The Annals of Probability
1973, Vol. 1, No. 5, 838-848

CONVERGENCE TO ZERO OF QUADRATIC FORMS
IN INDEPENDENT RANDOM VARIABLES'

By GARY N. GRIFFITHS,? RONALD D. PLATT?
AND F. T. WRIGHT

Grand Valley State College, Northwest Missouri State University
and The University of lowa

Let {X»} be a sequence of independent random variables none of which
are degenerate and define for y = 0, F(y) = supx P[|Xk| = y] and G(y) =
sup;«k P[|X; Xx| = y]. Relationships between the rate of convergence of F
and G to zero are investigated.

Set On = Yj.k @k, N X; Xi for N=1,2, .... If the X’s are symmetric
then it is shown that Qn converges to zero in probability for a large class
of weights {a;i,n} if and only if limy« yG(y) = 0. Convergence results
are also given for the case when the random variables are not symmetric.

1. Introduction and summary. Let X, X,, --- be a sequence of independent
random variables, none of which are degenerate, and define for y > 0

F(y) = sup, PIX,| = y]  and  G(y) = sup,., P[|X; X, = y].-

If the random variables are identically distributed then the functions F and G
measure the probabilities in the tails of X, and X, X,, respectively. We will
investigate the relationship between F and G.

Let s > 0. In Section 2 it is shown that

(1) yF(y)—0 as y— o
is implied by
2) »G(y)—0 as y— oo,

but not conversely, even in the identically distributed case. However, it is shown
that y*(log y)}F(y) — 0 as y — oo does imply (2) and the tightness of this result
is discussed. Comparisons are also made when F converges “exponentially” to
zero. In this case with p > 0, we show that if F(y) < M {; exp{— Cx?} dx for
all y > 0, then G(y) < L §; exp{—Dx??} dx for all y > 0. The converse holds
in the identically distributed case.

Jamison, Orey and Pruitt (1965) investigated, in the identically distributed
case, the relationship between (1) with s = 1 and convergence in probability of
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weighted averages of the X’s. We now restate their Theorem1. Fork = 1,2,...
let w, be positive constants and for N = 1,2, ... set W, = 1, w, and S, =
¥, w,X,. They assume :

3) max, <y Wi/ Wy — 0 as N— oo.

Their Theorem 1 can, with the technique of symmetrization, be interpreted as
follows.

THEOREM 1.1. For each sequence of weights satisfying (3) there exsist constants
tty such that Sy/Wy — py —, 0 if and only if yF(y) — 0 as y — oo, and in this
case py can be chosen to be YN, (W,/Wy)E(X, I x, cwy/w,). Furthermore, if
limg o E(X, Iy <r) = ot then pry — p.

In Section 3 we consider the analogous problem of relating (2) with s = 1 to
convergence in probability of quadratic forms in the X’s. Let a,, , be real num-
bers for N,j,k =1,2, ... and let Oy = 37, ,a;, v X; X,. If a;, , =0 for all
J#Ekya;; y=w;/Wyforj=1,2,...,Nand a,; , = 0 for j > N, then Q, is a
weighted average of X%, ..., X2 If the X’s are identically distributed, the
results of Jamison, Orey and Pruitt show that if there exist constants y, such
that Q, — ¢y —, 0 then yP[X> > y] —» 0 as y — co which is more restrictive
than (2) with s = 1. So we will first consider quadratic forms for which a,; , =0
for all N, j=1,2, ... and then we will show how the diagonal terms can be
handled in some cases. If the random variables are identically distributed and
symmetric and the diagonal elements are zero, then yG(y) —0 as y — oo is
equivalent to Q, —, 0. Convergence results for Q, are also given in the cases
when the random variables are not necessarily identically distributed or sym-
metric and when the diagonal elements are not necessarily zero.

2. Rates of convergence of F and G to zero. With the same notation as in
Section 1, we will investigate the rates at which F and G converge to zero. In
this section, we consider two types of convergence rates. The first might be
called algebraic rates. Let s > 0. We begin with the following remark.

ReMARK 2.1. If lim, y*G(y) = O, then lim__ y*F(y) = 0.

