WHICH FUNCTIONS OF STOPPING TIMES ARE STOPPING TIMES?\footnote{Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, USAF, under Grant No. AFOSR-71-2100. The United States Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation hereon.}

BY LESTER E. DUBINS

University of California, Berkeley

Some functions of stopping times are necessarily stopping times, but others need not be. For example, the sum $\tau_1 + \tau_2$ of two stopping times is, while for stochastic processes in continuous time, the product $\tau_1 \cdot \tau_2$ need not be. Determined here for each positive integer n are those functions ϕ for which $\phi(\tau)$ is a stopping time for all n-tuples of stopping times $\tau = \tau_1, \cdots, \tau_n$.

1. Introduction. If τ is a stop rule and ϕ maps the set T of positive reals into itself, then $\phi(\tau)$ may or may not be a stop rule. Which are the (measurable) ϕ that transform all stop rules into stop rules? Among them are certainly those for which $\phi(t) \geq t$ for all t. The only others are those which, for some c, satisfy

$$\phi(t) \geq t \quad \text{for} \quad t \leq c,$$

$$= c \quad \text{for} \quad t > c.$$

With the convention that c can be ∞, (1) characterizes the (measurable) ϕ that carry stop rules into stop rules. What positive-valued (measurable) functions ϕ of two positive variables carry each pair of stop rules into stop rules? Just those ϕ for which $\phi(s, t)$ satisfies Condition (1) in s for each t and in t for each s. The principle extends immediately from two to any finite or infinite number of arguments.

This characterization of the ϕ's that transform stop rules for discrete-time stochastic processes into stop rules was jointly reported in [1] (Section 2.9). This note reports that the same characterization holds for strict stop rules when the processes have a time-parameter that is continuous. Slight variants of the characterization hold when wide-sense stop rules are admitted.

2. Notation. $\mathcal{F}^* = [\mathcal{F}_t, 0 \leq t < \infty]$ is an increasing family of σ-fields of subsets of a set U, and τ is a stop rule for \mathcal{F}^*, that is, a map of U into the nonnegative reals such that $(\tau \leq t) \in \mathcal{F}_t$ for each $t \geq 0$.

Lemma 1. For each $t \geq 0$, each Borel-subset B of the closed interval $[0, t]$, and each stop rule τ for $[\mathcal{F}_t, 0 \leq t < \infty]$, (2)

$$\tau^{-1}(B) \in \mathcal{F}_t.$$
PROOF. Verify: (i) If \(B = [0, s] \) for an \(s \leq t \), then (2) holds; (ii) The set of \(B \) for which (2) holds is closed under countable unions; and (iii) If (2) holds for \(B \subset [0, t] \), then it holds for the complement of \(B \) in \([0, t]\). This implies that (2) holds for all Borel \(B \subset [0, t] \).

Theorem 1. A necessary and sufficient condition on a Borel-measurable, real-valued function \(\phi \) of a nonnegative real variable that, for every increasing family of sigma fields, \(\mathcal{F}^* = \{ \mathcal{F}_t : 0 \leq t < \infty \} \), and every stop rule \(\tau \) for \(\mathcal{F}^* \), \(\phi \circ \tau \) is a stop rule for \(\mathcal{F}^* \) is that, for some positive \(c \), possibly infinite, \(\phi \) satisfies Condition (1).

Proof. For the sufficiency, what must be verified is that, for each \(t \),

\[
(\phi \circ \tau \leq t) \in \mathcal{F}_t.
\]

The left-hand side of (3) is \(\tau^{-1}(B) \) where \(B = \phi^{-1}[0, t] \) is plainly a Borel set. Suppose first that \(t < c \). Then \(B \subset [0, t] \), and Lemma 1 yields the desired conclusion. If \(t \geq c \), then \(B \supset (c, \infty) \), which implies that

\[
B = B^* \cup (c, \infty),
\]

where \(B^* \), being \(B \cap [0, c] \), satisfies

\[
B^* \subset [0, t].
\]

In view of (4), \(\tau^{-1}(B) \) is the union of \(\tau^{-1}(B^*) \) with \((\tau > c) \). Since \(\tau^{-1}(B^*) \) is in \(\mathcal{F}_t \), according to (5) and Lemma 1, and \((\tau > c) \), being in \(\mathcal{F}_t \), is certainly in \(\mathcal{F}_t \), so is their union, namely \(\tau^{-1}(B) \).

