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LOCAL ASYMPTOTIC LAWS FOR BROWNIAN MOTION!

By N. C. JAIN AND S.J. TAYLOR
University of Minnesota and Westfield College, London

Upper and lower functions are defined for the large values of
[ Xa(t + ) — Xa(t — v)| as (u + v) | 0 where Xz is a standard Brownian
motion in R4, and it is shown that the integral test for two-sided growth
in Re is the same as that for one-sided growth in Re+2, Tt is also shown
that, for d = 4, the lower asymptotic growth rate of |Xa(z + u) — Xa(t — v)|
for small (u + v) = A is the same as the lower growth rate of | Xy o(t + &) —
Xa-2(2)]. Integral tests are also obtained for local asymptotic growth rates
of the associated processes Pg(a) = infizo {#: |X(#)] = a} and My(t) =
SUPos<sst | Xa(?)]-

1. Imtroduction. We consider a standard Brownian motion process X,(f) taking
values in R*. The celebrated “law of iterated logarithm” states

| Xa(r + 1) — Xy(0)] _
(1.1) {llm sup, ;o TZFf(Tg|logh|}i = 1} =1

and it is clear that, for r > 0, we also have

1.2 P lli |1Yd£t)j_ Xo(r — h)J — 1l =1.
( ) { 1m sup, ,, {2h log |10g hl}ﬁ }

From (1.1) and (1.2) it is easy to deduce that

. X (t 4 u) — X, (t — )] }
P i1 < limsu __,u>v>|,—*,74<24:1
{1 = im sz (2hlog loghl)t =
but this is not good enough to complete the argument used in [12] to obtain the

strong variation. In fact it was shown there that

i | Xa(t 4 ) — Xy(t — )] _
(1 3) P {llm Supu+v=h 0,u=0,v=0 *{ih’ldg ]TOg }7”7‘ — = 1 }

In order to get further information about the large values of | X,(1 + h) — X,(1)|
as h | 0, Lévy divided growth functions ¢ into an upper class -/, and a lowér
class 77, (see Section 3 for precise definitions), and there is an integral test to
determine whether ¢ is in /7, or ;. The first objective of this paper is to
obtain the corresponding criterion for two-sided growth. In Section 3 we show
that the two-sided growth rate in R? is precisely the same as the one-sided rate
in R*+2,
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As a further example of two-sided growth problem we consider “rates of
escape” in Section 4. We formulate a local two-sided escape rate in terms of the
small values of [X,(t 4 u) — X,(t — v)| as (u + v) | 0 and obtain an integral test
which for d = 4 is the same as that obtained by Spitzer [10] for one-sided escape
in the plane; and for d > 5 is the same as that obtained by Dvoretzky and Erdds
[4] for one-sided escape in R*-*. We have no explanation for the observed con-
nection between two-sided growth conditions for the process in R* and the cor-
responding one-sided criteria in R¢*2,

In Section 5 we obtain the division into upper and lower classes for the first
passage time

(1.4) Py(a) = inf {1 > 0; |X,(1) > a}

considered as a random function of a. The law of iterated logarithm for P,(a)
was obtained in [3]. In Section 6 we exploit the connection between P,(a) and

(1.5) M (1) = supy,<, |Xa(?)]

to obtain the lower envelope as ¢ | 0 for M,(r). The results of Chung [1] lead
immediately to a criterion for the lower envelope of M,(f) as t — co, and his
methods could be adapted to give our result for M,(r). However, the independ-
ence difficulties in the proof seem to be more easily overcome using P,(a).
Other related processes are also considered in Section 6.

Our results are all proved for local behaviour of X, near a fixed time ¢ > 0.
They all have analogues as ¢ — co—some of these are formulated and others
are left to the reader. Our methods are standard—using a version of the Borel-
Cantelli lemma. In order to exhibit the common features of the proofs we have
collected, in Section 2, the general lemmas which are used in many different
situations. Some of these may be of independent interest.

2. Preliminaries. If a(h), b(h) are parameters defined for small positive 4 we

say
a(h) =~ b(h) as h—0,
if there are positive constants ¢, ¢’,  such that
ca(h) < b(h) < c’a(h) for 0<h <.
We also use the standard notations
a(h) ~ b(h) and a(h) = o(b(h))

to mean
a(h)
b(h)

lim,_,, = 1,0 respectively.

We use ¢, ¢/, ¢ to denote positive constants whose values may differ from line
to line. In each situation all the random variables considered are defined on
some fixed probability space (Q, ., P), but we usually suppress the dependence
on . In applying the Markov property we use P+{.} for the probability given



BROWNIAN MOTION 529

that the process starts at x. For x in R?, Euclidean space of d dimensions, |x|
denotes the length of the vector x, and S(x, r) denotes the closed ball of radius
r centered at x.

For a process X(1), 1 = 0, o{X(s), s < 1} denotes the s-algebra generated by
X(s), s <t If & and .27, are two sub-g-algebras of &, then .7, Vv .7,
denotes the g-algebra generated by .o and .5,. @, denotes the class of func-
tions ¢ from (0, ¢) to [0, oo) such that ¢(u) 1 co as u | 0.

The following lemmas are standard, see e.g. [4]; we state them here for ready
reference.

LeEMMA 2.1. Let S(x, r) denote the ball with center x and radius r in R¢. Let
X,(t) be standard Brownian motion in R?, d > 3. Then

(2.1) P{X,(1) € S(x, r) for some t > 0} = min[1, (rf|x])*?] .

LEMMA 2.2. Let Xy(t) be standard Brownian motion R, d > 3. Then for h > 0,
0 < r < At we have

(2.2) P{lX ()] < r for some t > h} =~ (rh~%)?-2.

LEmMMA 2.3. Let X¥(t) be standard Brownian motion in R%,d > 3. Then for
h>0,0 < r <k, we have

(2.3) P{lXy () < r for some h <t < 4h) =~ (rh~})*2.

Note that the constants involved in (2.2) and (2.3) are independent of both r
and 4. The following lemma is a simple corollary of Lemma 2.2.

LeEMMA 2.4, Let X,(t) and Y ,(t) be independent, standard Brownian motions in
R, d = 3. Then for hy =2 0,h, > 0,0 < r < A}, we have

2.4) P{IXy(t) — Yy(hy)| < r for some t > h} = (r(h, + hy)~1)¢2.

We will also need the following two lemmas, whose proofs are obvious modifica-
tions of the proofs given in [4] of Lemmas 2.2 and 2.3 respectively.

LEMMA 2.5. Let X (1) be standard Brownian motion in R*, d = 3. Let S(x,r) C
S(0, Lh¥). Then

(2.5) P{X,(t) € S(x, r) for some t = h} =~ (rh=%)¢-%.

