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ON MARKOV PROCESSES WITH RANDOM
STARTING TIME

By TALMA LEVIATAN
Tel-Aviv University

The paper deals with Markov processes which have both random start-
ing and terminal times. Such processes were suggested by G. A. Hunt,
were constructed by L. L. Helms (under the name Markov processes with
creation and annihilation) and were treated also by M. Nagasawa and the
author. The paper contains a new existence proof by a way of constructing
such a process from its given associated semigroup of kernels P, t=0,and
its (Markov) transition function. This construction is more general than
that given by L. L. Helms (in terms of the Markov transition function and
the creation measure) and is also more convenient as far as perturbation
theory of Markov processes is concerned. Indeed more general relations
between this theory and creation of mass processes are established. Finally
an application to solving the Cauchy problem in partial differential equa-
tions is indicated.

1. Introduction. Lately several authors have dealt with generalized Markov
processes in which both the starting time and the terminal time are random vari-
ables. These processes were first suggested by G. A. Hunt [6] and constructed
by Helms [3] (see also [10] and [8]). Such a process can be regarded probabilist-
ically as a perturbation of some Markov process (in the usual sense) and indeed
relations were found between these processes and the theory of perturbation of
infinitesimal generators of semigroups of operators on some Banach space X. In
[3] Helms has constructed such processes, which he termed “Markov processes
with creation and annihilation,” starting from a transition function P,, t = 0,
and a creation measure ¢,(ds, dy) satisfying several conditions. The process was
constructed so that ¢, determines the starting time and the starting position in
the state space E_ of a particle whose motion is described by the process. P,
t >0, and ¢, determined, in that construction, a family of kernels B,t>0,
on E by
(1.1) Py(x, A) = Py(x, A) + §§ §aq, PAy> A(ds, dy) -

A process denoted {¢,, &,: t = 0} on a ¢-finite measure space (Q, &, F,) was

constructed to satisfy the relation

(1.2) P(x, 4) = F (e )
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and to have transition function P,, t > 0, on E,. The purpose of this paper is
to construct such processes starting directly from the transition function P,,
t =2 0, and a family of kernels P,, r > 0, satisfying some mild conditions which
certainly hold in the case of [3]. The family P,, + = 0, will be related to the
process just as before through (1.2). The construction is easier than that in [3]
and turns out to be more general and to give better results in connection with
perturbation theory.

Section 2 deals with the construction of such processes. Section 3 deals with
relations to perturbation theory and partial differential equations.

2. Construction of the processes. We start from a sub-Markov transition func-
tion P, t > 0, 0n E X &, where E is a locally compact space having a countable
basis for its topology, & its g-algebra of Borel subsets. Let E, = E U {V}, ¥
being an isolated point or the point of infinity according to whether E is compact
or not. Let & be the s-algebra of subsets of E generated by &. Extend P,
t =0, to a Markov transition function on E, X & by letting P,(x, {V}) =
l — P(x,E), P(V, A) = d,(A), where d5(A4) is 1 or 0 according to whether
V € 4 or not. Extend E, further by putting E;, , = E_, U A, A being an isolated
point not in E, and let &, be the s-algebra generated by &,. A Markov
process with creation and annihilation (of mass) {£,, &,: t = 0} on a o-finite
measure space (Q, &, ,) having transition function P,, r > 0, and a state space
E; , was defined in [3]. Mainly it should satisfy the following two conditions.
(i) Each we Q is a function from [0, oo) into E, , satisfying the two conditions
o(s) = A implies w(f) = A for t < sand w(s) = v implies w(f) = Vv for ¢ = s.
(ii) For each xe E,, 4 e &, the following Markov property holds.

(2.1) b€ A | & n{€.e Ez}) = P&, A) ae. G, on {§,eE}}

where for each t > 0, ¢, is a function from Q into E, , defined by £,(w) = w(f)
and where ., = ¢(£,: s < 1).

A particle whose motion is described by such a process starts in the precreation
state A and is then transferred to the state space E, at a random time, after
which its motion is controlled by the Markov transition function P,, t > 0. Thus
the motion in E, is that of a Markov process with a random starting time.

THEOREM 2.1. Let P,, t = 0, be a Markov transition function on E, X &,. Let
P, t = 0, be a family of kernels on E,' X & satisfying

(i) Pyx, E;) < oo for each t > 0.
(ii) Foreacht>=s>0,B,>P,P,_,.

Then there exists a Markov process with creation and annihilation {§,, & ,: t = 0}
on a o-finite measure space (Q, %, ), x € E, having transition function P,, t > 0,
for which P(x, A) = P&, € A), Ae &,,.

