estimators to

have the same variance, asymptotically, we find that this forces �nb/na�2/3 =
�b/a�2/3. This implies that the asymptotic relative efficiency of two estimators
with n1/3− convergence rate is simply the cube of the ratio of constants that
appear in the asymptotic distributions: limnb/na = b/a. On the other hand,
we note that Var�ân� ∼= n−2/3a2/3Var���, and Var�b̂n� ∼= n−2/3b2/3Var���, and
hence lim�nb/na� = b/a ∼= �Var�b̂n�/Var�ân��3/2. Based on the above argu-
ments, we plot the 3/2 power of the ratio of sample variance of the NPMLE
to the variance of the NPMPLE to obtain an approximation to the asymptotic
relative efficiency.

Simulation 1 (Data from the Poisson process model). Let

��Ni
Ti
Ki� � i = 1
2
 � � � 
 n�

be a random sample, where

Ki ∈ �1
2
3
4
5
6� for each i = 1
2
 � � � 
 n


and P�Ki = k� = 1/6 for k = 1
2
3
4
5
6. Then Ti = �T�i�
Ki
1

T

�i�
Ki
2

 � � � 


T
�i�
Ki
Ki

� are made from the order statistics of Ki random observations, gen-
erated from the distribution, Unif(0,10). To make observation time points
being possibly tied, and separated, T�i�

Ki
j

 j = 1
2
 � � � 
Ki, are rounded to 2nd

decimal point.
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Fig. 2. The NPMPLE and the NPMLE of the mean function based on panel count data, generated
from a Poisson process.

Panel counts Ni = �N�i�
Ki
1

N

�i�
Ki
2

 � � � 
N

�i�
Ki
Ki

� are generated from Pois-
son�2t�, that is,

N
�i�
Ki
j

−N�i�
Ki
j−1 ∼ Poisson

[
2�T�i�

Ki
j
−T�i�

Ki
j−1�
]
�

We chose n = 100 and 1000, η = 0�000001 and ε = 0�2 (ε is the line search
parameter) to run the simulations. Since the NPMPLE �̂psn is consistent by
Theorem 4.1, it is a good choice as a starting point for the Modified Iterative
Convex Minorant (MICM) algorithm to compute �̂n. However, the NPMPLE
may yield a value of negative infinity for log likelihood function φ�u�. To
avoid this difficulty, we used a piecewise linear interpolation between points
of jump so that the starting point for the MICM is strictly increasing. Based
on these preparations, the MICM stops at step 195. Figure 2 displays both
the NPMPLE and NPMLE of the mean function, along with the true mean
function �0�t� = 2t. Apparently, both the NPMPLE and NPMLE converge
to the true mean function. Since the NPMLE appears to have more jumps
than the NPMPLE, it suggests that the NPMLE has less variability than the
NPMPLE, in agreement with Theorems 4.3 and 4.4.

To assess the variability of the estimators, we carried out a Monte Carlo
study by repeating the simulation 1000 times for n = 100 and 100 times for
n = 1000. The pointwise variances at time points t = 1�5
2�0
2�5
3�0
 � � � 
9�5
are calculated via the sample variances from 1000 and 100 runs respectively
for the two sample sizes. Tables 1 and 3 list the bias and standard errors
at those points for both the NPMPLE and NPMLE, respectively. Asymptotic
unbiasedness for both estimators appears to be true, and the NPMLE does
indeed have smaller variances at all these points, as expected. The plot of
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Fig. 3. The NPMPLE and the NPMLE of the mean function based on panel count data, not
generated from a Poisson process.

estimated relative efficiency NPMPLE with respect to the NPMLE is plotted in
Figures 4 and 5 (solid lines). As can be seen from Figures 4 and 5, the NPMLE
tends to be more efficient than the NPMPLE: at most of those time points, the
estimated relative efficiency of the NPMPLE is about 20% for n = 1000 and
below 50% for n = 100.

Simulation 2 (Data from a one-jump counting process). Let

�Ni
Ti
Ki� � i = 1
2
 � � � 
 n�
be a random sample, where Ki, Ti are generated following the same schemes
as those in simulation 1.

Let Vi denote the failure time, generated from the distribution Exp�−0�2�.
Panel counts Ni = �N�i�

Ki
1

N

�i�
Ki
2

 � � � 
N

�i�
Ki
Ki

�, i = 1
2
 � � � 
 n are given by

N
�i�
Ki
j

= 1
Vi≤T�i�
Ki
j

� for j = 1
2
 � � � 
Ki�

Because the counting process in this simulation always has just one jump, this
situation can be viewed as “mixed case interval censored data,” as described
by Schick and Yu (1999). Because of this, at most two terms are needed in
forming the likelihood function, and this means that a data reduction proce-
dure analogous to that described in Definition 1.1 of Groeneboom and Wellner
(1992) is necessary in the coding to simplify the algorithm.

We chose n = 100 and 3000, η = 0�000001 and ε = 0�2 to run the sim-
ulations. Again, the linearly interpolated NPMPLE �̂

ps
n was chosen as the

starting point for the MICM algorithm. Under these tolerances, the MICM
procedure stopped after 174 iterative steps for a simulated sample. Figure 3
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Table 1

Comparison of bias and standard deviation between the NPMPLE and the NPMLE of the mean
function, based on the data generated from a Poisson process, n = 1000

NPMPLE NPMLE

Monte-Carlo Monte-Carlo Theoretical Monte-Carlo Monte-Carlo
Time Bias s.d. s.d. Bias s.d.