LEMMA 2.6. Let X,(t), Y,(t) be standard independent Brownian motions, d = 3.
Then there exists ¢ > 0, depending only on d, such that if 0 < r < cht, h < h, < 4h,
then

(2.6) P{{X,(t) — Yy(h)| < r for some h <t < 4h} = (rh=)*-2.

The constants involved in (2.6) are independent of r, & and 4,.
In the following lemma the exact tail estimate for d = 1 is given in [6]. For
d > 1 see [12].
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LeMMA 2.7. Let X,(t) be standard Brownian motion in R® and let R(X; s, 1) =
SUP, <, <o | X(#) — X(v)|. Let R(h) = R(X; 0, h). Then
2.7 P{R(h) > 2ht} = 2422202

The estimates in the following lemmas are well known for d = 1, the generali-
zation for d > 1 is done in [9].

Lemma 2.8. Let U be a standard Gaussian random variable in R* (with identity
matrix as the covariance matrix). Then

(2.8) P{|U| = 2} ~ ¢, 2i~%e P12,

LemMMA 2.9. Ler U and V be standard Gaussian random variables in R® with

E(U,V,) = po;;, 1 <i,j < d, where p is a constant and d,; is the usual Kronecker
symbol. If |p| < (ab)™?, then
(2.9) PU| > a,|V] > b} < cP{|U| > a}P(|V] > b} .

LEMMA 2.10. Let U, V be standard Gaussian random variables in R? with
E(UV,)=p0;1 <i,j<d Then
(2.10) P|U| > a, |V| > a} < ce"=9BP{|U| > a} .

The following lemma will be used in making some Fubini arguments. Its

proof is similar to the usual proof of the ‘“strong” independent increments
property for a process with stationary and independent increments.

LemMa 2.11. Let X,(t) be standard Brownian motion in R*. Let .., be a o-
algebra which is independent of this process. Let T = 0 be a random variable such
that {T < teo{X,,s £t} v o7, Then X (T + ty — X(T), t = 0, is independent
of 4 and X(t) up to time T.

The next lemma establishes the equivalence of the convergence of a certain
series and an integral. The proof consists of elementary computations. We
write log,, for the m-iterated logarithm to base e.

LEMMA 2.12. Let ¢, e ®,,i =1,2,¢ > 0, such that for some 0 < a < b,
(2.11) a(log, u™)* < ¢ (u) < b(log, u=1)"* .
If a; = e7il'°ed, j > 1, then for any real number m, we have
(2.12) 2ileda))" exp [—{pi(a,)}] < oo

(u m+3/1 .
= o O exp [ fpu)] i < oo

The next lemma allows us to obtain the equivalence of integral tests for func-

tions and their inverses.

LEMMA 2.13. Letp e D, Leta > 0,0 > 0. Let u(t) denote the strictly mono-
tone function

(2.13) u = at’d(r)t.
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If t(u) is the inverse function given by (2.13), define ¢(u) by

(2.14) o(u) = {g(t)}’ .
Then ¢ € ®,, for some ¢’ > 0, and for any real d, m > 0, we have

@15) 5o O exp [ () dn < oo

(PO exp [—(gu))*) da < o

= $os

Proor. Itis clear that ¢ € @, for some ¢’ > 0. Let u; = 277 and let ¢, be the
unique solution of (2.13) for u = u;. Note thatr; | 0. Let ¢; = ¢(¢;). Then
we have

@16) o, PO exp [ () du < oo

= Lo} exp [—{p(u)}"] < co
= D¢ exp[—¢;"] < oo
From (2.13) we get

(2.17) t; = Puo M0, where = a7V,
Since ¢, /', we have

(2.18) (t; = L)tk = UL g, g7 — 1< 200 — 1.

Hence

@19) S0, PO exp (o)) a
= 2, 845, O exp (g ar

S ¢ Xy g0 exp[ g Sl
J+1

By (2.16), (2.18) and (2.19) we get

@20) o, PO exp [ (o) au < oo
= 5o PO exp [~ ()1 dr < oo
To get the reverse implication in (2.16) note that
@21) o, WO exp g an = 31, g3, 02~ 50 exp [, 00
= XiTinll — ¢70(2¢,)7],

where for convenience we write ; for ¢ %/’ exp [--¢,#’]. We have

(2.22) 25 7inll = ¢¥029) ™1 =2 (1 — (DY) Lyjaisie; Cim -
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Since 3" 7;, where )’ denotes the sum over those j for which ¢, > (3)¢,,
converges, we conclude that the divergence of 37, y, implies the divergence of
the right-hand side in (2.22). The reverse implication in (2.20) now follows
from (2.16) and (2.21), and the lemma is proved.

Next we will give a general version of an argument used in [2]. *This allows
us, in proving integral tests, to consider only functions which are bounded above
and below by two standard functions.

LEMMA 2.14. Let g be an eventually monotone decreasing function from [0, co)
10 [0, o). Let h from (0, ¢) to [0, co) be a measurable function. For ¢ ¢ ©_, define

(2.23) F(¢) = §5 9(¢(1)h(r) dt
which may be finite or infinite. Assume the following conditions hold:
(2.24) For each ¢ € @,

0 <s <e §L9(P()A(1) di < oo

(2.25) There exist ¢,, ¢, € @, ¢, < ¢, such that F(¢,) = oo, F(¢,) < oo, and
lim_; g(¢y(s)) §e (1) dt = 0.
For ¢ ¢ ®,, let ¢ denote

(2.26) ¢ = min [max (¢, ¢,), ¢,] -

Then for any ¢ € O, we have

(2.27) F¢) < oo=¢ =¢  near 0 and F()< oo,
(2:28) F($) = 00 = F(g) = oo .

Proor. In view of (2.24) there is no loss of generality in assuming g to be
decreasing over its entire domain. Then ¢, < ¢, = F(¢,) = F(¢,). Let
F(¢) < co. If there exists a sequence 7, | 0 such that ¢(r,) < ¢(z,), then by
(2.26) we have ¢(t,) < ¢,(1,). Since g is eventually decreasing, we have for all
sufficiently large n,

(2.29)  §i, 9(P(h(r) dt = 9($(1,)) §i, (1) dr = g(¢(1,)) §i, k(1) dt .

By assumption (2.25) this implies F(¢) = oo, a contradiction. Hence ¢ < ¢
near 0. This implies ¢, < ¢ near 0. Hence for some § > 0,

(2.30) § 9O dt = §4 izgini0m + Stozpinng
= F($) + F(¢y) < oo

This together with (2.24) proves (2.27). Now let F(¢) = co. If ¢ < ¢ near 0
then F(§) = co. On the other hand, if there exists a sequence 7, | 0 such that
&(t,) < §(t,), then §(t,) = ¢,(1,), and we have

(2.31)  §i, 90 dt = g(P(1,) §i, (1) dr = g(pu(1,)) §;, h(0) dt .
It follows from assumption (2.25) again that F(J) = oo.
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Finally we state an extension of the Borel-Cantelli lemma due to Kochen and
Stone [7] S\

LemMA 2.15. Let {E,} be a sequence of events. Then

(1) Y. P(E,) < o0 = P{E, occuri.o.} = 0.