Proor. Since the random variables under consideration are not degenerate,
we choose ¢ > 0 such that 0 = min (P[|X;| = ¢], P[|X,] = ¢]) > 0. Fory > 0,
G() = SUp,.., P[1X,| = €IP[|X,] = yfel, G(y) = P[|X,| = y/e]P[|X,| = ¢] and hence
G(y) = 0F(y/¢). The desired result follows.

It is easy to construct examples for which neither F nor G converge to zero as
y — oo. However, the following remark shows that lim ., F(y) = 0 is equiva-
lent to lim,_,,, G(y) = 0.

REMARK 2.2. lim,_, F(y) = 0 if and only if lim___ G(y) = 0.

Proor. Clearly for y > 0 and positive integers j and k, P[|X;X,| = y*] <
P[|X;| = y] + P[|X:] = y] and so G()y*) < 2F(y). This inequality and Remark
2.1 with s = 0 complete the proof.
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Unless specified otherwise assume s > 0.
TueoreM 2.3. Iflim,_, y*(log y)*F(y) = O, then lim,_., y"G(y) = 0.

Proor. We first observe that for 2" < y < 2™, y*G(y) < 2‘“+1);G(2”) and so
it suffices to show lim,_,, 2"*G(2") = 0. For positive integers jand k with j  k,
PIIX, X, = 2] < PIX| < 1, X = 2°]
+ 205 P2 = X <2 1| =2 27
+ Pl = 27]
< 3F(2") + Xz F)F@™).

If b, = 2™ (log 2")*F(2") and a,, = sup,,, b,, then by hypothesis lim, ., a, = 0. So

sy < o1 23(log 2)-1 1n-1 a,a,._, ,
G < o) + 2(log2) it ety

and since a, is a non-increasing sequence the above is bounded by
o(1) + 2(log 2)™"a; agym X123 (v(n — )7

We conclude the proof by showing ;721 (v(n — v)~t is bounded. Since for each
n=1,2, ..., fi(x) = (x(n — x))~* is non-increasing for 0 < x < [n/2],

T2t ((n — v))F = 2 T (o(n — v)
< 2§57 (x(n — X)) dx
< 2§22 (nx)~¥(1 — x/n)~t dx
= 2§38 (mx)t D, ()(— 1) (/)" dx .

Since the terms of this series are nonnegative we may rewrite the above as
2 e GO(= 1) 32 kot de = 2 3, (GA(—= 1) 27 % 0 (k + 3)7!
<21 - =4,
We now give an example to show that the converse of Theorem 2.3 is not valid.

ExaMpPLE. Let X, X,, - .- be independent and identically distributed non-
negative random variables with F(y) = 1for 0 < y < 1 and F(y) = C2*¥k#
for 2% <y < 2¥and k = 1,2, --- where 0 < C < 2'. We first show that
lim,, y’F(y) = 0. If 2%-2° < y < 2#, then y*F(y) < 2°**F(2¥) — 0 as k — oo.
However, 2:¥(log 2¥)}F(2¥*) = C(log 2)} and so y*(log y)}F(y) - 0 as y — co.
The example is completed by showing lim, . y*G(y) =0 or equivalently
lim,_,, 2G(2") = 0. We observe that

2%P[|IX, X,| = 2"] < 2™P[X, = 1, X, = 2] + 2™ Y1"2! P[X, = 2*, X, = 2"]
+ 2™P[X, = 2"]
= o(l) + 2™ 312t P[X, = 2°]F(2"™)

< o(1) + 2" DL HFQ22)F(2 )
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For n fixed, let j, be such that (j, — 1)* < n — »® < j,* and then we can rewrite
the last term of the above as

Qs Z£(=711—1)§]F(2y3)F(2jy3) — 2ms (2 Z5(21—1)5]2—3;;3”—;2-3;'”?7;—&
< C DLy (n — v¥)t

The summand in the last sum is maximized when v = 1 and so 2™G(2") <
C¥n — 1)t —0asn— oo.

While the converse of Theorem 2.3 is not true, the next result shows that in
a certain sense it is tight.

THEOREM 2.4. Let g: (0, 00) — (— o0, o0) such that lim _, g(y) = co. There
exist independent and identically distributed random variables X,, X,, - - - for which

lim, .. y*(log y)}(9(y))"*F(y) = 0 and y*G(y) - 0 as y — co.

