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ABSOLUTE CONTINUITY OF MEASURES
CORRESPONDING TO DIFFUSION
PROCESSES IN BANACH SPACE!

By Hur-HsiunG Kuo

University of Virginia
This paper is concerned with the stochastic processes in Banach space
arising from the solutions of stochastic integral equations. It is shown that
under certain assumptions the corresponding measures of two such sto-

chastic processes are equivalent. The Radon-Nikodym derivative is also
given.

1. Introduction. Let B be a real separable Banach space with norm ||.||. Gross
constructs a subset H of B which is a real separable Hilbert space with norm ||
and inner product ¢ , ), such that ||.|| is measurable over H. Thus any real
separable Banach space B can be regarded as a couple (H, B). Such a couple is
called an abstract Wiener space. It carries a family of Wiener measures. For
more details see Gross [1]. It is known that a real separable Banach space B with
a Gaussian measure m is an abstract Wiener space (H, B) and m is a Wiener
measure [2].

Let (H, B) be an abstract Wiener space. The dual space B* of B is imbedded
in B in the natural way B* c H* ~ H C B.

In this paper we assume that there is an increasing sequence Q, of finite di-
mensional projections such that Q,(B) ¢ B* and Q, converges strongly to the
identity both in B and in H. Let Q denote the space of continuous functions
from [0, co) into B with w(0) = 0. Then there is a unique probability measure
.7 on the o-field generated by the coordinate functions such that W(t, ») = w(t)
is the process with Wiener measures of (H, B) as its transition probabilities. W(r)
is called a Wiener process in B. & will denote the expectation with respect to
Q, ).

Let 4 be a map from [0, 1] X B into <Z(B, B) (<#(E, F) denotes the Banach
space of all bounded operators from E into F with operator norm ||||; ) such
that (A(t, x) — I)(B) c B* for all te[0, 1] and all xe B. Let ¢ be a map from
[0, 1] X B into B. Assume that 4 and ¢ satisfy the following conditions.

*) (i) For each x in B the maps A(., x) — I: [0, 1] — <#(B, B*) and
o(+, x): [0, 1] — B are continuous.

Received February 14, 1972; revised August 9, 1972.

1 Research was supported in part by NSF Grant GU-3784.

AMS 1970 subject classifications. Primary 28A40, 60J60; Secondary 60H20.

Key words and phrases. Abstract Wiener space, stochastic integral equation, finite dimensional
approximation, Radon-Nikodym derivative, diffusion coefficients.

513

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @,ﬁ%%

The Annals of Probability. STOR ®

WWww.jstor.org



514 HUI-HSIUNG KUO

(i) There exists a constant ¢ such that for all ¢ in [0, 1] and x, y in B

[l 4(t, x) — A p)lls < eflx — |
llo(t, x) — a( Yl = cllx = )|
[14(, x) — 1]]s* = e(1 + ||x|P)
llo(t, 0[P < e(X + |Ix[])

where ||T||, denotes the Hilbert-Schmidt norm of T|,. Henceforth if 7' is an
operator of B such that T(H) C H then T|, denotes the restriction of 7' as an
operator of H. We are concerned with the stochastic integral equation

1) X(t) = x + §8 A(s, X(5)) dW(s) + §sa(s, X(9)) ds,
xeB and 0t < 1.

In Theorem 5.1 [3] we showed the existence and the uniqueness of a non-
anticipating continuous solution of (1) under conditions slightly different from
(*). The only difference is that in [3] we assumed o(t, x) € H for all r and x,
o(+, x): [0, 1] — H is continuous and

lo(t, x) —o(t, )| S cllx —yll, ot 0 = el + ||Ix]P) -

However, the proof of Theorem 5.1 goes equally well under the conditions (*).
Thus the stochastic integral equation (1) under the conditions (*) has a unique
non-anticipating solution.

In this paper we consider two stochastic integral equations with diffusion coef-
ficients (4, o,) and (4, o,) and show that the measures corresponding to the solu-
tions are equivalent under some additional assumptions in 4, ¢, and g, (Section 2).
The proof depends on the finite dimensional approximation (Section 3), the known
result for the finite dimensional space (e.g. page 97 of [4]) and a lemma from
Skorohod (page 100 of [5]).