(ify  liminf, [35., 2k P(E, 0 E][Z5- Zia PEYP(EY]™ = ¢
= P{E, occuri.o.} = c™*.

3. Two-sided upper growth conditions. If X,(¢) is a standard Brownian motion
in R¢, it is well-known that

3.1 li B2, 710) | B R
G- 3P 3 og [log 1)) as

Recently it was observed [12] that this can be strengthened to a two-sided result

. X, (t 4+ v) — X (t — u)
3.2 1im SUP, 50 420 0<uto<s, i N+ = Xl g
e Pransznecssn 20 304 0y log flog (u + o))
Our object is to obtain the integral test corresponding to (3.2) and compare it
with the test corresponding to (3.1).

Let @ denote the class of functions ¢ from (0, ¢) to [0, o) such that ¢(1) T co
as t| 0 and rp(r) | 0 as + | 0. We can divide the functions of @, into upper

and lower classes corresponding to (3.1) and (3.2).

DEeriNITION 3.1. A function ¢ € @ belongs to 7/ if, for each w, 3 > 0
such that | X,(7)] < (2f)t¢(r) for 0 < t < 0. 7 ,'¥ is the complement of 7/,'® in
Q. ' is defined to consist of those ¢ € @’ for which, given ¢ > 0, for
almost every o there exists ¢ > 0 such that if ¥ >0,v>0,0<u + v < 9,
then | X, (1 + v) — X,(t — u)| < 24u + v)te(u + v). 7 ¥ is the complement of
2,4 in @,'.

Lévy claims ([8] page 244) that Kolmogorov proved (in case d = 1) that if
¢ € @/ then,

o) d 9
(3.3) o 70 = §y £ o gy < oo
X

We now obtain the corresponding result for /.
THEOREM 3.1. Let ¢ € ®/. Then

?(X)d‘“ e~ 2 dy < oo .

(3.4) @ €YY = o, "

REMARK 3.1. Though the iterated logarithm result (3.1) does not depend on
the dimension d, (3.3) shows that the fine division into upper and lower func-
tions depends (very marginally) on d. However, the result of our theorem shows
that the class 7/,® is precisely the same as the class %/,'¢*®». One feels that
there ought to be some way of proving this directly, but we have not succeeded
in finding it.
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ReMARk 3.2. Itis well known that there is a result corresponding to (3.3) for
the large values of |X,(¢)] as t — oco. Similar arguments show that Z/,'¥ is also
the class of ¢ € @, such that, if X,(7) and Y,(¢) are independent Brownian mo-
tions in R?, then given w, there exists K with the property that u > 0, v > 0,
u + v > Kimply

X, () — m»<ﬁW+mw@iv)

Before starting the main proof it is convenient to obtain a trapping lemma
which follows easily from lemma 2.14.

LemMaA 3.1. [t is sufficient to consider ¢ € @, satisfying
3 }
(3.5) <log log i) < ¢(x) = 2 (log log L) .
x x

Proor. In Lemma 2.14 let ¢,(x) = (loglog x~")t and ¢,(x) = 2¢,(x); let
g(x) = x¥*%~* and h(x) = x~'. Note that ®' c @,. Then F(p)in Lemma 2.14
is exactly the integral in (3.4). All the conditions of Lemma 2.14 are satisfied.
Writing ¢ = min [max (¢, ¢,), ¢,], we will show that (3.4) is true for ¢ if it is
true for ¢. If F(¢) < oo, then by Lemma 2.10 we have F(¢) < co and ¢ < ¢
near 0. Since we assume (3.4) to be true for ¢, it follows that ¢ € ~/,®. Since
¢ < ¢ near 0 we conclude that ¢ € »/,Y. On the other hand, if F(¢) = oo,
then by Lemma 2.14 we have F(¢) = oo, and since (3.4) is assumed true for @,
we must have ¢ € 7 /. This means for almost every o there exist u, | 0,v, | 0
such that | X,(r + v,) — X,(t — u,)| = 2}u, + v,)}¢(u, + v,). Since ¢, e /'@,
we must have ¢(u, + v,) < ¢,(u, + v,) for all sufficiently large n. But this strict
inequality implies that ¢(u, + v,) < ¢(u, + v,). Hence ¢ € #,/¥. This proves
the lemma.

REMARK 3.3. Letp e ®@,/. If we pick ¢, ¢,, g and 4 in Lemma 2.14 as in the
proof of Lemma 3.1, we see that F(¢) < co — F($) < co. Now using the fact
that ¢, < ¢ < ¢,, we see that

F($) < o0 = §,, u7(log [log u|)*+” exp [ —{@(u)}] du < oo .

Now pick h(u) = u='(loglog u=)@+»2 g(u) = e~*, ¢, ¢, as before, in Lemma
2.14. Then we conclude by Lemma 2.14 that

d+2)/2
o, LR8N e — () < oo

(log [log uf)++*
.

$o exp [—{e(u)}] du < co .

Hence this last integral might as well be used in (3.4). A similar argument
would allow us to reformulate all the integral tests of this paper in a form in-
volving ¢ only in the exponential term.

Proor oF THEOREM. We do the case d = 1; general d follows by the same
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argument since all the relevant estimates are available for general d. ¢ will be
assumed to satisfy (3.5). Let R(X;s, ) = Sup,g, << |X(1) — X(%)|, R(h) =
R(X; 0, ). The following estimates are available from Lemmas 2.7 and 2.8 for
d=1

3 X
(3.6) P{X(h)| > ihi} ~ <3> L -
T/ A
(3.7) P{R()| > ik} ~ L e-i2r
A

Consider the sequence
(3.8) a, = e -m/logm mz=2.
Then
(3.9) a,ja,., ~ 1+ (logn)™! as n— oo .
Let

3.10 w, = ase . =(1- " VNa, 0<i<logn.
(3.10) ni ws Vns g

" logn log n

Note that for each i, u, ; + v, = a,. Let the integral in (3.4) converge for a
given ¢. In order to show that ¢ € ~/(= /") it is enough to show that a.s.
for all i and n sufficiently large,

(3.11) ROX5t — 0, t 4 0, 5) = 2%ah,,0(a,,,) -
For if for some u, v
X(r + v) — X(r — )| > 24 + v)bp(u + ),

then there is an n such that a,,, < u + v < a, and |X(r + v) — X(t — u)| >
2tat, ¢(a,,,). This implies for a suitable i < logn that u,, <u < u,, .,
v<v,,,and

(3.12) ROt — sy s T4 Vi) > 2%a0,00(a,4) -
Let E, ; denote the event in (3.12). Now the length

U, i1+ Vo = (1 + 2/logn)a, ~ (1 + 3/logn)a,,,
by (3.9). Hence (3.7) yields

(3.13) PE) < —esow| ~(1 = o) (olan)

n

’

e(a,)

The last inequality follows easily from the fact that {¢(a,)}* = log n since ¢ € O’
and satisfies (3.5). Using this fact once again we get

(3.14) Doy 2% P(E, ) < ¢ 2, ¢(a,) exp [—{a,)F] .

exp [—{p(a,)}] -
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By Lemma 2.12 the assumed convergence of the integral in (3.4) implies the
convergence of the right-hand side in (3.14). Then Lemma 2.15 (i) implies (3.11)
for all i, n sufficiently large. Let us now assume that the integral in (3.4)
diverges. To argue in this direction, define

(3.15) Foo=H{or Xt +v,,) — X(t —u, ;) > 2a,e(a,)} .