Proor. Let {a,} be a non-increasing sequence of real numbers with a, = 1
and lim,_,a, = 0, and set p, = (2’a, — a,,,)27™ for n=1,2,.... Clearly,
Pn=0and 37, p, = 1. So there exist independent and identically distributed
discrete random variables X, X,,- - - such that P[X; = 2"] = p,forn =1, 2,....
We want to choose the sequence {a,} so that lim,_, y*(log y)*(9(y))"*F(y) = 0 and
so it would suffice if y*(log y)*F(y) were bounded or equivalently 2"(log 2")}F(2")
were bounded. However, F(2") = Y5, p, = 27" g, and so we will choose
{a,} so that nia, is bounded. We also wish to choose {a,} so that y*G(y) » 0 as
y—oo. Fornz=1

2MG(27) = 2#P[|X, X, = 2+] = 2% Yo7} PLX, = 2|P[X, = 2]
=20 (28‘1» —a,.)a,, = 28(28 - 1) 2isia,a,_,
<222 — 1)(n — 1)a,?.
The proof is completed by observing that the choice a, = n~? satisfies all of the
above requirements.
The second type of convergence rate we have investigated might be called

exponential. Let M, C and p be positive real numbers. We will be concerned
with statements like

©) F(y) < M {7 exp{—Cx?} dx forall y >0.

With 1 < p < 2, Hanson (1967) studied the relationship between condition (4)
and bounds on the moment generating functions of the sequence {X,}.

THEOREM 2.5. If there exist M and C such that (4) holds, then there exist L and
D such that

&) G(y) < L {7 exp{—Dx*?}dx forall y >0.

Furthermore if there exist positive integers j, + j, and a positive constant y such that
Pl|X;| =yl = rF(y) fori = 1,2 and all y > 0, then the converse is valid.

Before we give the proof of the theorem, we state the following lemma.



842 GARY N. GRIFFITHS, RONALD D. PLATT AND F. T. WRIGHT

LeMMA 2.6. If p > 0, then
(6) §7 exp {—Cx?}dx ~ (Cp)~y'"? exp{—Cy7} .
The lemma may be proved by applying L’Hospital’s rule to the ratio of the two
expressions in (6).

Proor oF THEOREM 2.5. For y > 1 and positive integers j and &

PIX; X,| Z y] = PIIX,| = y*] + PIX] = »]

2M (3 exp{—Cx?}dx = M {3 x~t exp{—Cx?} dx
M §7 exp{—Cx?*} dx .
Condition (5) holds with D = C and L = max (M, ({7 exp{—Cx?*} dx)™*), since
L {rexp{—Cx*?}dx = 1for 0 <y < 1.

We begin the proof of the second conclusion in the theorem by noting that
fory >0

A A

PF(y) = [l P[IX:;J =) = P[lleijl =)l
< L exp{—Dx*’}dx.

Using the lemma, we see that {3 exp{— Dx??} dx ~ 2(Dp)~'y*~7e~?*" and since
both of these expressions are continuous, there exists a constant k£, > 0 such that

() (o2 exp{—Dx??}dx < k,y*~? exp{—Dy?} for y=1.
Since y? exp{—(D/2)y?} is bounded there exists k, > 0 such that (7) is bounded by
16k,(Dp) 217 exp(—(D[2)y"} ~ k(§; exp{—(D/4)x7} dx)’ .

Hence we can choose k; > 0 such that
F(y) < k §5 exp{—(D[4)x?} dx for y = 1
and the proof is completed by choosing C = D/4 and
M = max (k;, ({7 exp{—Cy?}dx)™").

It is easy to construct examples to show that the converse of Theorem 2.5 is
not true in general. One obtains such an example by choosing M and X, X, - - -
such that P[|X;| = y] = M { exp{—x?"}dx for all y >0 and |X;| =1 for
k =2,3, ... However, if X}, X,, - - - are identially distributed, the condition
imposed in the second part of Theorem 2.5 holds and so the converse is valid.