2. Main theorem. Let (E, |+|,) be a Banach space. £, (E) will denote the
space consisting of all non-anticipating (w.r.t. W()) stochastic processes £(f) with
state space E such that {} £|6(7)|,*dt < oo. Three particular spaces 271, (B¥),
2. (H) and 72, (R) will be considered here. Let § € 77, (B*) be simple,
i.e. there exists a sequence of real numbers 0 < 1, < f, < --- < 1, < 1 such that

§() = &(ty) if =t <1;,,.
(t, =0, 1,,, = 1 by convention). Define
Tty = Xt (61D, W(tis) — W) + (1), W) — W(E)
Lt iy,

where (, ) is the natural pairing between B* and B. It is shown in [3] that there
exists a linear operator J ., from 72, (H) into £7, (R), denoted by Ji(f) =
§¢ (§(s), dW(s)), such that

(i) J. has continuous sample paths,
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(ii) J, is a martingale,

(iii) - FAsUPyg,z, Ve(35)| > a} < @),

(iv) &J.(r) = 0 and &)J.(1)]* = & \§|E(5)|* ds.

Let < denote the Banach space of all continuous functions f from [0, 1] into
B with the sup norm || f||.. = sUp,<,<: || f(?)]|- If X(¢) is the solution of (1) then
0, denotes the mapping from Q into < defined by ©,(w)(r) = X(¢, ) and g,
denotes the corresponding probability measure in <. Let (4, 0,) and (4, 0,)
satisfy the conditions (*) and X}, j = 1, 2 be the solution of

@) Xi(1) = x + §5A(s, Xy(5)) dW(s) + §50,5(s, X(5)) ds -
We have the following

THEOREM. Suppose A(t, X)|, is self-adjoint and there is a positive constant 6 such
that A(t, x)|, = 01 for all t and all x. If o,(t, x) — o,(t, x) € H for all t and all x
and |o(t, x) — a,(t, ¥)* < a(l 4 ||x||*) for some constant « independent of t and x.
Then py and iy, are equivalent. Moreover, the Radon-Nikodym derivative of pi,
with respect to 1, is given by

I (©1) = expUS} (o(6, K0, AW(0) — 3 o, K]

where o(t, x) = A7Y(t, x)(04(t, X) — 0,(t, X)).
REMARK 1. o(¢, X\(?)) is obviously a non-anticipating stochastic process with
state space H. Moreover,
jo(t, ) = |47t X)(@3(0, %) — o3(8, ))I*
< 07 ay(t, X) — oy(t, X)|P < 0% (1 + ||x]]) .

Hence &o(t, X,(1))]* < 67%*(1 + &||X,(¢)||*). It is shown in [3] that

SUPy<:<1 $||X1(t)||2 < oo.

Thus §} §||Xy(7)||? dt < oo and o(t, X,(?)) is stochastic process belong to <72, (H).
The stochastic integral {} (o(¢, X,(f)), dW(¢)) is then defined in the above way.

REMARK 2. In case B is finite dimensional the assumption on ¢, — ¢, is super-
fluous because B = H and the B-norm is equivalent to H-norm.

3. Finite dimensional approximation. In this section we consider the stochastic
integral equation (1) with diffusion coefficients (A, o) satisfying the conditions
(*). We assume also that A satisfies the conditions in the Theorem. This addi-
tional assumption in 4 will make the finite dimensional approximation possible.
Define K(t, x) = A(t, x) — ITand A4,(t, x) = I + Q,K(t, x)Q,. Let B, = Q,B so
that B, is finite dimensional. It is obvious that 4,, as an operator of B,, is
invertible. In fact, 4, is self-adjoint and (A4, x, x) = d{(x, x) for all x in B,.
Let o,(t, x) = Q,0(t, x) € B,. Let X(¢f) be the solution of (1) and X,(¢) be the
solution of the following stochastic integral equation

©) Xu(1) = Qux + §5Au(s, X,(5)) dQ, W(s) + §504(s, Xa(s)) ds .
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Clearly X,(#) lies in the finite dimensional space B,. Let 2 be the Banach space
of all non-anticipating stochastic processes X{(f) with state space B with the norm

X = {supos.<: (| X(D)|H}E < o0 .
ProposITION 1. X, - Xin W as n — oo.
Proor. Clearly we have
“4) 1X.(0) — X < 3]|Qux — x[|* 4 3|V, ()I]* + 3[|Z.(9)|]*,
where
Y. (1) = §o 4,.(s, X,(5)) dQ, W(s) — §i A(s, X(5)) dW(5)
and
Z,(1) = §50.(s, X,(5)) ds — §Ga(s, X(5)) ds .
For the sake of clarity we prove this Proposition by three steps.
Step 1. Let U, (1) = §¢ 0, K(s, X,(5))Q, dQ, W(s) — §;K(s, X(s)) dW(s). Then
Y.(t)y = Q,W(t) — W(t) + U,(f). Hence
1Y, = 2|0, W(r) — W) + 2[|U, ()] -

Using Proposition 3.1 [3] and making a complicated computation, we can
obtain eventually the inequality

Z(IV.0IP) = 28%¢ §i Z(||1Xa(s) — X($)I[Y) ds + ex(n)

where 8 is a constant such that ||x|| < |x| for all x in H, ¢ is the constant in
conditions (*) and

(%) e(n) = 28 §5 Z(|1Q. K(s, X(5)Q, — K(s, X(5))|I") ds
Therefore,
6)  Z(IY.I) = 20Q. W — W]|| 4 48 §§ Z(|| Xo(s) — X(9)I|* ds + 2¢y(n) .