By (3.6) we get P(F, ;) = {¢(a,)} ' exp [ —{¢(a,)}’]. As before, since {¢(a,)}* =
log n, we conclude from Lemma 2.12 that the divergence of the integral in (3.4)
implies

(3.16) Zina 2 P(F, ) = o0

From (3.16) we would like to conclude that infinitely many of the F, ; occur,

by using Lemma 2.15 (ii). To this end it is evidently enough to check the
following:

(a) If m = n + {log n}*, then the correlation between the standardized random
variables Y, , = a, YX(t + v, ;) — X(t —u, )} and Y, ; = a, HX(t + v, ;) —
X(t — u,, ;)} is less than a,'a,~* which in turn is less than ¢~'(a,)¢"'(a,) for all
i, j, and n sufficiently large. Hence Lemma 2.9 gives

(3.17) P(F,,n F, )< cP(F, )P(F, ).
(b) Forn < m < n+ log®n, we will show that
(3'18) Z:;—;l;)i;in Zallj P(Fm,j N Fn,i) é CP(Fn,i) *

We have for Y, ;and Y, ; as in (a),
(3.19) P(F, , 0 F,.) < PY, ;> 2%(a,), Y, ; > 2%(a,))
= cexp[—3(1 — o){e(a,)F1P(F.) »

where the first inequality comes from ¢(a,) < ¢(a,,) and the second from Lemma
2.10. Since ¢ satisfies (3.5) we have ¢*a,) > 1 logn, hence we get from (3.19),

(3:20) P(Fy ;0 F, ;) = cem'=@MIemsP(F, L),

where it should be noted that p is the correlation between Y, ; and Y, ;, hence
it depends on n, m, i and j. We count the (m, j) according to the estimates of p.
Let/,, =[—u, 5, In; =[—#pn ;> Vs ;]. Then
(3.21) 0* =a,'a,~ (lengthof I, ., n 1, )

< a,” ' (length of L.,n1, ).

The number of intervals 7, ; such that

(3.22) an<1— k >§lengthof lm.n/mjgan<1_k—1)

log n ’ ’ log n
is no more than 4k?, since m must be < n 4 2k for the first inequality in (3.22)
to hold, and for each m with n < m < n + 2k < n + log* n, there could not be
more than 2k pairs (m, j) for which (3.22) holds. For such pairs (3.21) and
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(3.22) give 1 — p* = (k — 1)/log n. Hence (3.20) gives
Zz—;lﬂc‘)gzn Zallj P(F'/L,i n Fm,j) é CP(Fn,i) Zl?=0 4k2e—(k_1)/8 .

Since the event that infinitely many F, ; occur has probability 0 .or 1 we can
now apply Lemma 2.15 (ii) to deduce that ¢ € ;. This completes the proof
of Theorem 3.1.

4. Two-sided rate of escape. It is well known that for d > 2, a Brownian mo-
tion process X,(¢) in R* does not return to its starting point. If we consider
| X,(#)| we can ask how fast f(s) = min,, | X,(7)| grows. The asymptotic size of the
small values of f(s) as s — 0 was obtained for d > 3 by Dvoretzky and Erdos [4]
and for d = 2 by Spitzer [10]. Let us recall their results.

If ¢(k) | Oas & | O then, for each + > 0 with probability 1 there exists a 6 > 0
such that [X(¢ 4 k) — X(#)] > h¥¢)(h) for all & < 4 if and only if

(4.1) for {¢<h)}d-2i}f~ < oo, dz3.

(4.2) fo. [log ¢(h)|—lih@ < oo, d=2.

In order to formulate the two-sided results we first note that for d < 3, the
set of double points on the path is everywhere dense [5]. Our main objective in
the present section is to obtain the asymptotic growth rate of

(43) g(s) = minu;0,v20,u+vzs IXd(t =+ ll) - Xd(t - ’l))l .

THEOREM 4.1. If X,(t) is a standard Brownian motion in R?, d > 4, and ¢(h) is
a monotonically increasing function on (0, €], ¢ > 0, then for each t > 0 with prob-
ability 1 there is a 0 > 0 such that

(4.4) [Xa(t + u) — Xy(t = )| > (u 4 v)}(u + v)
foru=0,v=0,0=<u+ v <0, if and only if

4.5) Sor 9N 0 < oo, =5,

(4.6) §o. [log ¢<h>|—lf’hﬁ < oo, d—4.

REMARK 4.1. The connection between our results and the corresponding
conditions (4.1) and (4.2) for one-sided’ escape is obvious, and curious. The
two-sided escape rate in dimension d has identical lower asymptotic growth rate
as the one-sided escape rate in dimension d — 2. In Section 3 we noticed
precisely the same phenomenon for the upper asymptotic growth at a fixed point
t. We are not able to give any heuristic explanation for this further connection
between Brownian motions in R? and in R?*2, An even more surprising result
of this kind was noted in [3] and partially explained by Williams [13].

The following two lemmas give the necessary probability estimates to prove
Theorem 4.1.
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LemMA 4.1. If X,(t) and Y (1) are independent Brownian motions in R%, d > 5,
and A = o(ht)y as h | 0, let

Ey o = {min,, 50 [X(0) — Y,(v)| £ A},

SuUsS4r,hsvs

Then
(4.7) P(F, ) = P(E, ,) = (Ah~})?-*,

Proor. Since F, , C E, ,, it is enough to get an upper bound for P(E, ,) and
a lower bound for P(F,,), each bound ~ (Ah~%)*~*. First we get the upper
bound for P(E, ,). Cover R* by a fixed network of closed cubes of side A/2
(whose interiors are disjoint and sides are parallel to coordinate axes). It is
enough to get an estimate of the probability that one such cube is hit by X,(u)
for some u = & and by Y,(v) for some v = 0, and show that the sum over all
cubes of these estimates is of the right order. Let p denote the distance from
the center of the cube to the origin in R?. For each integer k the number of
such cubes in the annulus 2¢4* < p < 2¢*'h} is of order A-¢(2¥+a%). If C is a
cube in this annulus with k > —2, then by Lemma 2.1, using the independence
of X, and Y, we get