1.5 3�036× 10−2 0.228 0.203 −2�359× 10−2 0.181
2.0 5�424× 10−2 0.225 0.223 3�410× 10−2 0.181
2.5 7�207× 10−3 0.246 0.241 2�748× 10−2 0.173
3.0 1�017× 10−2 0.252 0.256 3�891× 10−2 0.184
3.5 3�764× 10−2 0.267 0.269 1�625× 10−2 0.155
4.0 −7�724× 10−3 0.276 0.281 1�905× 10−2 0.186
4.5 1�229× 10−1 0.327 0.291 5�283× 10−2 0.170
5.0 7�545× 10−2 0.329 0.303 2�787× 10−2 0.171
5.5 4�978× 10−3 0.326 0.313 2�106× 10−2 0.172
6.0 −1�871× 10−2 0.321 0.322 2�176× 10−2 0.193
6.5 −6�816× 10−2 0.312 0.331 3�857× 10−2 0.209
7.0 −1�110× 10−1 0.392 0.339 −5�941× 10−5 0.194
7.5 2�308× 10−2 0.401 0.347 3�575× 10−2 0.209
8.0 −3�528× 10−4 0.364 0.354 4�599× 10−3 0.201
8.5 1�041× 10−2 0.417 0.362 4�738× 10−2 0.217
9.0 4�519× 10−2 0.423 0.369 4�556× 10−2 0.230
9.5 1�201× 10−1 0.389 0.375 5�382× 10−2 0.215

Table 2

Comparison of bias and standard deviation between the NPMPLE and the NPMLE of the mean
function, based on the data not generated from a Poisson process, n = 3000

NPMPLE NPMLE

Monte-Carlo Monte-Carlo Theoretical Monte-Carlo Monte-Carlo
Time Bias s.d. s.d. Bias s.d.

1.5 −3�233× 10−3 0.0253 0.0236 −1�218× 10−4 0.0216
2.0 −4�290× 10−3 0.0229 0.0240 −4�877× 10−3 0.0207
2.5 2�040× 10−3 0.0242 0.0238 2�285× 10−3 0.0168
3.0 −7�834× 10−4 0.0279 0.0233 1�596× 10−3 0.0198
3.5 −1�851× 10−3 0.0250 0.0226 8�456× 10−4 0.0172
4.0 2�008× 10−3 0.0246 0.0218 8�642× 10−4 0.0171
4.5 3�180× 10−3 0.0254 0.0209 1�437× 10−3 0.0172
5.0 1�141× 10−3 0.0229 0.0199 −3�361× 10−3 0.0159
5.5 −7�662× 10−4 0.0187 0.0190 −1�944× 10−3 0.0148
6.0 −7�295× 10−3 0.0192 0.0181 −2�074× 10−3 0.0141
6.5 −7�083× 10−4 0.0181 0.0171 −1�502× 10−4 0.0142
7.0 −4�248× 10−3 0.0178 0.0162 1�495× 10−3 0.0136
7.5 5�800× 10−6 0.0180 0.0153 −1�770× 10−3 0.0125
8.0 5�580× 10−4 0.0153 0.0145 2�525× 10−3 0.0109
8.5 −1�938× 10−3 0.0155 0.0136 −1�702× 10−3 0.0120
9.0 −2�494× 10−3 0.0147 0.0128 −2�194× 10−3 0.0112
9.5 1�889× 10−3 0.0149 0.0121 −6�706× 10−5 0.0112
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Table 3

Comparison of bias and standard deviation between the NPMPLE and the NPMLE of the mean
function, based on the data generated from a Poisson process, n = 100

NPMPLE NPMLE

Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Time Bias s.d. Bias s.d.

1.5 −0.04776 0.46826 −0.02716 0.39500
2.0 −0.06374 0.51756 −0.03656 0.42282
2.5 −0.04266 0.54970 −0.04196 0.43752
3.0 −0.05531 0.59206 −0.02538 0.45651
3.5 0.00699 0.64312 0.00043 0.46550
4.0 −0.05989 0.67109 −0.02262 0.46200
4.5 0.02752 0.69124 0.00656 0.48900
5.0 −0.02633 0.69978 −0.00998 0.49201
5.5 −0.04738 0.71900 −0.01602 0.50250
6.0 −0.03009 0.74609 −0.01610 0.50899
6.5 −0.08780 0.77180 −0.00761 0.53868
7.0 −0.08836 0.83721 −0.02580 0.54304
7.5 −0.00534 0.90201 0.01187 0.55320
8.0 0.02755 0.85949 −0.02862 0.57569
8.5 −0.01033 0.92738 −0.01616 0.59424
9.0 −0.01438 0.94491 −0.01021 0.62486
9.5 0.11517 0.99226 −0.00334 0.65618

Table 4

Comparison of bias and standard deviation between the NPMPLE and the NPMLE of the mean
function, based on the data not generated from a Poisson process, n = 100

NPMPLE NPMLE

Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Time Bias s.d. Bias s.d.