3. Convergence of quadratic forms. We now investigate relationship between
yG(y) — 0 as y — oo and convergence in probability, to a degenerate limit, of

quadratic forms in X, X,, ---. Leta,, , be real numbers for N, j, k = 1,2, ...
with
(8) a;; v=20 forall N,j=1,2, ...
and

(9) Z;k=1 Iajk,Nl é M for all N = 1, 2, e
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We will relax assumption (8) in Theorems 3.4 and 3.5. Without loss of generality
we may assume a;, y = a,; y for all N, jand k. Set Q, ,, = Z™,_, a4, 5 X, X,.

THEOREM 3.1. Let X\, X,, - - - be identically distributed. If there exist constants
Uy,m Such that for each N, Qy ., — py.,. converges in distribution to, say, Q, and
Oy —p 0, then sup; , |a;,. v| > 0 as N — co.

Proor. Let X, X\, X,, X/, --- be independent identically distributed with
characteristic function ¢(7). For each N we may choose integers j, + k, and
my such that j., k, < m,, [aijN,N[ = sup; ;. |4, x|/2, and Oymy — ENomy —p 0.
So |E(exp{itQy m,})| — 1 as N — co. We let &= <Z{X,: k # k,} and E¥(Y)
denote the conditional expectation of Y with respect to the o-field 8. Then

|E(exp{itQy my )| = [E(XP{it T3V vijsyer Giun X; X0
X E®(exp{2it X525 ayy;n X; X))
= Elg(2t 178 @y n X))
S (Elg2t Zitap, v X)) < 1.
Hence E|¢(2t 317 % a,,; yX;)?— 1 for all tas N — co. Now
[9(2t X728 ayy 5.0 %) = E(exp{2it(X,, — X[, ) 315 Aypiin X;})

|p(2¢ Z;nzj\; akNj,NXj)l2 = E%(CXP{ZH(XI:N — Xiy) Z;n=1v1 akNj,NXj})
almost surely and hence
E|$(2t 2172 @y X)) = E(exp{2it(X,,, — X[) 27N a4y, ;0 X;)) -

So (X, — Xiy) 272 @y, ;8 X; —p 0 and using (8) and the fact that the X’s all
have the same nondegenerate distribution,

Dt @y X; —p0 or [E(explit ZiNap, ;v XD — 1.
However,

or

[E(exp{it 2525 @iy n X, DI < |6ty 5y,0)] < 1

and so |, ;. v] —0as N — oo.

Note. We cannot omit the assumption a;; , = 0 in Theorem 3.1. For all N
leta;; y=(—1)/ifj=1,2and a;; , = 0if j > 2, let |X,| = 1 for all k, and
for j = klet a;,  be such that 3., a,, v X; X, —,0as N — oo. (See Theorems
3.2 and 3.3 for nontrivial examples.) Clearly 2.5 k=145, v X; X, converges to
zero in probability but sup; , |a,, y| = 1 for all N.

So we assume

(10) ay =sup;,la; v —0 as N— oo

THEOREM 3.2. Let X, X,, - - - be identically distributed. If for every sequence
of weights satisfying conditions (8), (9) and (10) there exist constants ~.m SUCh that
OQn,m — !'n,m COnverges in distribution to, say, Q, and Q, —, 0, then yG(y) — 0 as
Yy — co. Furthermore, if X,, X,, - - - are symmetric the converse holds with y rm=0
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and in fact Q. ,, —, ;. Qy for each N and the random variables need not be identically
distributed.

Proor. We first show that yG(y) — 0 asy — oo is a necessary condition. Let
w,>0fork=1,2,... W, = ¥, w,and suppose (3) holds. For each N set
Ay gy = o1,y = Wi/(2Wy) for k= 1,2, ..., N and set the other weights
equal to zero. Now this sequence of weights satisfy (8), (9) and (10). So by
hypothesis there exist constants s, , such that Q, , — s, . converge in distri-
bution. However, Q, , converges to W, ™' >, w, X, , X, and so p, , con-
verges to, say, puy. Also by hypothesis W' 3%, w,Z, — p,, —»,0 where
Z, = X,,_,X,,. By Theorem 1.1 yG(y) — 0 as y — oo.