(4.8) P{X(u)e C, Yy (v)e C, forsome u > 0,v = 0}
§ C(Az—k—lh—-{,)md—z) .
Multiplying this bound by the number of cubes in the annulus and summing
over k = —2 we get for d > 4 the upper estimate ¢(Ah~#)?%. For k < —2, we
do use the fact that X,(«) hits the cube C after time A. By Lemmas 2.1, 2.2 we
get this time
(4.9) P{X,(u) e C, Y (v)e C, for some u = h, v = 0}
< (AR )2 (A2 kg )2
We multiply this bound by A=¢(2¥*!4})¢, the number of cubes in the annulus,
to get the bound c(As~%)?=%2%, which summed over k < —3 again gives the
right upper estimate. To get the lower estimate for P(F, ,), consider the balls
T, of radius A centered at X,(t,), where ¢, = h 4 ikA?, k is a fixed positive integer
to be chosen later and 0 < i < [3kA~%']. If R, is the event that Y,(¢) hits the
ball T, for some ¢ between /# and 4h, then by Lemma 2.6, for all i
(4.10) P{R;} =~ (Ah~})22,
For i =+ jlet r = |i — j|, then
(4.11) P{R; n R;} < P{Y,(t) first hits T,, then T, for some r > 0}
+ P{Y,(r) first hits T;, then T, for some 7> 0}.
The first probability on the right side in (4.11) is dominated by

4.12)  P{RJP{Ya(t) + X(t;) — X,(t,)] < 2A for some ¢ = 0},
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where we apply the strong Markov property when Y,(¢) first hits T, and observe
that Y,(r) is at distance A from X,(z;) at the time it visits 7;. By Lemma 2.4,
(4.12) is dominated by cP(R,)[A(krA?)~#]¢-2. The second term on the right side in
(4.11) is of the same order in view of (4.10). Hence we get
(4.13) P(R; N R;) < cP(R)(rk)~t4=272,
If we now pick k sufficiently large, say k = k,, then, since d > 4, we get from
(4.13) for each fixed i,
(4.14) S ies PR, 0 R) < AP(R,) .
Hence for k = k,
P(F,,) = P(U: R) > § 5: P(Ry) > c(AhH) .

This completes the proof.

Lemma 4.2. If X(t) and Y(t) are independent Brownian motions in R* and
A=olh)ash |0. If

E, s = {min, o, oy 5 [X(0) — Y(v)] < A}

and F, , is defined as in Lemma 4.1, then
(4.15) P(F, ,) =~ P(E},) =~ |log Ah~#7.

Proor. For the lower estimate on P(F, ,) we consider the balls T, of radius

A centered at the points X(r;), where T, = h + ikA* |[log Ah~},i=10,1,....
Let [3hA2%~" |log Ah~}|7'] = M. Now proceeding as in the second part of the
proof of Lemma 4.1 and picking k sufficiently large at the last step we get the
desired estimate. The upper estimate for P(E} ,) is a little more difficult this

time. Consider the “Wiener sausage”
S,;={xeR:|X(r) — x| < A, forsome r,h<t<t}).

We want an upper bound for the probability that Y(¢) hits S, ,,, for some ¢ = 0.
Let R, be the event that Y(r) hits the ball T, (defined above in the proof). Then
we will show that P(UX%'R,) =~ P{Y(¢) hits S, ,,, for some r > 0}. Let
E, = {Y(1)e S, for some r = 0}. Note that E; C E,,, and E, depends on the
X-process only up to time 7, We have
(4'16) P{ 31211 Ri N E2M+l} i P{ngl Rj n E,11+1}

= 2L P(GYP{UL: 1 R; |G}
where G, = E,,, — E,. If we can show that for 0 < i < M,

(4.17) P{ULi R |G} = ¢
for some ¢ > 0, then we are done, for then from (4.16) we get
P(Eyy) = L P(G) = ¢ i P(R,) = |log Ah~H™

since P(R,) =~ (Ah~%)? by Lemma 2.4 and M = [3hA~%k~! |log AA~%|7']. We will
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have to choose k suitably for the proof of (4.17). Observe that as we did in the
second part of Lemma 4.1, we can pick k = k, sufficiently large so that

(4.18) P{ULn R; |G = 255, P{R; |G}

j=i+1

To get a lower estimate for P{R;|G,;} we use a Fubini argument. Let P = P, X P,
where P, is the probability measure for X,(r), # = 0, and P, for Y,(¢),t = 0. E,
denotes expectation with respect to the probability measure Q on an appropriate
space. Then using the strong Markov property,

(4.19) P{R;|G;} = E{PY""[Y(t + 7,) e T, for some > 0]},

where ¢, denotes the first hitting time of S, ; by Y, given the event G,; note that
there is a random time 6; (which depends on ;) such that 7, , < 6, < ¢, and

-1 = "i = "1
|X(0,) — Y(z;)| = A; moreover, t; is a stopping time for the Y-process which
also depends on the X-process up to time #,, Now by Lemma 2.11, Y(r + ;) —
Y(z;), t = 0, is independent of Y(z,) and X(7), t = 0, hence by Lemma 2.4 we
get

AZ
4.20 PYeofY(t ;)€ T, forso tz20=————
@20 RISV, forsome 12 0) = P
where 1, = h + jkA*® |log Ar~%~'. Since

X(1;) = Y(z)l = |X(1,) — X(0)| + [X(6) — X(O)] + [X(09) — Y(za)l

where t,_, < 0, < 1,, |X(0,) — Y(z,)| = A, we get

AZ
== AMIX(t) — X(
|X(tj) _ Y(Ti)|2 = {| (t;,) (t)|

(4.21)
+ SUPy, s [X(8) — X()| 4 A}
Combining (4.19), (4.20) and (4.21) we get
(4.22)  PR;| G} = NEL{|X(1;) — X(1)] + SUP,_,cus; [X(1) — X(u)| + A}
We now integrate the right side in (4.22) over the set
{1X(1;) = X(t)] = (1; — 1)} 0 {SUPy,_ zusy, [X(1) — X()] 2 (1 — 1))

this set has positive probability since the two sets involved are independent and
each has a positive probability (independent of i, j). Hence

P(R;/G;} = cA*{(1; — 1)t + (1, — ;) 4 A}
~ c|j — ik, log AR~} .

Hence Y.*'.., P{R;/G;} =~ ck,*|log Ah~}|7*log (2M) = ¢’ > 0. This completes
the proof.

