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LIMITING BEHAVIOR OF WEIGHTED SUMS OF
INDEPENDENT RANDOM VARIABLES

By Y. S. CHow! AND T. L. LAP?
Columbia University

In this paper, we study weighted sums 37_; ca—; X; of i.i.d. zero-mean
random variables Xi, X, - - -, under the condition that the sequence (c») is
square summable. It is proved that such weighted sums are, with proba-
bility 1, of smaller order than n/« (respectively log n, etc.) iff E| Xq|® < oo
(respectively Eet!¥1l < oo for all £ < oo, etc.). Certain analogs of the law
of the iterated logarithm for such weighted sums are also obtained.

1. Introduction. Let X, X,, - -- be i.i.d. random variables with mean 0, and
let (c,, n = 0) be a sequence of real numbers such that 3}> ,¢,’ < co. In this
paper, we study the limiting behavior of the sequence (Y,,n = 1) of weighted
sums, where Y, = 31", ¢,_, X;. Such weighted sums of observations are used in
[9] for detecting changes in the location of the distribution of a sequence of
independent observations, such as in quality control problems. We find that in
many respects, the limiting behavior of Y, resembles that of a sequence of in-
dependent random variables.

Another kind of weighted sums of independent random variables has been
considered by Gal [5], Stackleberg [13], Strassen [15], Gaposhkin [6] and Tomkins
[16]. Let f be a continuous function on [0, 1] and consider Z, = 37, f(i/n)X,.
Tomkins [16] proves that under certain conditions on f and X;, the weighted sum
Z, satisfies the law of the iterated logarithm:

Zz = (32 di)t ae.

li R S—
10 SHPa (2n log log n)t

The limiting behavior of the Z, sequence therefore resembles that of partial sums
of the X,’s.

A more general problem which includes both kinds of weighted sums above
is to consider 3'7_, a,, X,. Some convergence theorems for these general weighted
sums have been obtained by Chow [2], Hanson and Koopman [7], Hill [8], Pruitt
[12] and Stout [14]. In Section 4, we consider such general weighted sums under
the condition lim sup,_,.. Y7 @3, < co. Sections 2 and 3 are devoted to the study
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LIMITING BEHAVIOR OF WEIGHTED SUMS 811

of weighted sums of the form >, c,_, X;, and we obtain analogs of the strong
law of large numbers and of the law of the iterated logarithm for such weighted

sums.

2. Strong law of large numbers for weighted sums. The following theorem
is an analog of Kolmogorov’s strong law of large numbers. For a = 2, itisa
special case of a theorem of [2]. We shall say that a sequence (c,) of real numbers
is void if ¢, = O for all » and that it is nonvoid if otherwise.

THEOREM 1. Let X, X,, - .- be i.i.d. random variables such that EX, = 0. For
any a = 1, the following statements are equivalent:
(1) ElX|* < oo
2) lim, ., n~v*X, =0 a.e.

n—00

3 lim,  n Y« 3" ¢ . X, = 0 a.e. for some (or equivalently for every) non-
i=1"Yn—i“*1{ q .y .y

void sequence of real numbers (c,, n = 0) such that ) 7_,c,* < oo.

LemMMA 1. Suppose X,, X,, - -- are i.i.d. random variables such that EX, = 0,
EX? < co. Let (a,,n=1) be a nonvoid sequence of real numbers such that
e iat =A< oo, and let

Z, = 2iaa;X;, Z=Za;X;.

i=1%7

Then

(i) for a = 2, E|X||* < oo iff E|Z|* < oo. In this case,
@ Sup,s; E|Z,|* < B, A*E|X}|
where B, is a constant depending only on a.

(ii) Ee'™ < co YVt > 0iff Ee'"”' < 0o Vit > 0. In this case, sup Ee''?+ < oo
ve> 0.

Proor. To prove (i), we first assume that E|Z|* < co. Leta, = 0. Then Z =
a,X, +(Z—a,X,). Since a,X, and Z — a, X, are independent, E|Z|* < oo
implies that E|a,X,|* < co. Conversely, assume that E|X,|* < co. By the
Marcinkiewicz-Zygmund inequalities [11], there exists a constant B, depending
only on a such that

E|Zn| é BaE(Zraizsz)a/z
— BaE(Z'{Laj(2a—4)/a'aj4/an2)a/2
< B E{(Xt a)**7 Kt a1 X}
< B, A*E|X,|~.
Hence (4) holds and by Fatou’s lemma, E|Z|* < sup E|Z,|* < co.