For the second part of the proof, we will first show that for each ¢ > 0 there
exists a sequence ¢, —»0 as N — co for which P[sup,,..; [Qy .| > €] = cy.
Furthermore the sequence ¢, will not depend on L. For each pair (j, k) for which
a;, y # Olet I; , be the indicator function of the set [|X; X,| < |a;, v|™']. Clearly,

(11) P[SUD < pzr |Qnyml > €] = Xigiikco G(|050,5]7Y)
(12 + P[SUDicpmsr | XDissksm i n X Xu L] > €]

where the prime on these summations indicates they are taken over those pairs
(f, k) for which a;, , # 0. We first consider expression (12). We wish to show
that Oy, = i<, ksm @exX; X, I, is a martingale sequence. Let &7, , =
BOyrs s Oym) and F,_, = B(X, -, X, ). Now EFn-y(0, )=
Ovmor + 2 Xcicmo my EZmY(X; X, 1,,) almost surely and if a,, , # 0,
EFmy(X; Xy 1) = E(xX; Xy Iz 1<aj,, y1i-11) |ej=x; @lmOSE surely But this last
term is zero since X,, is symmetric. Since .%7,,_, C &, _, and 0, ,,_, is measur-
able with respect to .%7,_, we can conclude 0, , is a martingale sequence.
(Vareberg (1966) showed that these quadratic forms are martingales in a slightly
different setting.) By the martingale inequality, expression (12) is bounded by
e E(Xlsi kst iy X; Xi 1)’ However, if in the term E(J]3.; a;,, v X;, X3, 1;.1)
any index, say, j, appears only once this termis zero. Forlet &% = @(X i Xips Xiy)
and then we can write

E(H—lajk v X, th gk)_E(Eg(Hzl gkss NX X, Ik))

L2

and then apply techniques similar to those used to show 0, , is a martingale
sequence. Hence, expression (12) is bounded by

27" Ylissest Tow E(XFPXCL)
= 267 Ylisiksr Giiew Stotazy,vi-n X* AP[IX; X0 < x]
= =27 Nigjpsr @y V5T XA P[|X, X 2 4]
= 4e7? Ylisiksr Gy SLajk’Nl_l xG(x) dx .

If we let H(x) = sup,, yG(y), the above is bounded by
47" Nisinst [agn] So Hx/|ag, y]) dx < 4Me™* § H(x[ay) dx .
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Since H is non-increasing, expression (11) is bounded by M. H(l/ay) <
M i H(x/ay) dx. We now choose ¢, = M(4¢~* + 1) {; H(x/ay) dx. Clearly H is
bounded and for x ¢ (0, 1], H(x/ay) — 0 as N — oo. So the Dominated Conver-
gence Theorem shows that ¢, — 0 as N — co.

With N fixed, we will show that Q, , converges almost surely as m — co by
showing lim,, . lim, . P[sup,<.,<z |Ox mia — Qv.ml > €] =0. Since A, , =
sup{la;, y|: j > mor k > m}—0 as m — oo, we see from the first part of the
proof that

liInL—~°° P[SupléasL |QN,m+a - QN,ml > é:]
< M(4 + 1) §3 H(x/Ay,,) dx .

Using the Dominated Convergence Theorem, §j H(x/A4, ,)dx —0 as m — oo
and so Q, , converges almost surely.

The proof is completed by observing that Q,, ,, —, . Qyand P[|Qy .| >¢] < cy
for all m imply P[|Qy| > ¢] < ¢y. (See Theorem 2.1 of Billingsley (1968).)

It would be of interest to know if the converse of the first conclusion of
Theorem 3.2 holds when the random variables are not assumed to be symmetric.
In the nonsymmetric case, the following theorem gives conditions which ensure
Q, —p 0; however, they are more restrictive than those in Theorem 3.2. Let
b; v = 2iw1a;,y|- In the next theorem we will assume

(13) by =sup; b, , —0 as N— oco.

THEOREM 3.3. If G(y) >0 asy— oo and —\7 y dG(y) < co and if the weights
satisfy (8), (9) and (13), then there exist constants py ,, such that Qy , — (ty. ., con-
verges almost surely for each N to, say, Q, and Q, —, 0. In fact we may choose
Pym = 25 k=1 5,5 E(XG)E(Xy).