ProoF oF THEOREM 4.1. Lets > 0. 7Then since ¢ is non-decreasing, the event

E = {|X(t + u) — X(t — v)| < (u + v)¥(u 4 v) i.0., u+ v |0}
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is contained in the union of the events

Ey = {min, gy oyni1 oz,g [X(E + 4) — X(1 — )| < (8.47")2¢(8.47) i.0.}

Ey = {miny g gimnriozus, [X( 4 #) — X(1 — 0)] < (8.47)i¢(8.47") i.0.).
If d = 5, then by Lemma 4.1, the probability of each of E, and E, is diminated
by

2anei {(8-47M) (8.4 m)4n2ya e |

which converges if and only ¥}, {¢(4-")}~* converges. The convergence of this
series in turn is equivalent to {,, {¢(h)}**(dh/h) < co. Hence it follows by
Lemma 2.15 (i) that if §,, {¢(h)}*~*(dh/h) < oo, then P(E) = 0. Conversely, the
event

Ey = {min4_”§u§4_”+1,4_”§v§4—"+1 |X(t + ”) - X(t - 'v)| < (4_n)§¢’(4_n) i.O.}
implies the event E. Let

B, = {min, ., ,c—ner |[X( + u) — X(t — v)] < (47")2(4)],
then E; = N;_, U,zn B, By Lemma 4.1 we get P(B,) > c{h(d—™)pet
Since the divergence of §,, {¢(h)}*~*(dh/h) is equivalent to 37, {¢(4~")}*~* = oo,
we conclude that in this case 37, P(B,) = co. To apply Lemma 2.15 (ii) to
finish the proof, it is enough to show that there exists ¢ > 0 such that
P(B, N B,,;) < cP(B,)P(B,,,) for all n. To see this, let n be fixed and let
h = 47""*. In the definition of B, we will write X(r 4 u) — X(¢) = Y(u) and
X(r) — X(t — v) = Z(v) so that Y and Z are independent Brownian motions.
Then
(4.23) B, N B, = {min, o [Y(4) + Z(v)] < Hi(h);
il oo [Y(8) + Z(0)] = (16h)i(16h)} .
Let h =1, <t < ... <1, = 4h be a partition of [k, 44] into k equal parts,
where k will be chosen suitably later. Let
(4.24) t=inf{v:h < v < 4k, min |Y(u) + Z(v)| < Kig(h))
= oo if the above set is empty.

Define

(4.25) U = Mg sz [Y(0) + Z(0)] < Rig(h)} .
Then 4
(4.26) B, nB,,,=UL (U — U_;
minyg, o <o |Y(4) + Z(v)] < (16h)ig(16R)} ,

where the sets in the union are disjoint. We denote the ith set in this union by
A:- Since h < v < 4h on each A, we have
(4.27) AN:c{U, — U_,;

MiNyg, oy comimsoses | Y(#) + Z(t + v)| < (16h)4)(16h)} .
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1 1

ht¢(h). Since h¢(h) is an increasing function of & we see that the bigger event
in (4.27) is contained in the event

(4.28) {Us = Uiy minyg, oo con rmncozom | Y(#) — Y(8:) + Z(z + v)'— Z(7)|
= 2(16k)4(16h) 4 sup,,_ e, [Y(A) — Y(1))]} -
The event in (4.28) is contained in the union
(4.29)  {U; — Uiy ming oy ycon [Y() — Y(5) + Z(r 4 v) — Z(7)|
< 3(16R)(16k)} U {sup,_ ;0. [Y(D) — Y(1) > (16h)ig(16h)) .
By Lemma 2.11, Z(z 4 v) — Z(r) is independent of the Y(u) process and of Z(v)
process up to time 7, and by the independent increments property Y(u) — Y(t;)

is independent of the Y(f) process up to time ¢, and also of the X(r) process.
Hence U; — U,_, is independent of the event

min |Y(u) — Y(t;) + Z(z + v) — Z(z)| < 3(16h) ¢(16h) .
Hence the probability of the events in (4.29) is dominated by
(4.30)  P{U; — Ui }P(mingy, oy, ycom [Y(4) — Y(2) + Z(z + v) — Z(7)
= 3(16)Hp(16h)) + Plsup,,_ ooc, [Y(D) — Y(1)| > (16k)4p(16h)) .
Since h < t; < 4h, it is easy to see by the arguments of Lemma 4.1 that the
second probability in (4.30) is of order {¢(164)}*~* independently of ¢,. The
third probabilty in (4.30) clearly does not depend on i. Hence summing on i
we see that
(4.31)  P{B, N B} < cP(B,)P(B,,,)
+ KP(SUPoccani | Y(A)| = (16h)}(16h)] .
By choosing k sufficiently large we can make the second expression on the right
in (4.31) to be of the same order as the P(B,)P(B,,,). This completes the proof

ford = 5. The case d = 4 now follows by the same arguments by using Lemma
4.2 in place of Lemma 4.1.

If U; — U;_, occurs, then there is a 0, 7,_, < 0 < ¢, such that |Z(r) — Y(0)| =

REMARK 4.2. In the proof of Theorem 4.1 we only needed an upper bound
for P(E} ,) in Lemma 4.1 as well; however, we proved it in the stronger form
since it involved no additional work. Note also that P(E, ,) = 1 when d = 4,
since the infinite Wiener sausage is then a recurrent set; that is, two indepen-
dent Brownian motions in 4-space approach arbitrarily closely for large times,
even though they do not intersect.

REMARK 4.3. It is also clear that our arguments also deal with the close
approach of two independent Brownian motion paths X,(z, w) and Y (¢, ) for
large times. For d = 5, if ¢(h) | as A1, then there exists 7y (w) such that
[ Xy (t) — Yy(s)| > tip(r) for © = 7, if and only if §= {¢(h)}*~*(dh/h) < oo, Where
we can take ¢ = min (¢, s), or ¢ =t 4 5, or ¢ = max (¢, s). For d = 4, the
condition is {= |log ¢(h)|~*h~'dh < oo, but r must be min (z, s) in this cass.
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5. First passage time process. Let X,(¢) be standard Brownian motion in R?
and let P,(a) denote the first passage time of X,(¢) out of the ball of radius a and
center 0. The following tail estimate for P,(a) is available from [3],

(5.1) P{P(a) > c,a*l} =~ e %,

where ¢, = 29,7, ¢, being the first positive root of the Bessel function Jaja
The other constants involved in (5.1) are independent of a.

As before, let @, denote the class of functions ¢: (0, ¢) — [0, co) such that
¢(1) T oo as t | 0. Then we will prove

THEOREM 5.1. Let ¢ € ®,. Then there exists a positive constant ¢, = 2q,7%,
where g, is the first positive root of the Bessel function J,,,_,, such that

P{Py(a) > c,a’¢p(a) i.0., a0} =1 or 0
according as §,, a'¢(a)e*“da = oo or < co.

REMARK 5.1. For d = 1 the constant ¢, of Theorem 5.1 is simply 8z~2.
As in Section 3 we denote by {a,} the sequence

(5.2) a; = e~igd j=2.
We will also denote for ¢ ¢ @,

(5.3) t; = c,ap(a;) ,

(5.4) E; = {Pya;) > 1;}.