1.5 −0.01917 0.08820 0.00043 0.08309
2.0 −0.01345 0.08761 −0.00023 0.08104
2.5 −0.00726 0.08941 0.00356 0.08076
3.0 −0.00630 0.08615 0.00324 0.07862
3.5 −0.00549 0.08445 0.00344 0.07564
4.0 −0.00148 0.08227 0.00645 0.07632
4.5 0.00200 0.08198 0.00417 0.07161
5.0 0.00300 0.07850 0.00139 0.07005
5.5 −0.00024 0.07248 0.00385 0.06766
6.0 −0.00079 0.07192 0.00425 0.06524
6.5 0.00270 0.06944 0.00250 0.06361
7.0 0.00445 0.06671 0.00073 0.05944
7.5 0.00137 0.06480 0.00137 0.05855
8.0 0.00371 0.06258 −0.00162 0.05836
8.5 0.00686 0.06042 −0.00637 0.05723
9.0 0.01403 0.06202 −0.00706 0.05599
9.5 0.02581 0.06572 −0.00260 0.06305
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displays both the NPMPLE and NPMLE of the distribution function of fail-
ure time F�t� = P�T ≤ t� = 1 − exp�−0�2t� (the mean function is just the
distribution function of failure time in a one jump process).

The same phenomenon as in simulation 1 happens in this study that both
the NPMPLE and the NPMLE appear to converge to the true target function
F�t�, and the NPMLE tends to have less variation than the NPMPLE. This
study serves as a numerical evidence to verify that both the NPMPLE �̂psn
and the NPMLE �̂n based on the Poisson process assumption are robust with
respect to the actual distribution of the underlying counting process.

A Monte Carlo study based on 1000 runs for n = 100, 100 runs for n = 3000
of simulation 2 was also implemented to compare the NPMPLE and NPMLE.
Tables 2 and 4 show the results of the study by listing the bias and standard
errors of the estimators at points t = 1�5
2�0
2�5
3�0
 � � � 
9�5. Apparently,
these estimators are both asymptotically unbiased with the NPMLE being
less variable. The plot of estimated relative efficiency NPMPLE with respect
to the NPMLE is plotted in Figures 4 and 5 (dotted lines). As can be seen from
Figures 4 and 5, the NPMLE tends to be more efficient than the NPMPLE:
at most of those time points, the estimated relative efficiency of the NPMPLE
is about 30% - 40% in this second situation for n = 3000, and about 80% for
n = 100.

While the NPMLE is apparently more efficient than the NPMPLE, it should
be noted that the implementation of the NPMLE is much more involved
than that of the NPMPLE, requires relatively delicate programming struc-
ture, and also much more computing time. Here all these implementations
were coded in the C language and the plots were produced using S-plus. For
executable versions of the above algorithms described in Section 3 and the
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Fig. 4. The asymptotic relative efficiency of the NPMLE vs. the NPMPLE, n = 1000 (in the model)
and n = 3000 (off the model).
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Fig. 5. The asymptotic relative efficiency of the NPMLE vs. the NPMPLE, n = 100.

above simulations (implemented in C), see Wellner’s web site for software,
http://www.stat.washington.edu/jaw/RESEARCH/SOFTWARE.

7. Asymptotic results: Proofs. One of the strengths of modern empiri-
cal process theory is the generality allowed in the choice of the sample space.
Here we exploit that generality. We will use several results from Van der Vaart
and Wellner (1996) to prove Theorems 3.1 and 3.2.

Throughout this section we let C stand for a generic constant which may
change from line to line in the proofs.

Proof of Theorem 4.1. We begin by outlining the main steps in the proof.
The basic idea is to show that for almost all ω the sequence ��̂psn �·
ω�� is
sequentially compact for the topology of pointwise convergence and that ev-
ery pointwise limit �†�·
ω� of ��̂psn �·
ω�� must satisfy 	ps��0� ≤ 	ps��†�
where	ps is the population log-pseudolikelihood function defined below. Since
	ps has �0 as its unique maximum, this then yields that every limit equals
�0 a.e. µ. This then yields �̂psn → �0 a.e. µ almost surely. By the finite-
ness of µ and the dominated convergence theorem, this convergence yields
d��̂psn 1
0
b�
 �01
0
b�� → 0 a.s. for every b ≤ τ for which lim supn→∞ �̂

ps
n �b� <∞

almost surely. This last conclusion and sequential compactness will follow
from an argument which shows that lim supn→∞ �̂

ps
n �b� ≤ C/µ�
b
 τ�� for ev-

ery b < τ.
Now for the detailed argument. Let Sµ ≡ supp�µ� and set τr = sup�Sµ�. It

follows from assumption A that τr <∞ and we can take τ = τr. Let

	ps
n ��� =

1
n
ln���X� = 
nm

ps
� and 	ps��� = Pmps�
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where

m
ps
� �X� =

K∑
j=1

[
NK
j log��TK
j� − ��TK
j�

]
�(7.1)

Our proof of consistency will use the one-sided Glivenko-Cantelli Theorem
A.1. To apply Theorem A.1, we first need an upper envelope for the class of
functions � ps ≡ �mps� � � ∈ � �. Noting that g�x� = a log x− x, x > 0, a ≥ 0,
is maximized by x = a (with 0 log 0 ≡ 0), we find that

m
ps
� �X� ≤

K∑
j=1

[
NK
j log�NK
j� −NK
j

] ≤ K∑
j=1
NK
j log�NK
j� =Mps

0 �X� 


where PMps
0 �X� <∞ by Assumption C.