NoTe. We state without proof the following result. If F and G are non-
negative, non-increasing functions with F(y) < G(y)and G(y) — 0 as y — oo then
—(rydF(y) £ — {2 ydG(y)fora = 0. Using this result and the result established
in Section 2 that there exist positive constants ¢ and ¢ such that F(y) < 67'G(¢ - y)
we see that the hypotheses of Theorem 3.3 imply that — {5 y dF(y) < oo. Fur-
thermore, — {§° y dG(y) < oo and G(y) — 0 as y — co imply that yG(y) — 0 and
then yF(y) — 0 as y — co. Using the result stated above — {5y dF(y) < oo
implies that there exists a D such that E|X,| < D for all k.

In the identically distributed case the moment assumption of Theorem 3.3 is
equivalent to |[E(X})| < oo.

Proor. We consider first the case E(X,) = 0. Nowif Y, =2 }izla,, vX,;X,
fOI‘j = 2,3, ..., then QN,m — HUym = Z;‘n:2 Yj' So E 2;12 IYjI = Z;‘o=2 EIYjI =
2MD* which implies that >7%.,|Y,| is finite almost surely and so Qy ,, — tty.m
converges almost surely.

Let I, be the indicator function of [|a;, yvX;X,| < 1] and I; be the indicator
function of [|b; , X;| < 1]. Set Z;, = X; X, I, I;I,and Oy . = 37, a;, v Zj.
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Clearly for ¢ > 0, P[|Qy. .| > ¢] is bounded by
(14) LZisjism G(@5,517") + Zisism FO5 )
(15) + P[0y, > €]

LettingJy ,, ={(Jis- -+ ju): 1 < j, < m, j, + j, fori +k, a; ;,v#0,anda;; =0}
we see that expression (15) is bounded by

(16) € s Qiyig v D E(Z;;)E(Z;;,)
(17) + 4™ Ylici kismikst Ginn i v E(Z 5 Z)
(18) + 267" Xlcjksm Gen E(Z3) -

As in the proof of Theorem 3.2, the sum of the first expression in (14) and (18)
is bounded by c¢,,.

Expression (16) is bounded by (3], .la,, v||EZ;|)?*. However, since
E(X;X,) = 0 for j = k,
(19)  |E(Z;)| = EIX; X,|(1 — L) + DEWX|(1 — 1)) + EIX,|(1 — L))

= =51y dG(y) — 2D §5, 1y dE(y)

and if we set d, equal to the square of the product of M, ¢~* and expression (19),
then expression (16) is bounded by 4, and d,, — 0 as N — co.

Expression (17) is bounded by 4D%~* 37, . |a;, |b; v EX;*I; and EX I, can be
written

—§4aw y dP[|X,| = y] < 2 {45 yF(y) dy
= 265 §oJ(0/bs v) dy

where J(x) = sup,., yF(y). Also the second expression in (14) is bounded by
Dtsism bjn $5J(Y/b; y)dy < M (3 J(y/by)dy and so if we set e, = M(1 +
8D%?) {3 J(y/by) dy, then the sum of the second term in (14) and (17) is bounded
by ey and e,, —> 0 as N — oo.

The proof of this case is completed by observing that c,, d,, and e, do not
depend on m.

We consider the case when the means are not necessarily zero. First rewrite

(20) Ovm — ym = 25k=1 9, n(X; — E(X))(X, — E(X)))

+ 2 2T ke e (X — E(X)))E(X,) -
Using the results of Section 2 and thdse in the above note, it can be shown
that sup,., P[|(X; — E(X;))(X, — E(X,))| = y] also satisfies the hypotheses of
Theorem 3.3. In the preceding case the first term in (20) was shown to have an
almost sure limit for each N and the limits were shown to converge to zero in
probability. An argument similar to that at the beginning of the proof of this
theorem shows that the second term in (20) converges absolutely almost surely
for each N. We will denote this limit by S,. We now appeal to a modified
version of Theorem 2b of Hanson and Wright (1971a). To avoid confusion
with notation we will write their S, = Y}, a, ; Z; and so to apply their theorem
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to our S, we set Z; = X, — E(X;) and a, ; = 27, a;, v E(X}). Assumption
(2.5) and all the hypotheses of that theorem hold in this case except py might
not converge to zero. We will show that in our case their result obtains if we
require that p, is bounded and sup, |a, ,| — 0 as N — co. The proof given of
this theorem consists of showing that expressions (4.5), (4.6) and (4.7) converge
to zero as N — co. The proofs given for (4.5) and (4.7) remain valid even if p,
is bounded and sup, |a, ,| — 0 as N — co. For expression (4.6) we note that
since Z, is centered at its mean