Proor. Let Q) = E2 and

Y={t-1,):0< 1< <1, <oc0,mz 1}.
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For each 7 e T, define a measure .7 on the product g-algebra &5 , as follows.
Ife=(@---t)eY,letr,=(t, ---t,)and let 4,¢&,,,i=1,...,n Con-
sider the following cases:

Case 1. If 4, &,, i =1, ..., n, then let

Fi(Arx oo x A) =84, 0 Sa P dp) Py (1, dys) - Py (Pas d9,) -
Case2. If 4, =A, 1<i<k—1<n, A,e&,, i=kthen
FAA % o X A) = PwAy % -+ x A) — Fiwi(Bg X Ay x -+ x A,).
Case 3. If 4, = A, 1 < i< n, then
P Ay % -+ x A,) =lim_, Py(x, Ej) — P, (x, Eg) .
Case 4. If there exist k =i >1 such that 4, = A and 4;,e &, then
P (A, x oo x A4,)=0.

Clearly .7 is well-defined and nonnegative. In Case 2 this follows from con-
dition (ii) and in Case 3 from the fact that P,(x, E,) is increasing with ¢ which
again follows from (ii).

Since any rectangle set in &g , can be expressed uniquely as a finite disjoint
union of the above four types of sets, we can extend & to the collection of all
rectangle sets in &5 ,. A standard procedure allows us to extend .Z% first to the
algebra of finite disjoint union of rectangle sets and then (using Carathéodory’s
theorem) to a s-additive measure . on & ,. Let us show next that the meas-
ures 7, r e Y, are consistent. Indeed fix c = (¢,---t,)e Y let 4, &, ,,i=
1...n, and set 4, = E,,. We have to consider the following cases (a) j = 1
(b) 1 < j< n(c)j=n. Under each case it is enough to consider only sets of
the types (1)—(4).

Case a. If 4, C E then

FPHEgy X Ay x -+ x A,)
=F(Eg X Ay % -+ x A)+ F(AX A% -+ x A4,)
=T (Bg X Ay X -+ X A) + T Ay X -+ X A,)
— FHEg X Ay %+ x A,)
= FW(Ay % -0 X A,) .
The case 4, = A is even easier since
PIEgy X A% oo xA)=F(E; X A% A4)+ F(DAXAx--- x 4,)

=F A XxAx ... xA4,)
=FAx -+ x A4,)

since A X A x ... x A4, can be of the types (2)—(4) and the equality holds in
each of these cases.

Case b. Follows from the semigroup property of P,, t > 0 and from Case a.
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Case c. If A,_, C E, then again use the semigroup property of P, t > 0. If
A,_; = A then

(2.2) F(Ayx - x A X Eg,)
=P (A, % -+ x AXE)+ F(A, % --- x A XA).

Since we consider only sets of types (1)—(4) there are two possibilities. Either
allof 4, = A,i =1, ..., n — 1, in which case the right-hand side of (2.2) equals

=P, (x,E;) — P, _(x, Eg) + lim,_, P(x, Eg) — P, (x, E)
= Fhota-D(4, % -+ x D).

The other case is that there exists an i < n — 1 such that 4; c E; in which case
the right-hand side of (2.2) is zero. But in this case also &, -1(4; X - - - x A)
is zero so the desired equality holds again.
Thus (&7, &5,) constitutes a projective system of regular measures for each
x e E,. To prove the existence of a projective limit let us consider first a special
case where lim,_, P,(x, E;) < co. In this case each of the measures 7" is a
finite measure on a compact space and so by [9] the projective limit (&, )
exists. In the general case define for each ¢ = 0 a family Ps of kernels on
E, x &g by
(2.3) Po(x, A) = Py(x, A) t<ec
= P, P,_(x, A) t>c