The following lemma will enable us to apply Lemma 2.15 in the proof of
Theorem 5.1 later.

Lemma 5.1. (i) Ifj + (logj)! < k, then
P(E; n E,) < cP(E,)P(E,) .
(i) Ifj < k and b, — b, > cyhal, 2> 0, then
P(E; N E,) < cP(E,)e " .
Proor. We have
E;nE,CE n{P/(a; +a)>1,—1},

where P,(a; + a,) is the first passage time for X(u) — X(t,), u = 1,, which is
independent of P,(a,). Hence we have

(5-5) P(E; 0 E,) < P(E,)P{P/(a; + a,) > 1, — 4},

Simple computation using the estimate in (5.1) shows that if k > j(log )i, then
the last probability in (5.5) is dominated by cP(E,), which proves (i). For
(ii) we first dominate the last probability in (5.5) by P{P/(a; + a,) > c,2a;},
since 1; — t, > c,Za*. Then get the upper estimate ce~*ei*‘e;+%? for this latter
quantity from (5.1). This proves (ii) since a; > a,, and P(E}) is dominated by
cP(E,).
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ProoF oF THEOREM 5.1. Let us define, writing log, for the m-iterated
logarithm,

(5.6) @ (u) = log,u™ + Llogyu™, ¢,(u) = log, u™' + 2log,u~".
Note that ¢, ¢, € @,. We now split the proof into several parts.
(i) Let ¢, < ¢ < ¢y, ¢ € @, such that 3, e ¢’ < co. Then we will show
(5.7) P{P,(a) > c,a’p(a) i.0., a0} =0.
By using the estimate of (5.1), we get
(5-8) 2 P{Py(a;) > cuaji i p(ay)} = ¢ 3 exp[—ajna;,7 ¢(a))]
=c 2 expl—o(a;,,) — (@ — aj)a;7%¢(ay)] -
Since ¢, < ¢ < ¢,, (a? — a’,,)a;, %¢(a;) is bounded in j, and we conclude that

the series in (5.8) converges (by the assumed covergence of };; e~<*s’). Hence
by Lemma 2.15 (i) we have

(5.9) Pya;) < c,a%,,¢(a;) eventually.
If a;,, < a < a,, then by the monotonicity of P,, a; and ¢, we have
Pya) = Py(a;) < c,a5,,9(a;) < ¢,a%(a)

which proves (5.7).
(i) Let ¢, < ¢ < ¢,, ¢ € @, such that

(5.10) o) |0 as u |0,  X,exp[—¢(@)] = oo
Then we will show
(5.11) P{P,(a) > c,a’p(a) i.0., a| 0} =1.

Recalling the definition of E, given by (5.4), it is clearly enough to prove
(5.12) P{E, occuri.o.}=1.

We now proceed to apply Lemma 2.15 (ii) to the sequence of events E,. First
observe that by (5.1) we have P(E,) = ce~‘*»’. Hence by (5.10) we have
3. P(E,) = co. The problem now is that we cannot apply Lemma 2.15 (ii) to
the sequence {E,} directly. For this reason we pick a subsequence E, ;, of {E,}
such that }; P(E, ;) = co and Lemma 2.15 (ii) applies to this subsequence. Call
a subscript “good” or “bad” according as

(5.13) (@) —e@)=F or  a,,) — ¢e@)> ;.

From the sequence {E,} drop the events with “bad” subscripts and relabel the
remaining subscripts as n(j),j = 1. Since P(E,) = exp[—¢(a,)] by (5.1), it is
clear from (5.13) that 33, P(E,;,) = co. Let

(5'14) J+ logéj = J+ 4 log%j = Jja> P(En(j)En(k)) = bjk .
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Suppose there is a fixed j, such that for j > j, the following estimates hold:

(515) k >]2:> bjk é CP(En(j))P(En(k)) s
(5.16) h =k = fo=0b; = cP(E, ;) exp[—c{logn(j)}]
(5.17) J<k <ji=by < cP(E,; )ec "7,

then it is easily verified that 3., b6, < ¢”P(E, ;) 22, P(E, ), and Lemma
2.15 (ii) applies to the events {E, ;} and we conclude that infinitely many of
them occur a.s. Hence it remains to check (5.15), (5.16) and (5.17). Since
0, < ¢ < o, first observe that starting at any j > j, (large enough) there cannot
be more than {logj}* “bad” subscripts. Hence j < n(j) < j{log n(j)}}, which

gives
(5.18) log n(j) ~ logj .

If k > j,. then n(k) — n(j) = k — j = 4{logj}! = {log n())} for j = j, by (5.18).
Hence (5.15) follows from Lemma 5.1 (i). Since {r,} is decreasing, we have by
(5.13)

cddl(tn(j) - tn(jﬂ)) Z cd<l(tn<j) - tn(j)+1)
= @, 9(An) — @iy [9(an) + 1]
=a;, -

The last inequality follows by noting that ¢(a,)(a,* — a2 ,)a,”> = $ and a, | 0.
Hence for j < k we get

(5'19) Luiiy = lao = cd(ai(ﬂ + o+ azuk—l)) .

Using (5.18) and the fact that n(k) — n(j) < (k — j){log n(k)}}, j < k, it is easily
verified that if j > some j;, then

(5.20) @y > 3, for j<k<j.

Hence if j, <k <, then ¢, — t,4, = t, — t,;, = sc.a’{logj}.  The -
estimate (5.16) now follows from Lemma 5.1 (ii). Finally if j < k < jj, then
from (5.19) and (5.20) we get ¢, ;) — t, = 4cy(k — j)ai;,, and Lemma 5.1 (ii)
gives (5.17).

(iii) Now let ¢ € @, such that ¢, < ¢ < ¢,. Combining (i) with Lemma 2.12
we conclude

(5.21) 0. P8 e dy < 0o — P[Py(a) > c,a’p(a) i.0., a |0} =0.
u

Now define ¢(u) by
(5.22) w'@(u) = inf., s%p(s) .
Then ¢(u) < () and ¢ satisfies the conditions imposed on ¢ in (ii). Since

¢(u) < ¢, we have

(5.23) for L) e dy = 0 — 5, L) v gy = oo .
U u
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If §,, u~'o(u)e~¢" du = oo, then by (5.23) and (ii) we have
(5.24) P{P(a) > c,a*¢p(a) i.0., a |0} =1.

Since a*¢p(a) is the lower monotone envelope of a’¢(a) and P,(a) is monotone,
we have

(5.25) {Py(a) > c,a*p(a) i.0., a |0} C {Pya) > c,a*¢(a) i.0., a|O0}.

Hence we conclude that
(5.26)  §or LY e dy = 0o — P(Py(a) > c,a*p(a) i.0., a0} =1.
u

Hence we have proved Theorem 5.1 for ¢ € @,, ¢, < ¢ < ¢,. We can now apply
Lemma 2.14 to derive a result similar to Lemma 3.1 to remove the restriction
¢, < ¢ < ¢,. This proves Theorem 5.1.