To prove (ii), assume that Ee!*1' < co V¢ > 0. Without loss of generality, we

can assume that EX;* = 1. Let ¢(d) = Ee*s. Then ¢ is an entire function,

$(0) =1, ¢’(0) = 0 and ¢”(0) = 1. Therefore there exists 6, > 0 such that for
0] < 6y, ¢(0) <14 6°. For any real ¢, we choose k such that |a, 1] < 6, for
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n > k. Then for n = k,
Ee’n < {[1t1 ¢(a: 0} [IZ4sa (1 + aF)
= {ITi-: ¢(a:n)} exp (A7) .
Since Ee!'Zal < E(etZn 4 e~'Zu), it follows that sup Ee!'?s' < oo and by Fatou’s
lemma, Ee''?' < oo.

Conversely, assume that Eet?! < oo V¢ > 0. Leta, = 0. Then Z =a,X,, +
(Z — a,X,). Since a, X, and Z — a, X,, are independent and Ee” < oo for all
real ¢, we have Eexp(ta,X,) < oo for all real ¢ ([10], page 214). Hence
Eet'*1 < oo Yt > 0.

LEMMA 2. Let X, X,, -+- and Y,, Y,, - .- be two sequences of random variables
such that (X,, - -+, X,) and Y, are independent for each n = 1. Suppose f: R X
R — R is a Borel function such that f(X,,Y,) — f(a, b) a.e. and given any ¢ > 0,
there exists 6 > 0 for which

inf {|f(x, y) — fla, )|+ |x —a| > ¢, |y — 5] <3} >0.
IfY,—pb, then X, —, . a.

Proor. Given any ¢ > 0, we have 6 > 0 and » > 0 such that |f(x, y) —
f(a, b)| = 7 for all x, y with |x —a| = ¢ and |y — b < 4. Let z, =inf{n =
m: |X, — a| = ¢}. Then

0 = lim, . P(Um [|/(Xa Ya) — fla, B)] = 7))
> lim,, . P(Ug-n [t = n, |Y, — b] £ 0])
= lim,,_. Y=, P[c, = n]P[|Y, — b] < 9],
by the independence of Y, and (X, ---, X,)

= $lim, . >>_, P, =n], since Y, —,b
= %limm—wo P(Uf;‘::m [an - al Z 6]) :
LEMMA 3. Let X, X,, --- and Y,, Y,, - - - be two sequences of random variables
such that (X,, ---, X,) and Y, are independent for each n = 1. Suppose there exist

a finite constant C and a random variable Y such that lim,_. (X, + Y,) = C a.e.
and Y, converges in distribution to Y. Then X, —, ., K, a finite constant, and
Y,,—»a'e.C—KandP[Yz C—K] =1.

PrOOF. Suppose Y is not a degenerate random variable. Then we can choose
a real number 4 such that E|e?Y| < 1(cf. [10] page 202). Since lim,,_,., exp (iA(X,, +
Y,)) = e'*“ a.e., we obtain (cf. [1] Theorem 2) that

lim, ., E[exp(iA(X, + Y,))| Xy, - -+, X,] = €¢ a.e.
By the independence of (X, - - -, X,) and Y,,, we therefore have
3) lim,_,, e**nEet*Yn = €4° a.e.

But lim, ., |Ee**"s| = |Ee?Y| < 1, contradicting (5). Therefore Y must be de-
generate, say P[Y = C — K] = 1. The desired conclusion then follows from
Lemma 2.
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PRrOOF oF THEOREM 1. By the Borel-Cantelli lemma, it is easy to show that (1)
and (2) are equivalent. We now assume that there exists a nonvoid sequence
(¢syn =z O)such thatlim, . n~v=3»_ ¢ .X,=0a.e. Letm = inf{i > 0: ¢, # 0}.
Using Lemma 3, it is easy to see that lim,_, n~"*c, X,_, = Oa.e. Therefore 3)
implies (2).

