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A NOTE ON THE CONVERGENCE OF SERIES
OF STOCHASTIC PROCESSES!

By M. J. WICHURA
University of Chicago
A tightness condition for families of Gaussian processes with con-

tinuous paths is given and applied to the question of convergence of sums
of independent Gaussian processes.

According to a classical result of Paul Lévy, a series of independent real-
valued random variables converges almost surely iff the partial sums converge
in distribution. Various extensions of this result to random variables taking
values in more general spaces are known. Tortrat [8] has established the ana-
logue of Lévy’s result for random variables taking values in certain topological
groups, including separable Banach spaces. For the case of symmetrically-dis-
tributed Banach-space-valued variables, further necessary and sufficient condi-
tions for convergence have been given by It6 and Nisio [4]. Recently, Jain and
Kallianpur [5] used the It6-Nisio conditions to prove the almost sure uniform
convergence of certain series representations of Gaussian processes. Here we
give a different, and somewhat simpler, proof of results analogous to those of
[5]: our argument employs the Banach space version of Lévy’s theorem and an
inequality of Anderson [1] concerning the probability content of convex sym-
metric sets under normal distributions. Additional information about this topic
is to be found in the paper [2] by Berman.

Let T be a compact metric space, and let C be the space of continuous real-
valued functions on T. Endow C with the topology of uniform convergence,
and let = be the corresponding Borel g-algebra. We pause here to review some
definitions and well-known results concerning weak convergence of probabilities
on (C, €) (see, for example, [3], where proofs are given for T = [0, 1]).

Let .7 denote the class of probabilities on (C, ”). The weak topology on
Fis that induced by the mappings P — Pf = {. f dP as f ranges over all bounded
continuous real-valued functions on C. The topology of weak convergence is
metrizable, and the relatively compact sets are exactly the so-called “tight”
subsets of &7, i.e. families (P,),.o such that

(1 lim,_, sup, Py{||+|]| = ¢} = 0
(2) lim;_, sup, Py{w;(+) = e} =0 forall e >0;
here ||+||: x — ||x|| = sup,c, [x(?)] and w;(+): x — w;(x) = sup {|x(1) — x(s)]: s,

teT;d(s,t) < d}. In order that probabilities £, (n = 1) converge weakly to a
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probability P it is necessary and sufficient that (i) (P,),,, be tight, and (ii) the
“finite-dimensional” distributions P, ;"' converge weakly to Pr;~! for all finite
subséts S c T; here ng: x — (x(5)),.s € RS.

Now let (Q, &) be a measurable space and let X: Q — C. X is measurable
between <% and ¢ iff X = (X,),., is a stochastic process, i.e. iff each X, is a
random variable. Given a family of such C-valued processes defined on (pos-
sibly different) probability spaces, one defines the tightness and weak conver-
gence of the processes involved in terms of the tightness and convergence of the
distributions they induce on (C, &).

Let X,, # €0, be C-valued Gaussian processes with zero means and covari-
ances I'y(L'y(s, 1) = EX,(s)X,(t)). Suppose that for some §,€ ©, onehasT'y < T',_
(i.e. T'y, — Ty positive semi-definite) for all # € ©. Then

PRrROPOSITION 1. Under the above assumptions,
3) P < ¢} = PlIIX,) < o)
@ Ploy(X,) < ¢} = Ploy(X,) < ¢}
for all ¢, 6, and . In particular, the family (Xy)s.q is tight.

Proor. In Corollary 3 of [1], T. W. Anderson showed that for any (closed)
convex symmetric set £ in R?, one has

(5) P{Z, e E} = P{Z, ¢ E}

whenever Z, and Z, are p-variate normal random vectors having zero means and
non-singular covariance matrices X, and Z, satisfying £, < Z,. By applying the
Brunn-Minkowski theorem for a suitable subspace in the proof of Anderson’s
Theorem 1 [1], one finds that Anderson’s Corollary 2 holds for random vectors
having a symmetric unimodal density in some subspace of R?, and thus that (5)
holds even if the Z’s have singular normal distributions. Inequalities (3) and (4)
follow from (5) by a simple limiting argument. [J

'A few comments on the proposition are in order at this point. First, instead
of assuming that each X, has continuous paths, one can assume only that each
X, is a separable process and that X, has continuous paths; then (3) and (4) are
in force and imply that all the X,’s have continuous paths. Second, the proposi-
tion is not as useful as might be wished, for methods which allow one to prove
that X, has continuous paths generally can be applied directly to prove the
tightness of the X,’s; see for example, [2]. Finally, the Gaussian hypothesis can
be replaced by a weaker one, namely that the X,’s are “elliptically contoured”
processes. One says that a random vector Z in R? is elliptically contoured with
parameters fand Z, written Z ~ EC(f, Z, p), if Z has density of the form f(z) =
|Z|~¥(2’Z-'z), where f: [0, co) — [0, o0) and Z is a positive definite symmetric
matrix. That normal random vectors are elliptically contoured is seen by taking
f(1) to be (1/2z)?”%e~*2. It has recently been shown ([7]) that (5) holds whenever
Z, ~ EC(f,Z,,p) (i=1,2) with £, < Z,. Consequently if the X,’s have
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elliptically contoured finite-dimensional distributions with appropriate parame-
ters, the conclusion of the proposition still holds.

PROPOSITION 2. Let X, = (X,(1)),.; be independent C-valued Gaussian processes,
all defined on the same probability space, and having zero means and covariances T,
(n=1). SetI' =X, T',. If there exists (on some probability space) a C-valued
Gaussian process (say X) with covariance I', then with probability one the series
Z, X, (1) converges uniformly in te T.

Proor. Put S, = Z, _ X,. It suffices ([4] or [8]) to show that the §,’s con-
verge in distribution to X. Convergence of finite-dimensional distributions is
immediate, and tightness follows from Proposition 1. ]

The simplest case covered by Proposition 2 is perhaps that in which each X,
is of the form &, g,, where the &, ’s are i.i.d. N(0, 1) random variables, and
the functions g,: T — R are continuous and satisfy X, g,(s)g,(1) = I'(s, ¢) for all
s,te T. For such g, ’s one may take any complete orthonormal system for the
reproducing kernel Hilbert space associated with (the continuous) covariance
kernel T (see, e.g. [6]). This gives another proof of the results of [5].
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