The NPMPLE �̂psn is given by

�̂psn = argmax
�∈�

	ps
n ����

Since

	ps
n ��̂psn � ≥	ps

n ��1− ε��̂psn + ε�0� 

it follows that

lim
ε↓0

	
ps
n ��1− ε��̂psn + ε�0� −	

ps
n ��̂psn �

ε
≤ 0�

Evaluating this limit we find that


n

{
K∑
j=1

(
NK
j

�̂n
K
j
− 1

)(
�0
K
j − �̂n
K
j

)}
≤ 0(7.2)

where �0
K
j ≡ �0�TK
j�, �̂n
K
j ≡ �̂psn �TK
j�. Now (7.2) can be rewritten as


n

{
K∑
j=1

(
NK
j

�0
K
j

�̂n
K
j
+ �̂n
K
j

)}
− 
n

{
K∑
j=1

(
�0
K
j +NK
j

)} ≤ 0


where the second term on the left side converges a.s. by the strong law of large
numbers and the Assumptions A and B to

P

(
K∑
j=1

(
�0
K
j +NK
j

)) = 2E

(
K∑
j=1
�0�TK
j�

)
= 2

∫
�0�t�dµ�t� ≡ C <∞�

Hence it follows that for every b ∈ �0
 τ� one has, almost surely,

C = lim sup
n→∞


n

{
K∑
j=1

(
�0
K
j +NK
j

)}

≥ lim sup
n→∞


n

{
K∑
j=1

(
NK
j

�0
K
j

�̂n
K
j
+ �̂n
K
j

)}



ESTIMATORS FOR PANEL COUNT DATA 803

≥ lim sup
n→∞


n

{
K∑
j=1

1
b
τ��TK
j�
(
NK
j

�0
K
j

�̂n
K
j
+ �̂n
K
j

)}

≥ lim sup
n→∞

�̂psn �b�
n
{
K∑
j=1

1
b
τ��TK
j�
}

= lim sup
n→∞

�̂psn �b�µ�
b
 τ���

Note that either µ��τ�� > 0, or there exists 0 < b < τ arbitrarily close to τ such
that µ�
b
 τ�� > 0. We first complete the proof in the case when µ��τ�� > 0. In
this case we conclude that on a set with probability one we have

lim sup
n→∞

�̂psn �b� ≤
C

µ��τ�� ≡Mτ <∞(7.3)

and hence the functions ��̂psn � are a.s. bounded on 
0
 τ�. Since the sequence of
functions ��̂psn �t
ω� � t ∈ 
0
 τ�� is uniformly bounded (for all n ≥ some Nω),
it follows from the Helly selection theorem that the sequence ��̂psn �·
ω�� has
a subsequence ��̂psn′ �·�� ≡ ��̂psn′�ω��·
ω�� which converges to a nondecreasing
function �† = �†

ω, defined on 
0
 τ� and taking values in 
0
Mτ�. Consider the
class of functions

� ps
τ = �mps� � � ∈ �τ�

where

�τ ≡ �� ∈ � � ��τ� ≤Mτ + 1� �(7.4)

Note that �τ is compact for the (pseudo-)metric d. Moreover, the function �→
m
ps
� �x� is upper semicontinuous in � for P almost all x, andmps� �x� ≤Mps

0 �x�
for all x and � ∈ �τ where M

ps
0 is integrable by Assumption C. [To see the

upper semi-continuity, suppose that ��m� is a sequence with d��m
�� → 0;
then �m�t� → ��t� for µ almost every t, and this implies that mps�m�x� →
m
ps
� �x� for P almost all x.] Thus Theorem A.1 yields

lim sup
n→∞

sup
�∈�τ

�
n −P��mps� �X�� ≤ 0 a.s.(7.5)

Since	ps
n ��0� →	ps��0� a.s. by the strong law of large numbers and	

ps
n ��0�

≤	
ps
n ��̂psn �, it follows that

	ps��0� ≤ lim inf
n→∞ 	ps

n ��̂psn � a.s.(7.6)

Hence it follows from (7.5) and (7.3) that

lim sup
n′→∞

	
ps
n′ ��̂psn′ � ≤ P�mps�† �(7.7)

almost surely, where the last inequality follows from (7.5) and

lim sup
n′→∞

P�mps
�̂
ps

n′
� ≤ P�mps

�† �
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for any subsequence �̂psn′ converging almost surely to �† on 
0
 τ�; this follows
from the upper semicontinuity of � → P�mps� � which is a consequence of
Theorem A.1 together with pointwise convergence of �̂psn′ on 
0
 τ�. Combining
(7.6) and (7.7) yields