If \(\phi \) does not satisfy the condition, then there is a stop rule \(\tau \) for a \(\mathcal{F}^* = \{ \mathcal{F}_t : 0 \leq t < \infty \} \) where each \(\mathcal{F}_t \) is either the trivial field or else the field of all subsets of a two-element set \(U \), that is, a set of cardinality 2. For if \(\phi \) does not satisfy the condition, then there exist \(t_0, t_1 \) such that \(\phi(t_0) < t_0, \phi(t_1) \neq \phi(t_0) \) and \(t_1 > \phi(t_0) \). For \(U \), one may take, for example, two paths \(w_0 \) and \(w_1 \) which agree until time \(\phi(t_0) \), but not thereafter, and for \(\mathcal{F}_t \) the trivial, or the universal, field according as \(t \leq \phi(t_0) \) or \(t > \phi(t_0) \). As is easily verified, if \(\tau(w_i) = t_i \), then \(\tau \) is a stop rule for \(\mathcal{F}^* \), but \(\phi(\tau) \) is not.

Turn now to the problem of determining those positive-value measurable functions \(\phi \) of two positive variables that carry each pair of stop rules into a stop rule. For a necessary condition on \(\phi \) let \(\tau_1, \tau_2 \) be a constant stop rule. Then \(\varphi(s, \tau) \) must be a stop rule for each stop rule \(\tau \). Hence, according to Theorem (1), for each \(s, \varphi(s, \tau) \) must satisfy (1) in \(t \). Similarly, for each \(t, \varphi(s, \tau) \) satisfies (1) in \(s \). To see that this condition is sufficient, two preliminary lemmas are needed.

Lemma 2. Let \(\tau = (\tau_1, \tau_2) \) be a pair of stop rules for an increasing family of sigma fields, \(\{ \mathcal{F}_s : 0 \leq s < \infty \} \), \(t \) a positive number, \(I \) the closed interval \([0, t] \), and \(B \) a Borel subset of the square \(I \times I \). Then

\[
\tau^{-1}(B) \in \mathcal{F}_t.
\]
PROOF. According to Lemma 1, if \(B \) is the Cartesian product of two Borel subsets \(B_i \) of \(I \), then

\[
\tau^{-1}(B) = \tau_1^{-1}(B_1) \cap \tau_2^{-1}(B_2) \in \mathcal{F}_r;
\]

and since the set of \(B \) for which (6) holds is a \(\sigma \)-field, the proof is evident.

Lemma 3. Let \(\phi \) satisfy (1) in \(s \) for each \(t \) and in \(t \) for each \(s \), and let \(r \) be a positive number. Let \(A = [(s, t) : \phi(s, t) \leq r] \) and

\[
A_1 = A \cap \{s \leq r \text{ and } t \leq r\}; \\
A_2 = A \cap \{s \leq r < t\}; \\
A_3 = A \cap \{t \leq r < s\}; \\
A_4 = A \cap \{r < s \text{ and } r < t\}.
\]

Then \(A = A_1 \cup A_2 \cup A_3 \cup A_4 \), and: (i) \(A_1 \) is a subset of \(I \times I \) where \(I = [0, r] \); (ii) \(A_2 = \alpha \times (r, \infty) \) for some subset \(\alpha \) of \([0, r] \); (iii) \(A_3 = (r, \infty) \times \alpha \) for some subset \(\alpha \) of \([0, r] \); (iv) \(A_4 \) is either empty or equal to \((r, \infty) \times (r, \infty) \). Moreover, if \(\phi \) is Borel, so is each \(A_i \) and \(\alpha \).