REMARK 5.2. One can obviously formulate a result such as Theorem 5.1 when
a — oo. The arguments outlined above apply to that case with obvious modifi-
cations.

Since the large values of |X,(¢)] and M,(r) as r | 0 have the same behavior,
the standard result about the large values of | X ()| as ¢ | 0 gives us the following
integral test for small values of P,(a) via Lemma 2.13.

THEOREM 5.2. Let o € ®,. Then
P{P,a) < ta*¢(a)™* i.0., a|0}=1 or O
according as §,, (¢(x)**/x)e=¢ dx diverges or converges.

REMARK 5.3. It is not necessary to require ¢ to be in @/ in Theorem 5.2.
Two-sided results for P,(a): for t > 0 we can look at the length of the longest
interval (+ — u, t -+ v) such that

(5.27) X, (5) — Xy(t)| <a  for 1—u<s<t4v.

Let P *(t, a) denote this random variable. For any fixed ¢ > 0, it is clear that
the asymptotic behavior of P,*(z, a) as a | 0 is the same as that of P,(a) + P,*(a),
where P,!, P,? are independent first passage time processes of the type discussed
in Theorem 5.1. By applying the method of Section 3 to modify the arguments
of Theorem 5.1 we can prove

THEOREM 5.3. For fixed t > 0, ¢, as in Theorem 5.1, and ¢ € @,
P{P*(t, a) > c,a*¢(a) i.0., a |0} = 1(0)
— SO+ Me_ﬂ"(“) da = oo(< oo) .
a
6. Related processes. In [1] Chung obtained the asymptotic behavior of

lim, inf sup,_,., |S,| for partial sums of independent random variables. If X,(7)
is standard Brownian motion in R¢, it is clear that his results can be formulated
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for the process
(6.1) M,(t) = sUpocy<, [ Xo(u)] -
If ¥, denotes the class of functions ¢: [A, o0) — [0, co) such that ¢(f) T co as

t1 oo, then we get

THEOREM 6.1. Let ¢ ¢ W, and M,(t) be defined by (6.1). Then there exists a
positive constant ¢,' = ¢,~t, where ¢, is the constant of Theorem 5.1, such that

P{M(1) < ¢/B{p(1)}™" i.0., 1] o0} = 1(0)
= 1 POF exp [ gy dn = 0.

Chung’s method can also be used to give a local asymptotic result for M(z).
However it is clear that small values for M,(r) correspond to large values of
P,(a), the first passage time considered in Section 5, since

(6.2) {Pya) > 2} = {M(A) < a}.
We exploit this connection to prove

THEOREM 6.2. Let ¢ € ®O,. Then there exists a constant c,’, same as in Theorem
6.1, such that

P{M (1) < ¢/tH{¢(n)}" i.0., t] 0} = 1(0)
= oo O exp [~ (@) da = oo(< o0).

Proofr. Let u(t) = ¢, tr}{¢p(r)}~". Since u is strictly monotone in ¢, the inverse
function r(u) exists. Let ¢(u) = {¢(t(u))}*. Then ¢ € @, for some ¢’ > 0. By the
relationship (6.2) we have

(6.3) P{M (1) < ¢, ~ttH{g(0)}* 0., t] 0}
= P{P,(u) > cyu*p(u) i.0., u|0}.

By Theorem 5.1 the right-hand side in (6.3) is equal to 1 or 0 according as the
integral §,, u~'¢(u)e=*"* du diverges or converges. By Lemma 2.13 the
convergence of this integral is equivalent to the convergence of the integral
§o. a ' {¢(a)} exp [ —{¢(a)}*] da, which proves Theorem 6.2.

REMARK 6.1. Because of (6.2) we could have adapted Chung’s method [1] to
prove the local result for M,(r) first and then used Lemma 2.13 to get our
Theorem 5.1 for P,(a). However our approach seems to be considerably simpler.

It is not difficult to formulate and prove a two-sided growth law for M,(t)
which can be obtained from Theorem 5.3 by applying Lemma 2.13. However
the result is not a natural one so we omit it.

Consider

R(S, t) = supsSu,vSt |Xd(u) - Xd(v)l *
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Since the upper tail of the distribution of R(t, t + k) differs asymptotically from
the upper tail of |X,(k)| by only a constant multiple [12], it is clear that the
standard proof of the integral test for the large values of |X (k)| as h — 0 gives
precisely the same test for the large values of R(z, t + k)| as h — 0. An examina-
tion of the proof of Theorem 3.1 shows that we have also shown that the integral
test of that theorem is valid for the large values of R(t — u, ¢ + v) as (4 + v) — 0.

There does not seem to be any easy way of obtaining results about the small
values of R(t,t 4 h) as h— 0 in terms of the first passage process. It seems
likely that a direct argument along the lines of Theorem 5.1 would lead to an
integral test if the lower tail of the distribution of R(z, t + k) were known: this
tail is known for d = 1 [6], but not for d > 2. Integral for the small values of
R(t — u, t + v) as (u + v) — 0 could also be considered.

There is one other associated process which has more intrinsic interest. For
d = 3, Brownian motion is transient and we can consider

Ty(a) = & L{X(0)} dr; I(x)y=1 for |xZLa,
=0 for |x|>a;

which is the total time spent by the process in a ball of radius a. For a fixed
a > 0, it was shown in [3] that the random variable T, ,(a) has the same distri-
bution as P,(a), so there is complete information about the distribution of T,(a).
Standard methods [3] lead to iterated logarithm type results for both the large
and small values of 7,(a) as @ — 0, and again these are the same for 7T,,,(a) as
for P,(a). However we cannot deduce any asymptotic results about 7,(a) from
those for P,_,(a) because the joint distributions T, ,(a,), T,,,(a,) are not the same
as P,(a)), P,(a,). If one tries to obtain a precise integral test for either the large
or the small asymptotic values of T,(a) as a — 0, the independence difficulties
are formidable, and we have not succeeded in finding a valid method.

In closing it is worth pointing out that very little is known about the problems ,
considered in the present paper for other types of process. For independent
increment processes it would be interesting to have information about the small
values of M(r) as t+— 0, but in general we do not even have an ‘“iterated
logarithm™ type of result except for the monotone processes. For the large
values of |X(¢z 4 h) — X{(¢)| as h | 0 it is known that some processes other than
Brownian motion have a correct function corresponding to the interated
logarithm in (1.1), but no necessary and sufficient criterion is known for the
existence of such a function. For most independent increment processes it is
known that no exact upper growth function exists (for example, if X{(7) is stable
of index a [11]), and in this case it is clear that the division into upper and
lower classes will be the same for two-sided growth as it is for one-sided growth.
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