0 ≤	ps��†� −	ps��0�
= −�Pmps�0

−Pmps
�† �

= −P
(
K∑
j=1
�0
K
j log

�0
K
j

�
†
K
j

−
(
�0
K
j

�
†
K
j

− 1

)
�
†
K
j

)

= −P
(
K∑
j=1
�
†
K
jh

(
�0
K
j

�
†
K
j

))

= −
∫
�†�t�h

(
�0�t�
�†�t�

)
dµ�t� ≤ 0

(7.8)

since h�x� ≡ x�log x−1�+1 ≥ 0 with equality if and only if x = 1. This implies
that �†�t� = �0�t� a.e. µ. Since this is true for any convergent subsequence, we
conclude that all the limits �† of subsequences of ��̂psn � are equal to �0 a.e. µ.
Since �0�t� ≤ �0�τ� ≤M for t ≤ τ, this implies that limn→∞ �̂

ps
n �t� = �0�t� ≤

�0�τ� almost surely for µ almost all t ∈ 
0
 τ�. It follows by the dominated
convergence theorem [with dominating functions �0�τ� + 1 since µ is a finite
measure] that d��̂psn 
�0� → 0 a.s.

Now suppose that µ��τ�� = 0. By the definition of τr it then follows that
µ�
b
 τ�� > 0 for every b < τ. Then we conclude that on a set with probability
one we have

lim sup
n→∞

�̂psn �b� ≤
C

µ�
b
 τ�� ≡Mb <∞(7.9)

and hence the functions ��̂psn � are a.s. bounded on 
0
 b�. Since the sequence of
functions ��̂psn �t
ω� � t ∈ 
0
 b�� is uniformly bounded (for all n ≥ some Nω),
it follows from the Helly selection theorem that the sequence ��̂psn �·
ω�� has
a subsequence ��̂psn′ �·�� ≡ ��̂psn′�ω��·
ω�� which converges to a nondecreasing

function �† = �†
ω
b, defined on 
0
 b� for each b < τ taking values in 
0
Mb�.

By considering a sequence of b’s converging up to τ we get a function �† = �†
ω

which is well-defined on 
0
 τ�. Set;b�X� ≡ 1
0
b��TK
K�, and for b < τ consider
the class of functions

�
ps
b = �;b�X�mps� �X� � � ∈ �b�

where

�b ≡
{
� ∈ �

∣∣��b� ≤Mb + 1
 ��t� = ��b�
 t ≥ b} �(7.10)

Note that �b is compact for every b < τ. Moreover, the functions � →
;b�x�mps� �x� are upper semicontinuous in � for each fixed x and � →
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;b�x�mps� �x� ≤ M
ps
0 �x� for all x and � ∈ �b where Mps

0 is integrable by
Assumption C. Thus Theorem A.1 yields

lim sup
n→∞

sup
�∈�b

�
n −P��;b�X�mps� �X�� ≤ 0 a.s.(7.11)

Since	ps
n ��0� →	ps��0� a.s. by the strong law of large numbers and	

ps
n ��0�

≤	
ps
n ��̂psn �, it follows that

	ps��0� ≤ lim inf
n→∞ 	ps

n ��̂psn � a.s.(7.12)

Now we can write, for any � ∈ � ,

	ps
n ��� = 
n�;bmps� � + 
n��1−;b�mps� �

≤ �
n −P��;bmps� � +P�;bmps� � + 
n��1−;b�Mps
0 ��

Hence it follows from (7.11) and (7.9) that

lim sup
n′→∞

	ps
n ��̂psn′ � ≤ P�;bmps�† � +P��1−;b�Mps

0 �X�� a.s.(7.13)

where the last inequality follows from (7.11) and

lim sup
n′→∞

P

(
;bm

ps

�̂
ps

n′

)
≤ P (

;bm
ps

�†

)
for any subsequence �̂psn′ converging almost surely to �† on 
0
 τ�; this follows
from the upper semicontinuity of � → P�;bmps� � which is a consequence of
Theorem 8.1 together with pointwise convergence of �̂psn′ on 
0
 τ�. Letting b ↑ τ
in (7.13) yields, using assumptions A and C, on a set with probability one,

lim sup
n′→∞

	
ps
n′ ��̂psn′ � ≤ P�mps�† � =	ps��†��(7.14)

Combining (7.12) and (7.14) yields (7.8) and hence �†�t� = �0�t� a.e. µ as
before. Since this is true for any convergent subsequence, we conclude that all
the limits �† of subsequences of ��̂psn � are equal to �0 a.e. µ. Since �0�t� ≤
�0�τ� ≤ M for t ≤ τ, this implies that limn→∞ �̂

ps
n �t� = �0�t� ≤ �0�τ� almost

surely for µ almost all t ∈ 
0
 τ�. It follows by the dominated convergence
theorem [with dominating functions �0�b�+1 since µ is a finite measure] that
d��̂psn 1
0
b�
 �01
0
b�� →a�s� 0. ✷

Proof of Theorem 4.2. For proofs of inequalities (4.5) and (4.7), see Well-
ner and Zhang (1998).