We now prove that (1) implies (3). For 1 < a < 2, this is a special case of
Theorem 9 below. Now assume that a > 2. Let (c,, n = 0) be any nonvoid
sequence of real numbers such that ¢’ < co. Let Z, = 31" ¢, , X, and
Z =lim,_,, Z,. Then for any ¢ > 0.

(6) Pl i€ Xy| > ent/o] = P[|Z,| > en'"]
= P[sup;ey |Z;| > ent/e].
By Lemma 1, E|X|* < co implies that E|Z]* < oo, and so by Doob’s martingale
dominated inequality ([3] page 317), E(sup,., |Z,;|)* < co. Hence it follows from
(6) that 313 P[| X7, ¢, X,| > en/*] < oo and the proof is complete.
Using Lemma 1 (ii), we obtain in the following theorem necessary and sufficient
conditions for 37, ¢, ,X,/log n to converge to 0 with probability one.

THEOREM 2. Let X,, X,, - - - be i.i.d. random variables such that EX, = 0. Then
the following statements are equivalent:

(7) Ee'il < 0o Vit>0
8) lim, ., X,/logn =0 a.e.
%) lim, ., 37, c,_;X,/logn = 0 a.e. for some (or equivalently for every) non-
void sequence of real numbers (c,, n = 0) such that Y17_,c,} < co.
PrOOF. We shall only show that (7) implies (9), as the rest of the proof is

similar to that of Theorem 1. Let Z, = Y17_, ¢,_, X;. Givene > 0, choose ¢ such
that ¢ =y > 1. By Lemma 1, sup,,, Ee!?» = K < co. Therefore

S PN e, X, > elogn] = Yo, P[|Z,| > elogn]
S e nTEetZ S Kyenr < oo

We remark that as is evident from the proceeding proof, (7) implies not only
almost everywhere convergence in (8) and (9), but it implies complete conver-
gence as well. .

We now extend the results of Theorem 2 to the case where E exp(7|X,|%) < oo
for all # > 0 with @ > 1. One may expect that in this case,

lim, ., (logn)=v« 3* ¢, , X, =0 a.e.

However in order that the above limiting behavior holds, one has to narrow
down the choice of the weighting sequence (c,). In Theorem 7, we shall show
that if X, X,, ... are i.i.d. bounded random variables with EX, = 0 and
EX? =1, then for any y € (4, 1),

limsup,_., (logn)=* 33"_,j77X,_;,, >0 a.e.
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In the following theorem, we therefore restrict ourselves to weighting sequences
(c,) satisfying ¢, = O(n~*) with § = a/(a + 1).

THEOREM 3. Let X,, X,, - - - be i.i.d. random variables such that EX, = 0. For
a > 1, the following statements are equivalent:

(10) Eexp(fX|) < oo V>0
(11) lim,_,, (log n)"V*X, = 0 a.e.
(12) lim,_, (log n)™v= ¥%_,¢,_. X, =0 a.e. for some (or equivalently for

every) nonvoid sequence of real numbers (c,, n = 0) such that ¢, = O(n~ #), where
B = al(a + 1).

LemMA 4. Let X,, X,, - - - be independent random variables such that EX, = 0
and |X,| < ¢ for all n. Let (a,) be a nonvoid sequence of real numbers satisfying
Sral=A< oo, andlet Z = 37 a,X,. Then for any { >0,

P[Z = (e] < exp(=CH(4A4)7) -

Proor. For all t >0 and n > 1, Eet*» < exp(t’%’) (See [2]). Therefore
P[Z = Le] < e"*Eet? < exp{—C{te + %’ A}. Setting t = {(2¢4)™, we obtain the
desired inequality.