2 lay i E(Z, I[|aN,,,z,,[<1])| = 2 lay E(Z, I[[aN,,,zk|g1])|
= — 2k lav el $Gupgtay, i1 xd(sup, P[|Z,| = x])

which converges to zero if p, is bounded and sup,|a,, — O because
sup, P[|Z,| = x] < F(x — D) for x = D and so — {7 xd(sup, P[|Z,| = x]) < oco.
The proof of Theorem 3.3 is completed by observing 37, |3, a,,, v E(X})| = DM
and sup; | >3, a;, v E(X,)| < Dby — 0 as N — oo.

We now consider quadratic forms whose diagonal elements are not necessarily
zero. We will assume

(21) 25 ’ajj,zvli =M forall N

instead of (8). The following two theorems represent one way of combining
Theorems 3.2 and 3.3 with known convergence results for weighted sums of
random variables. There are, of course, other ways this could be done. The
proofs of these theorems will be given simultaneously.

THEOREM 3.4. Let X,, X,, - - - be symmetric random variables with yG(y) — 0 as
y — oo and let the weights satisfy conditions (9), (10) and (21). For each N, Qy ,,
converges almost surely to, say, Qy and Q, —p 0.

THEOREM 3.5. If we replace (8) by (21) in the statement of Theorem 3.3 it re-
mains valid.

ProOFs oF THEOREMs 3.4 AND 3.5. In both theorems we have assumed
yG(y) — 0 as y — oo and by Remark 2.1 this implies yF(y) — 0 as y — co or yt
sup, P[X;2=y]—0 as y > oco. Also in both theorems we have assumed
sup |a,; x| = 0 as N — co. With ¢ = } the lemma in Wright (1972) shows that
2™, a;; yX,;* converges almost surely. We denote the limit by S,. Again with
t = 4, Theorem 2 of this same paper shows that S, —, 0. This result combined
with Theorems 3.2 and 3.3 gives Theorems 3.4 and 3.5, respectively.

In conclusion we would like to raise the-following questions. Is it necessary
to assume the random variables have first moments in Theorem 3.3? Is it neces-
sary to assume b, — 0 in Theorem 3.3? These two questions could be restated
as follows: does the assumption of symmetric random variables make a real
difference in convergence of quadratic forms? Along this line we wish to point
out to the reader that the Theorem of Hanson and Wright (1971b) giving
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exponential rates of convergence for quadratic forms has only been proven for
symmetric random variables.

(1]
[2]

[3]

[4]
[3]
[6]
7

REFERENCES !

BILLINGSLEY, P. (1968). Convergence of Probability Measure. Wiley, New York.

HANsoN, D. L. (1967). Some results relating moment generating functions and convergence
rates in the law of large numbers. Ann. Math. Statist. 38 742-750.

HansoN, D. L. and WRIGHT, F. T. (1971a). Some convergence results for weighted sums
of independent random variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19
81-89.

HANsoN, D. L. and WRrIGHT, F. T. (1971b). A bound on tail probabilities for quadratic
forms in independent random variables. Ann. Math. Statist. 42 1079-1083.

Jamison, B., OrEy, S. and PruitT, W. (1965). Convergence of weighted averages of inde-
pendent random variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 40-44.

VAREBERG, DALE E. (1966). Convergence of quadratic forms in independent random vari-
ables. Ann. Math. Statist. 37 567-576.

WRIGHT, F. T. (1972). Rates of convergence for weighted sums of random variables. Ann.
Math. Statist. 43 1687-1691.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF STATISTICS AND COMPUTER SCIENCE
GRAND VALLEY STATE COLLEGE NORTHWEST MISSOURI STATE UNIVERSITY
ALLENDALE, MICHIGAN 49401 MARGVILLE, MISSOURI 64468

D1viSION OF MATHEMATICAL SCIENCES
THE UNIVERSITY OF IowA
Iowa CiTy, Iowa 52242