Proof. Plainly, (i) is trivial. Suppose that \((s, t) \) is in \(A_2 \). To verify (ii), it is only necessary to check that for the same \(s \) and \(t' > r \), \((s, t') \) is in \(A_2 \). By hypothesis, \(\phi(s, t) \leq r \), \(s \leq r \). Since for this \(s \), \(\phi \) satisfies (1) in \(t \), \(\phi(s, t') = c = \phi(s, t') \) for all \(t' \), and \(\alpha \) for all \(t' > r \). Hence, \(\phi(s, t') \leq c \leq r \) for all \(t' > r \), which implies that each such \((s, t') \) is in \(A_2 \). The proof of (iii) is obtained from the proof of (ii) by interchanging the roles of \(s \) and \(t \). Since the proof of (iv) is quite similar, it need not be given. It is trivial that each \(A_i \) is Borel if \(\phi \) is Borel. To see that each \(\alpha \) is Borel, recall that the measurability of a rectangle implies the measurability of each of its sides (e.g., see [2] Section 32, Problem 4).

Lemma 4. The condition that \(\phi \) satisfy (1) in \(s \) for each \(t \) and in \(t \) for each \(s \) is sufficient for \(\phi \circ \tau \) to be a stop rule whenever \(\tau = (\tau_1, \tau_2) \) is a pair of stop rules.

Proof. What must be seen is that for each positive \(r \), \(\{\phi \circ \tau \leq r\} = \tau^{-1}(A) \in \mathcal{F}_r \), where \(A \) is as in Lemma 3. In the notation of Lemma 3, \(\tau^{-1}(A) = \bigcup \tau^{-1}(A_i) \). Hence, it is only necessary to show that for each \(i \), \(\tau^{-1}(A_i) \subseteq \mathcal{F}_r \). Since, \(A_i \) is a Borel subset of the square \([0, r] \times [0, r] \), Lemma 2 applies. Since, by Lemma 3, \(A_2 = \alpha \times (r, \infty) \), where \(\alpha \) is a Borel subset of \([0, r] \), \(\tau_2^{-1}(A_2) = \tau_2^{-1}(\alpha) \cap \tau_2^{-1}(r, \infty) \). As Lemma (1) implies that \(\tau_2^{-1}(\alpha) \subseteq \mathcal{F}_r \), and since \(\tau_2^{-1}(r, \infty) \subseteq \mathcal{F}_r \), for any stop rule \(\tau_2 \), their intersection, namely \(\tau^{-1}(A_i) \), is in \(\mathcal{F}_r \). The proofs that \(\tau^{-1}(A_i) \) and \(\tau^{-1}(A_i) \) are in \(\mathcal{F}_r \) are quite analogous.

As is easily checked, the argument given for functions \(\phi \) of two variables applies to functions of any finite or denumerable number of variables.

3. A variation. A very similar query to the one answered by Theorem 1 is to ask which Borel \(\phi \) transform all wide-sense stop rules into (strict sense) stop rules? As usual, \(\tau \) is a wide sense stop rule for \(\{\mathcal{F}_t : 0 \leq t < \infty\} \) if, for each \(t, (\tau \leq t) \) is in \(\mathcal{F}_{t+} \), where \(\mathcal{F}_{t+} = \bigcap_{t>1} \mathcal{F}_t \). Among these \(\phi \) are certainly those for which \(\phi(t) > t \) for all \(t \). Now the only others are those which, for
some c, satisfy

(9) \[\phi(t) > t \quad \text{for} \quad t < c \]
\[= c \quad \text{for} \quad t \geq c. \]

Plainly, if there is a critical finite c, then $\phi(c)$ must be c. This contrasts with Condition (1) where $\phi(c)$ could exceed c.

As before, a Borel function of n variables, where n may be the smallest infinite cardinal, transforms every n-tuple of wide-sense stop rules into a stop rule if, and only if, φ satisfies Condition (9) in each variable separately. There is no need to give the arguments, for they are but slight variants of those given above.

REFERENCES

Department of Mathematics
University of California
Berkeley, California 94720