Proor oF THEOREM 3. We shall only show that (10) implies (12). Suppose
that (10) holds and that (c,, n = 0) is any sequence of real numbers such that
¢, = O(n=*) where § = af(a + 1). Let X;*, X;*, ... be i.i.d. and independent
of (X,, X,, - --) and have the same distribution as X,. Let X;* = X, — X;*. By
Lemma 3, it follows that

(log n)™"% 3%y co X, =40 0 iff  (log m)™* Tiiu X! =00 0.

zlntl

Therefore without loss of generality, we shall assume that X; is symmetric. Let
p=028 == (a+ Df(a = 1), r = (a(a + 1)), and choose 4 > 1 such
that forn=1,2, ...,
12 wle,| + (Sl )
Given 0 < ¢ < 1, put £ = 32/ and let E exp(#|X;|*) = ef. Take p e (0, 1) such
that €0 < 1 and 22% < 28 — 1. Put n’ = [(p log n)"], "’ = [p log n] and set
X;V = X Inx jigpeton 5im1
X;® = Xilx > pecrog /)
X0 = X'I[ﬂs(log5)7’<ng|$06(103:')1/“]
(13) V, = (log n)=« Z” Cite; X,
T,* = (log n)="* 3225 ¢; X”’ ;
T,» = (log n)~v« Z: -1, c.X‘”) ;
(3) — (log n)—l/a Zn’ 1 C X(3)
U,® = (logn)== 372 ¢, X . .
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By Holder inequality,

D17 ¢l = (B el ) Tt X < 2 3y |

and therefore

Il

Pl[Val > €] = P[| 51" ¢;1X,|* > e log n]

n'’ a te
P|:t 21X > 5 logn]
exp(—3 log m)E exp(r 331" |X;|*)
= exp(—3logn + én"y < n2,

IA

I\

Hence }; P[|V,| > V%] < oo and so

(14) limsup, ., |[V,| < /% a.e.

Since for j=1, - - -, n, X; are independent, EX,;® = 0 and (logn)~"|X,®|/p < e,

it follows from Lemma 4 that for any n > n,,

PIT,® =z 2¢] = P[(log n)™/=+7(log n)™7 330 (c;0)(Xi2;/0) Z 2]

< oxXp{— (X ¢0%(l0g n)¥atiry1)
=< exp{—2(log n)*#-1*¥a=2} = p-2

Hence }; P[T, = 2¢] < oo and therefore

(15) limsup, . T," < 2 a.e.

Now (10) implies (11), and so we have

(16) lim, 7, =0 a.e.

Since 10 < 1, X;® < pe(log j)¥* and |c;| < 2j-#, therefore T,® > ¢ implies that
there are at least (n”")? nonzero X® jforj=n",....n" — 1. Choose K > 1 such
that K¥+®pf > 2 and take 6 > (K/pe)/"*®. Letting n, = (n"")?, we have for
all large n

(17) PIT,® z ¢] = GPLIX)| > (pelog (n — n')) ]}
= GUPIOLX,| > (K log m)/ D))
= (ip)lexp{—(K log n)“*V}E exp (0]X,|")]"#
Since n’ ~ (o log 7)7~#n,, we have
(18)  log () = (" + })logn’ — (0 — n, + }) log (" — n,)
— (ny + %) log n, 4 O(1)

’

n n —n
+ n, log £
n — n, ng

+ 3(log n’ — log (n" — n,) — log n,) 4 O(1)
= (1 + o(1)) + ny(n — B)(log, n)(1 + o(1)) + O(log n’)
= (7 — B)(o log n)*(log, n)(1 + o(1))

= n'log
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where log, n denotes log log n. From (17) and (18), we have for all large n

P[T,® = ¢] = exp{(n — B)(p log n)(log, n)(1 + o(1))
— (Klog ny/a+(p log n)’(1 + o(1))}
< n?.

The last inequality above follows from the fact that 8 + (1 4+ @)* = 1 and
Kvatoel > 2. Therefore 3 P[T,® = ¢] < oo and so

(19) limsup, ., T,® < ¢ a.e.

Sinceforj=1,...,n, X;® are independent, EX;® = 0 and (logn)="*|X,;®|/p < ¢,
we obtain from Lemma 4 that

PIU,® = 2¢] = P[(log m)™* 2152w (¢;0)(XiL;/p) = 2¢]
< exp{— (T o) < 1t
Therefore Y, P[U,® = 2¢] < oo and so
(20) limsup,_, U,® < 2¢ a.e.
From (14), (15), (16), (19), (20), we have

limsup, ., (log n)™V* 375 ¢,; X, _; < /" 4 5¢  a.e.

n—3 =

Since ¢ is an arbitrary positive number, the above upper limit is < 0 a.e. Re-
placing X, by —X,, it is easy to see that (12) holds.