Similar computation yields easily that

(7 E(1Z. ") = 2¢ §3 Z(|| Xo(s) — X(5)|[)) ds + ¢ex(n) ,
where
(8) ey(n) = 2 5 E([(Qn — Doa(s, X(9))[|") ds .

StepP 2. Let g,(t) = &(||X,(t) — X(t)'||2). Taking & in (4) and using (6) and
(7), we obtain immediately that
9.(1) < ¢(n) + 6¢(1 + 28°) §59,(5) ds ,
where ¢y(n) = 3||Q,x — x||* + 6]||Q, W — W]|| 4+ 6¢y(n) + 3c,(n). By Gronwall’s
Lemma, we conclude that
9.(1) £ cy(n) exp{6c*(1 4 2%} 0.

Hence ||| X, — X||| = supy<;<1 9.(f) < ¢5(n) exp{6c*(1 4 28%)}. To complete the
proof it suffices to show



MEASURES OF DIFFUSION PROCESSES 517

STEP 3.
' cy(n) —» 0 as n-— oco.

Obviously, ||Q,x — x||* — 0 as n — oo since Q, — I strongly in B. It is easy to
find out that

NCwW — W = §5[1Qux — x|’pi(dx) ,

where p,(dy) is the Wiener measure with parameter 1. By the Principle of Uni-
form Boundedness there is a constant 2 < oo such that ||Q,||; ; < 4 for all n.
Hence ||Q,x — x||* £ (22* + 1)||x||* which is integrable with respect to p,(dx).
Moreover, ||Q,x — x|| — 0 for each x € B. Thus by Lebesgue’s dominated con-
vergence theorem |||Q, W — W||| >0 as n — co. Lebesgue’s dominated con-
vergence theorem can be applied also to c,(n) and c,(n) (see (5) and (8)) to see that
they converge to 0 as n — co. Therefore ¢;(n) — 0as n — oo and the Proposition

is completely proved.

4. Proof of the Theorem. Recall that X; (j = 1, 2) is the solution of (2). Let
X; . (j = 1, 2) be the finite dimensional approximation of X; given by the previous
section, i.e., X; , is the solution of the following equation.

X(0) = Qux + §54.(5, X(5) dQ, W(s) + §i0;..(5, X(5)) ds,

where A4,(s, x) = I+ Q,K(s, x)Q, and o, (s, x) = Q,0,(s, x), j = 1,2. From
Proposition 1, X; , — X; in A as n— oo, j = 1,2. Let p,, be the measure in
& corresponding to ;.n- From the finite dimensional result we know that Ux,.,
and 1., are equivalent and the Radon-Nikodym derivative of z2,, ~with respect
to py . is given by

d
dﬂ’“ * (Ox,,) = exp{§s (6(t, X,,,(1)), dQ, W(1)) — % §a lo™(1, X, (D) d1}
X1n
where 6™(t, x) = A4,7(t, x)(0,,,(t, X) — 0,,(t, X)).
Now, we will state two propositions whose proofs are rather long and tiresome,
but nevertheless elementary, hence omitted. We need only to make use of the
conditions (*), the hypothesis of the Theorem and equality (4) of Theorem 3.2

(3]

ProrosiTiON 2. Iff, = {3 (e™(¢, X, (1)), dQ, W(1)) and f = \} (a(t, X\(1)), dW(t))
then £(|f, — fI") > 0 asn— oo. Hence f, — f in the mean as n — oo.

ProrosiTION 3. If h, = (}|o™(t, X,,(1))*dt and h = \j|o(t, Xy(?))* dt then
&(|h, — h|*) > 0asn— co. Hence h, — h in the mean as n — co.

It follows from the above two propositions that log{(dpuy, /dpy, )(Ox, )}
converges in the mean to log{(dpy /dpy )(Ox,)} as n — co. By interchanging X,
with X, it is evident that log{(dyxl Javx,, n)((-'),‘,2 )} converges in the mean to
log{(dpy,/dpy,)(Ox,)} as n — co. To finish the proof we simply apply Lemma 4
on page 100 of Skorohod [5].
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