Now let

	n��� =
1
n
ln���X� = 
nm� and 	��� = Pm�(7.15)



806 J. A. WELLNER AND Y. ZHANG

where

m��X� =
K∑
j=1


�NK
j −NK
j−1� log���TK
j� − ��TK
j−1��

−���TK
j� − ��TK
j−1���

≡
K∑
j=1

[
"NK
j log�"�K
j� − "�K
j

]
�

Our consistency proof will again use the one-sided Glivenko-Cantelli Theorem
A.1. To apply Theorem A.1 we first need an upper envelope for the class of
functions � ≡ �m� � � ∈ � �. Noting that g�x� = a log x− x is maximized by
x = a, we find that

m��X� ≤
K∑
j=1

[
"NK
j log�"NK
j� − "NK
j

]
≤

K∑
j=1
"NK
j log�"NK
j� ≡M0�X� 


where PM0�X� <∞ by Assumption D. Now �̂n = argmax�∈� 	n��� where �

is as defined in (4.4). Then, since 	n��̂n� ≥ 	n��1 − ε��̂n + ε�0�, it follows
that

lim
ε↓0

	n��1− ε��̂n + ε�0� −	n��̂n�
ε

≤ 0�

Evaluating this limit we find that


n

{
K∑
j=1

(
"NK
j

"�̂n
K
j
− 1

)(
"�0
K
j − "�̂n
K
j

)}
≤ 0(7.16)

where "�0
K
j ≡ �0�TK
j� − �0�TK
j−1�, "�̂n
K
j ≡ �̂n�TK
j� − �̂n�TK
j−1�.
Now (7.16) can be rewritten as

0 ≥ 
n

{
K∑
j=1

(
"NK
j

"�0
K
j

"�̂n
K
j
+ "�̂n
K
j

)}
− 
n

{
K∑
j=1

(
"�0
K
j + "NK
j

)}

= 
n

{
K∑
j=1

(
"NK
j

"�0
K
j

"�̂n
K
j
+ "�̂n
K
j

)}
− 
n

{
�0
K
K +NK
K

}
where the second term on the left side converges a.s. by the strong law of large
numbers and the Assumptions A and B, to

P
(
�0
K
K +NK
K

) = 2P
(
�0�TK
K�

)
= 2

∞∑
k=1
P�K = k�

∫
�0�t�dGk
k�t� ≡ C <∞�
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Hence it follows that for any subset A of �t ∈ Rk � 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk� and
TK = �TK
1
 � � � 
TK
K� we have, almost surely,

C = lim sup
n→∞


n
{
�0
K
K +NK
K

}
≥ lim sup

n→∞

n

{
K∑
j=1
"NK
j

"�0
K
j

"�̂n
K
j
+ �̂n
K
K

}
(7.17)

≥ lim sup
n→∞


n

{
1A�TK�

(
K∑
j=1
"NK
j

�0
K
j

"�̂n
K
j
+ �̂n
K
K

)}
�

Let Sν ≡ supp�ν� where ν is the measure defined by (4.3) and set τ ≡ sup�Sν�.
It follows from (7.18) with A = Rk−1 × 
b
 τ� that for every b ∈ �0
 τ�

C ≥ lim sup
n→∞


n
{
1
b
τ��TK
K��̂n
K
K

}
≥ lim sup

n→∞
�̂n�b�
n1
b
τ��TK
K� = lim sup

n→∞
�̂n�b�ν�
b
 τ��

almost surely by the strong law of large numbers. Henceforth the proof is
almost exactly the same as for the NPMPLE �̂psn . By similar arguments we
conclude that

	��0� ≤ lim inf
n→∞ 	n��̂n� a.s.(7.18)

and

lim sup
n′→∞

	n��̂n′ � ≤ P�;bm�†� +P��1−;b�M0�X��(7.19)

almost surely. Letting b ↑ τ in (7.19) yields, using assumptions A and D, on a
set with probability one,

lim sup
n′→∞

	n′ ��̂n′ � ≤ P�m�†� =	��†��(7.20)

Combining (7.18) and (7.20) yields

0 ≤ 	��†� −	��0� = −�Pm�0
−Pm�†�

= −P
(
K∑
j=1
"�0
K
j log

"�0
K
j

"�
†
K
j

−
(
"�0
K
j

"�
†
K
j

− 1

)
"�

†
K
j

)

= −P
(
K∑
j=1
"�

†
K
jh

(
"�0
K
j

"�
†
K
j

))

= −
∫ ∫

��†�v� − �†�u��h
(
�0�v� − �0�u�
�†�v� − �†�u�

)
dµ2�u
 v� ≤ 0

since h�x� ≡ x�log x−1�+1 ≥ 0 with equality if and only if x = 1. This implies
that "�† ≡ �†�v�−�†�u� = �0�v�−�0�u� ≡ "�0 a.e. µ2, and since, by (4.7) the
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L2�µ2� metric d2 dominates the L2�µ̃� metric d̃ where µ and µ̃ are mutually
absolutely continuous, we conclude that �†�t� = �0�t� a.e. µ. Since this is
true for any convergent subsequence, we conclude that all the limits �† of
subsequences of ��̂n� are equal to �0 a.e. µ. Since �0�t� ≤ �0�τ� ≤M for t ≤ τ,
this implies that limn→∞ �̂n�t� = �0�t� ≤ �0�τ� almost surely for µ almost all
t ∈ 
0
 τ�. It follows by the dominated convergence theorem [with dominating
functions �0�b� + 1 since µ is a finite measure] that d��̂n1
0
b�
 �01
0
b�� →a�s�
0. ✷