and let 2 ¢ be defined just as 2 but with P, replaced by Pc. Then clearly
Ps < P, and Pg(x, E;) < oo for each + = 0. Thus Ps, t > 0, satisfy (i) of
the theorem. As for (ii) we must show that for s < 1, P = PP, ,. Indeed if
¢ < s < tthenby (2.3) P¢P,_, = P,P, ,P,_,=P.P_,=Ps. Whileifs<c<t
again by (ii) P¢ = P,P,_, > P,P, ,P,_, = P,P,_,. Thus P, for each ¢ > 0,
satisfies all the assumptions of the theorem and in addition_lim,_, Ps(x, Ey) =
lim,_, P, P,_(x, E;) < P,(x, E;) < co. Thus by the special case there exists a
projective limit (&, Q,) of the systems (&5, &g ,). Thus for each ¢ > 0 we
have defined a measure .Z%¢ on (EL'3, £L). Let us show next that the meas-
ures ¢, ¢ > 0 are increasing with ¢. It is enough to show that for eacht > 0,
the measures P’(x, +) are increasing with ¢. Indeed fix r > 0 andlet0 < ¢, < ¢,
There are three cases (1) t < c,, in this case Poi(x, A) = P,(x, A) = P2(x, A). (2)
¢, < t < ¢,, in this case by (ii) Poa(x, A) = P, P,_, (x, A) < P(x, A) = Pox(x, A). (3)
t > ¢,, in this case again by (ii) Poy(x, A) = P, P,_, (x, A) =P, P, . P, (x, A) <
P, P, (x, A) = Py(x, A). It is clear by construction that if P are increasing
with ¢ then so are P, and thus also the projective limit . is increasing with
¢. Thus the measure &2, = lim,__, Z%° is well defined on Q, with the product to-
pology. &, isregular and is clearly the projective limit of the system (&7, £7.4)-
Define a subset Q — Q, consisting of the functions w(f) € Q, satisfying o(r) = ¥V
implies w(s) = Vv for s > ¢ and w(f) = A implies w(s) = A s < . Define a pro-
cess {¢,, F,: t = 0} on a measure space (Q, &, F) by letting §,(v) = o(?) for

)
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each weQ, t = 0 and &, = o(§,: s < t) (the o-algebra generated by the &,,
s 1), F =0, s =0). £ isa o-finite measure. Indeed

Q=Ui.l()eE} v o,
where ®, is the point in Q all of whose coordinates equal A. Further
Z(E(j) e Ey) = Py(x, E;) < oo for each j = 1, and F(w,) = lim F(w,)

FH(wy) £ limy_, Pe(E()) = A) = lim,_, (lim,.., P*(x, Eg) — P(x, Eg)) = 0.

Thus it remains to prove only the Markov property (2.1).
It is enough to shew that forany #, < - .- < t, < t,any 4, € &5 ,,i =1,---,n
and any 4 e &,
Fo{fere€ 4} 0 D) = §, P(§ss A) dZ,

where D = {§, € 4, -+, §, €4,,§,€Ej}. But this follows immediately from
the definition of &7, © = (t}, -+, t,, t, t + 5). This completes the proof.

REMARK 2.2. Actually condition (ii) is also a necessary condition for the
existence of a Markov process with creation and annihilation satisfying (1.2).
Indeed we only have to notice that if there exists a Markov process with creation
and annihilation {¢,, &,: t = 0} on (Q, &, %, then by the Markov property

P.+t(x’ A) = G A) = FE,€eEy, 6,10 € A)
= S(e‘e EV} "%(SS'Ft € A | E. € EV) d‘%
= P‘ Pt(x, A) .
Regularity properties of the process, the strong Markov property and quasi-
left continuity can be proved as in [3].
The following is a special case of the theorem.

COROLLARY 2.3. Let P,, t = 0, be a Markov transition function on E, X &
and let P,, t > 0, be a finite quasi-transition function on E, X & satisfying P, > P,;
then the same results of Theorem 2.1 hold.

Another corollary of the theorem is the main theorem in [3]. For that denote
by & = ZZ[0, o) the g-algebra of Borel subsets of [0, co). We then have

COROLLARY 2.4. Let P,, t > 0, be a Markov transition function on E;, X &,.
Let ¢,(ds, dy), x € E,, be a measure on & X &, satisfying condition (B) of [3], i.e.
(@) For each Ae B X &, ¢ (A) is measurable, (b) ¢, (M X [0, t)) < oo for each
xeEg t>0,and (c) $,(M X {0})) = 0. Let P, t = 0, be a family of kernels on
E, X &, defined as follows, for xe E,, Ac &,

(2-4) Py(x, A) = Py(x, A) + §§ §z;, Pu(y> A).(ds, dy) -

Then P,, P,, t > 0, determine a Markov process with creation and annihilation
(&, F,:t=0) defined on a o-finite measure space (R, F,F,) satisfying
&, f(€) = P,f(x), where &, denotes expected values relative to P,.

ProOF. We only have to show that P,, t > 0 defined by (2.4) satisfies (i)—(ii)
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of Theorem 2.1. (i) is clear since P(x, E;} = P(x, Eg) + 6,((0, 1) X E;) < oo
by (b). As for (ii) notice first that for any f bounded and &, measurable on E

P, f(x) = P.f(x) + §i S 2y Peer f(3)$u(dr, dy).
Thus for s < ¢

Ps Pt—s(x’ A) = Px Pt—s(x’ A) + Ss SEV Ps—'r Pt—a(y’ A)¢z(dr’ d)’)
= P A) + §5 § g Poor (9 A)9u(ds, dy)
= Pt(x, A) .
Thus condition (ii) holds and the rest follows from the theorem.