Let usnow consider the case where E exp(¢|X;|*) < co forall t > 0 witha < 1.
A modification of the proof of Theorem 3 gives the following theorem.

THEOREM 4. Let X, X,, - - be i.i.d. random variables such that EX, = 0. For
0 < a < 1, the following statements are equivalent:

(21) Eexp(tlXj|*y < o Vt>0
(22) lim,_,., (logn)=%*X, =0 a.e.

(23) lim,_,, (log n)=>* 337 , c,_, X, = 0 a.e. for some (or equivalently for every)

nonvoid sequence of real numbers (c,, n = 0) such that there exists v > % for which
¢, = O(n™).

Proor. To prove that (21) implies (23), we can again assume that X; is sym-
metric. Let (c,, n = 0) be a sequence of real numbers such that ¢, = O(n™*)
with§ < v < 1. Letp = (2v — 1)}, y = (1 — v)/a and choose 2 > 1 such that
A= n'lc, | foralln > 1. Given0 < e < 1, putt = 32/candlet Eexp(z|X|*) = .
Take p € (0, 1) such that (24* + §)o < 2v — 1. Put n’ = [(plogn)], n” =
[0 log n] and define X;, X,;*, X,®, V,, T,®, T,®, T,®, U,® by (13). We note
that since « < 1, we have

| 252, X" = D516, X" = 2 X551
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Therefore
PI[V,| > o] = P[|5" ¢ X, > ¢ log n]
< PiZr e > 2o

= em(——’f log n) Eexp(t 11" j~|X,]%)
< exp(—3 log n){E exp (1| X,|*)} where o = 7" j~
<exp(—3logn+ &1 j ™)< n?.

Furthermore, since 2v — 1 + 2/a — 2y > 1,
27 PIT, = 2¢] = 35 P[(log m)=«*1(log m)™" 33520 (¢;0)(X31,/0) = 2¢]
< Yy exp{—2(log n)»~ ¥} £ oo .
Choose K > 1 such that K*7p* > 2 and take & > (K/pe)*’. Letting n, = (n”)*,
we have for all large n
P[T,® z ¢] < G ){P[O1X]" > (K log m)*7]}™
< exp{(y — v)(p log n)*(log, n)(1 + o(1))
— (Klog ny"(p log n)(1 + o(1))}
< n?, since ay +v=1 and K%p* > 2.
The rest of the proof is similar to that of Theorem 3.

We shall use the following notations below. Let e,(x) = €°, e,(x) = ey (e”),
etc., and let log, x = log log x, log, x = log (log, x), etc. We shall also write
log, x = log x, log, x = e)(x) = 1 and e, = ¢,(1). Suppose Ee,(t|X,|*) < oo for
all + > 0 with kK = 2, « > 0. In order that the limiting relation

lim,_,, (log, n)~%* 3% ¢, , X, =0 a.e.
holds, we have to further narrow down the choice of the weighting sequence
(c,). In fact, in Section 3, it will be shown that if X}, X,, ... and i.i.d. coin-
tossing random variables, then for k = 2,3, ...,
lim sup, ... (10g, 7)™ X5ae,_, Xoumjia[J(1080)) - -+ (lOgip ) = 1 2ce.
THEOREM 5. Let X,, X,, - -+ be i.i.d. random variables such that EX, = 0. For

anya >0and k =1,2, ..., the followin(ér statements are equivalent:
(24) Ee (1] X)]) < 00 Vi >0
(25) lim,_,. (log, n)~**X, = 0 a.e.

(26) lim, ., (log, n)=*« 37_, c,_; X, = O a.e. for some (or equivalently for every)
nonvoid sequence of real numbers (c,, n = 0) such that 37_,|c,| < oo.
Proor. Suppose that (24) holds. To prove (26), given ¢ > 0, define
X = XjIUleée(logk Hi/a]

14
X = XJ'1[|X5l>5(108k.1')1/"] .
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Since (24) implies (25), we have
lim, _, (log, n)~"/* > X, =0 a.e.