Proof of Theorem 4.3. Here we adopt the notation in Section 2. Let c�s� �

0
∑m

j=1wj� → �+ be the cumulative-sum diagram; that is,

c�s� = ∑
j≤i
wjN̄j for s ∈

( ∑
j≤i−1

wj

∑
j≤i
wj

]

 c�0� = 0�

From the characteriztion of the estimator �̂psn given in Lemma 2.2, we know
that �̂psn �si� can be expressed as the slope H∗ in the interval �∑j≤i−1wj
∑
j≤i wj�. Similar to the case of current status data [interval censoring case

1, Groeneboom and Wellner (1992), pages 91–95], it follows that{
�̂psn �si� ≤ a

}
=
{
sup
s
�s � c�s� − as is minimal� ≥ ∑

j≤i
wj

}
�(7.21)

Define two stochastic processes

Vn�t� =
m∑
i=1
wiN̄i1�si≤t� and Un�t� =

m∑
i=1
wi1�si≤t��

It follows easily that c ≡ Vn ◦U−1
n . Hence (7.21) can be written as{

�̂psn �si� ≤ a
}

≡
{
sup
s
�s ∈ 
0


m∑
j=1
wj� � Vn ◦U−1

n �s� − as ≥ ∑
j≤i
wj

}

=
{
sup
s
�s ∈ 
0
 sm� � Vn�s� − aUn�s� is minimal� ≥ si

}
�

Let

Ŝn�a� = argmin
s

�Vn�s� − aUn�s�� 


where the largest value is chosen when multiple maximizers exist. By the
change of variable s = t0 + hn−1/3 in the definition of Ŝn, one gets

Ŝn��0�t0� + n−1/3x� − t0
= n−1/3 argmin

h

{
Vn�t0 + hn−1/3� − ��0�t0� + n−1/3x�Un�t0 + hn−1/3�

}
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and hence

P
(
n1/3��̂psn �t0� − �0�t0�� ≤ x

)
= P

(
�̂
ps
n �t0� ≤ �0�t0� + n−1/3x

)
= P

(
Ŝn��0�t0� + n−1/3x� ≥ t0

)
= P

(
argmin

h

{
Vn�t0 + n−1/3h�

− ��0�t0� + n−1/3x�Un�t0 + n−1/3h�
} ≥ 0

)
�

(7.22)

Now we rewrite Un and Vn in terms of N�i�
Ki
j

and T�i�
Ki
j

rather than the sl’s
as follows:

Vn�t� =
n∑
i=1

Ki∑
j=1
N

�i�
Ki
j

1{
T
�i�
Ki
j

≤t
} = n
n

(
K∑
j=1
NK
j1�TK
j≤t�

)

and

Un�t� =
n∑
i=1

Ki∑
j=1

1{
T
�i�
Ki
j

≤t
} = n
n

(
K∑
j=1

1�TK
j≤t�
)
�

Then the “argmin” term inside the probability in the right side of (7.22) can
be rewritten as follows:

argmin
h

{
Vn�t0 + n−1/3h� − ��0�t0� + n−1/3x�Un�t0 + n−1/3h�

}
= argmin

h

{

n

[
K∑
j=1
NK
j1�TK
j≤t0+n−1/3h�

]

−��0�t0� + n−1/3x�
n
[
K∑
j=1

1�TK
j≤t0+n−1/3h�
]}

= argmin
h

{
n2/3�
n −P�

[
K∑
j=1

�NK
j − �0�t0��(7.23)

×
(
1�TK
j≤t0+n−1/3h� − 1�TK
j≤t0�

)]

+ n2/3P
[
K∑
j=1

�NK
j − �0�t0��
(
1�TK
j≤t0+n−1/3h� − 1�TK
j≤t0�

)]

− n1/3x
n
[
K∑
j=1

(
1�TK
j≤t0+n−1/3h� − 1�TK
j≤t0�

)]}
�
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Now we derive the limit process corresponding to the process on the right
hand side of (7.23). First, let

fn
h�X� = n1/6
K∑
j=1

�NK
j − �0�t0��
(
1�TK
j≤t0+n−1/3h� − 1�TK
j≤t0�

)



where, as always, X = �NK
TK
K�. Then

n2/3�
n −P�
[
K∑
j=1

�NK
j − �0�t0��
(
1�TK
j≤t0+n−1/3h� − 1�TK
j≤t0�

)]
= �nfn
h�

Fix B > 0 and let

�B
n =
{
fn
h � h ∈ 
−B
B�

}
�

The proof now proceeds by showing that �B
n satisfies the conditions of Theo-
rem 2.11.23 of Van der Vaart and Wellner [(1996), page 221]; for full details of
these arguments, see Wellner and Zhang (1998). It then follows from Theorem
2.11.23, Van der Vaart and Wellner [(1996), page 221], that