3. Relations to perturbation theory of Markov processes. As we mentioned
earlier the method of constructing a Markov process with creation and annihi-
lation through its transition function P,, t > 0, and the family P, r > 0 is also
more convenient for applications to the theory of perturbations of infinitesimal
generators. Indeed let {T,: t > O} be a strongly continuous family of contrac-
tion operators on &(E). Let P,, t = 0, be the sub-Markov family of kernels
on E x & associated with it, extended to E, x &,. Extend {T,: = 0} to
Zo(Eg) by T,f(V) = 0. Let (X,, &,: t = 0) be a Markov process on the prob-
ability space (Q, &, F,), xc E,, having P,, t > 0, as its transition function.
Let 4 be its infinitesimal generator, and let < be its domain in Z(E,).
Perturbation theory deals with the following type of problem, (for definitions,
see [1], [4]). Given another closed operator B with domain containing =,
under what conditions will 4 + B be an infinitesimal generator of a semigroup
of bounded operators on & (E;)? From a probabilistic point of view we can
continue and ask is there some Markov process (maybe in a general sense)
corresponding to the new semigroup and how is it related to the original Markov
process. [3], [8] and [10] gave some partial results to this problem. Using our
construction, we can generalize these results in the following way. If 4 + B
generates a semigroup of bounded operators {S,: t > 0} on €(E;) and if S, > T,
then clearly if we denote by P,, r > 0, the semigroup of kernels on E, X &,
associated with {S,: t = 0}, then P,, r > 0 satisfies all the conditions of Corollary
2.4 and thus there is a Markov process with creation and annihilation associated
with it by (1.2). This was indeed the case in [3] and [7]. Using a theorem of
Phillips [1], [4] we can, for example, state the following result.

THEOREM 3.1. Let {T,: t = 0} be a'strongly continuous contraction semigroup
of operators on & (E) with Ty = I, let P,, t > O be its corresponding semigroup of
kernels on E X & extended to E, X &. Let A with domain = in € |(E) be its
infinitesimal generator. Let B be a nonnegative closed operator whose domain
contains 7 and which satisfies the conditions that for each t > O there is a constant
K, < oo such that |BT,|| < K, where K, can be chosen so that it has a finite integral
over (0, 1]. Then

(i) there exists a strongly continuous semigroup {S,: t = O} of operators on € (E)
with S, = T,, whose infinitesimal generator is A + B and
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(ii) there exists Markov process with creation of mass (§,, & ,: t = 0) defined on
a g-finite measure space (R, &, ) having transition function P,, t = 0, such that
if P, t = 0, is the family of kernels on E;, x & corresponding to {S,: t = 0}, then

(@) S.f(x) = &, f(§) for each f € y(Eq).
(b) lim,_, P(x, A) = 8,(A) (8,(A4) = 1 or O according to whether x € A or not).

(©) lim_o+ [£,f(€) — f(0)]/t = Af(x) + Bf(x), feO.

In other words we found a process whose infinitesimal generator is 4 + B.
This process is related to the original process by having the same transition
function. Obviously this gives us a probabilistic method for solving the follow-
ing Cauchy problem in partial differential equations. Given fe & (E,) find a
solution W(t, x), t € [0, =), x € Eg, satisfying

(3.1) W _ AW + BW
at
Wiz =f~

The above results thus imply that if we have a probabilistic solution for
(3.1) with B = 0 of the form W(t, x) = E, f(X,), for some Markov process
(X,, ©,, &, 0,, P,). Then we can find a probabilistic solution W(z, x) = &, f(¢,)
of (3.1) for some Markov process with creation of mass (¢,, &,, .7, 0,, &).
The relations between these two processes are as mentioned above.

A well-known special case is the case where E = RY (the N-dimensional
Euclidean space), 4 = 4 3, (0°/0x.*) and B = u x I for some u € &(E,) (see
[3], [10]). Inthis case there are other probabilistic interpretations of (3.1) such
as, for example, branching Markov processes; see [11].

As noted in [8], B need not be nonnegative. It can satisfy a weaker comparison
criterion. Theorems similar to Theorem 3.1 can easily be formulated using dif-
ferent theorems from the theory of perturbations of semigroups, (see [7]).
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