�nfn
h −→d

√
σ2�t0�G′�t0���h� in l∞
−B
B��

The limit of the second term in (7.23) is easily obtained by use of conditions
E2, E3 and the mean value theorem. For simplicity of notation, we give the
proof for the case when h ≥ 0:

n2/3P

[
K∑
j=1

�NK
j − �0�t0��
(
1�TK
j≤t0+hn−1/3� − 1�TK
j≤t0�

)]

= n2/3E
[
K∑
j=1

��0�TK
j� − �0�t0��1�t0<TK
j≤t0+hn−1/3�
]

= n2/3
∞∑
k=1
P�K = k�

k∑
j=1

∫ t0+hn−1/3
t0

��0�s� − �0�t0��dGk
j�s�

= n2/3
∞∑
k=1
P�K = k�

k∑
j=1

∫ t0+hn−1/3
t0

�′0�ξ�s���s− t0�G′
k
j�s�ds

→ 1
2�

′
0�t�

∞∑
k=1
P�K = k�

k∑
j=1
G′
k
j�t0�h2 = 1

2�
′
0�t0�G′�t0�h2�
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Almost identical to the proofs of the first two terms of (7.23), one can show
that

n1/3x
n

[
K∑
j=1

(
1�TK
j≤t0+hn−1/3� − 1�TK
j≤t0�

)]

= n−1/3n2/3x�
n −P�
[
K∑
j=1

(
1�TK
j≤t0+hn−1/3� − 1�TK
j≤t0�

)]

+n1/3xP
[
K∑
j=1

(
1�TK
j≤t0+hn−1/3� − 1�TK
j≤t0�

)]

→d xh
K∑
j=1
P�K = k�

k∑
j=1
G′
k
j�t0� = G′�t0�xh in l∞
−B
B��

Putting the above results together, we finally arrive at the following limit
process:

Vn
(
t0 + hn−1/3

)− (
�0�t0� + n−1/3x

)
Un

(
t0 + hn−1/3

)
−→d

√
σ2�t0�G′�t0���h� + 1

2�
′
0�t0�G′�t0�h2 −G′�t0�xh

in l∞
−B
B�. Then the Argmax Continuous Mapping Theorem [Theorem 3.2.2,
Van der Vaart and Wellner (1996), page 286] implies that

ĥn = argmin
h

{
Vn�t0 + hn−1/3� −

(
�0�t0� + n−1/3x

)
Un

(
t0 + hn−1/3

)}
→d argmin

h

{√
σ2�t0�G′�t0���h� + 1

2�
′
0�t0�G′�t0�h2 −G′�t0�xh

}



provided that

ĥn = Op�1��(7.24)

The proof of (7.24) proceeds via Theorems 2.14.2 and 3.2.5 of Van der Vaart
and Wellner [(1996), pages 240 and 289]; for the complete proof, see Wellner
and Zhang (1998).

Along the same lines as in Groeneboom and Wellner [(1992), pages 99–100],
or using Exercise 3.2.8 of Van der Vaart and Wellner [(1996), page 308],

argmin
h

{√
σ2�t0�G′�t0���h� +

1
2
�′0�t0�G′�t0�h2 − xG′�t0�h

}

=d
[

4σ2�t0�
�′20 �t0�G′�t0�

]1/3

argmin
g

{
��g� + g2}+ x

�′0�t0�
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and it yields

P
(
n1/3��̂psn �t0� − �0�t0�� ≤ x

)
= P�ĥn ≥ 0�

→ P

([
4σ2�t0�

��′0�t0��2G′�t0�
]1/3

argmin
g

{
��g� + g2} ≥ − x

�′0�t0�

)

= P
([
σ2�t0��′0�t0�

2G′�t0�
]1/3

2 · argmax
g

{
��g� − g2} ≤ x) 


and the proof is complete. ✷

For a sketch of the proof of Theorem 4.4, see Wellner and Zhang (1998).

APPENDIX

This section provides a statement of one of the empirical process results
which we use in our proofs. It is a one-sided Glivenko-Cantelli theorem which
is Le Cam’s [(1953), page 301] recasting of a result of Wald (1949); see also Fer-
guson [(1996), pages 107–111]. Huber (1967) and Dudley (1998) give further
results in this direction.

Theorem A.1. [ (One-sided Glivenko-Cantelli theorem)] Suppose that � =
�f�·
 θ� � θ ∈ A� is a class of measurable functions defined on a probability
space �� 

 
P�, where A is compact, and f�x
 θ� is upper semicontinuous in
θ for P almost every x. Moreover, suppose that there exists a function F�x�
such that EF�X� < ∞ and f�x
 θ� ≤ F�x� for all x ∈ � , θ ∈ A, and for all θ
and all sufficiently small ρ > 0,

sup
�θ′ �d�θ′
θ�<ρ�

f�x
 θ′�

is measurable in x. Then, if X1
 � � � 
Xn are i.i.d. P with values in � , and 
n
is the empirical measure of the Xi’s.

lim sup
n→∞

sup
θ∈A


nf�·
 θ� ≤ sup
θ∈A
Pf�·
 θ� a.s.

and

lim sup
n→∞

sup
θ∈A

�
n −P�f�·
 θ� ≤ 0 a.s.

Moreover, µ�θ� = Pf�·
 θ� is upper semicontinuous:
lim sup
θ′→θ

µ�θ′� ≤ µ�θ� �
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