i=1 n T

The desired conclusion is now obvious since
|Zz =1 Cn—s z,l = e(log n)l/a ?;0 |czl ‘
3. Some analogs of the law of the iterated logarithm. In this section, we
shall consider the fluctuation behavior of weighted sums of normal and coin-
tossing random variables. We first consider the normal case. Suppose X, X,, - - -
are i.i.d. N(0, 1) random variables. Then E exp(#|X]*) < (=) oo according as
t < (=) 4. The following theorem shows that in this case, in place of the usual
iterated logarithm (2nlog, n)? for sample sums, we have the single logarithm
(2 log n)? for the fluctuation behavior of weighted sums ;7 ;X

=1 n—z i

THEOREM 6. Let X}, X,, - - - bei.i.d. N(0, 1) random variables, and let (c,, n = 0)
be a nonvoid sequence of real numbers such that 3 7_,c,? = o® < co. Then

(27) limsup, ., (2logn)~t 37 ¢, X, =0 a.e.
Proor. Take any y > 2 and let b, = o(y log n)}. Then for n > 2,
P[ 1 n—zXz>b]<’I£exp(—£>
- b 2q°?

n

where K is a positive constant. Therefore ) 7, P[>7, ¢, ,X; = b,] < coand so
limsup, ., (2logn)~t 317 ¢c, X, <0 a.e.

To prove the reverse inequality, let 0 < d <1 and 1 <{ < (1 —{)*. For
k=1,2, ..., define n, = [k*],

Uk+1 Zz nk+1 cnk_H—zXz
Tpn= 20tk cnk+1—iXi .
Since U, ~ N(0, ¢,?) where

0 = Nikgm-17t e — a? as k— oo,

it follows that Y i, P[U, > {2(1 — )¢’ log n,}}] = co. But the U,’s are inde-
pendent, and so by the Borel-Cantelli lemma, P[U, > {2(1 —0d)o?logn,}ti.0.] = 1.
It then suffices to show

(28) lim,_., (logn,)"tT, =0 a.e.

This follows by an easy application of the Borel-Cantelli lemma, noting that T,
is normal with ET, = 0 and lim,_,, ET,2 = 0.
The fluctuation behavior (27) holds for all nonvoid sequences (c,) such that
Z ¢, < oo. In contrast to this, the corresponding behavior of weighted sums
_, ¢,_; X, of coin-tossing random variables and more generally, of bounded

random variables with 0 mean, depends on the particular weighting sequence (c,).

THEOREM 7. Let X}, X,, - - - bei.i.d. bounded random variables such that EX, = 0
and E|X,| + 0.
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(i) For any sequence (c,, n = 0) of real numbers such that Y, c¢,* < oo,
(29) lim, ., (logn)~t 3 ¢, X, =0.

(iiy Forany y e (%, 1), there exists K e (0, co) such that
(30) limsup,_,., (logn) = 317, j77X, ;.. = K, a.e.

LEMMA 5. Suppose that X,, X,, - - - arei.i.d. bounded symmetric random variables.
Let (a,) be a sequence of real numbers such that 3, a,* < co andlet Z, = " a, X,.
Then sup,,, Eexp(tZ,?) < oo for any t > 0.

Proor. When P[X, = 1] = P[X, = —1] = { (i.e., X, isa coin-tossing random
variable), the lemma has been proved by Zygmund ([17] page 214) using the
Khintchine inequality. In general, when the X,’s are i.i.d. symmetric random
variables with [ X;| < C, X, and T, X, have the same distribution, where ', T}, - - -
are i.i.d. coin-tossing random variables and are independent of (X}, X,, - -.).
Therefore by the Khintchine inequality, we have

E|Z|* = E|Z7 a, X, T,["* < EK"(Z7 a’X?) < KH(C* X al).
The rest of the proof is similar to that of Zygmund.

LemMA 6. Let X, X,, - - - be independent random variables. Suppose that there
exist { > 0 and T > O for which

(31) Eet*i < {exp({*f) Vte(—T,0) and j=1,2, ...
and that there exist a > 0 and p > 0 such that

(32) PlX;za]l=p for all sufficiently large j .
Then given any 7 € (3, 1), there exists K, such that 0 < K, < oo and (30) holds.

Proor. We can assume that p < 1. Given ¢ > 0, choose p > |log p|~* such
that

(33) eo’™T >3 and 2r — D)ep*r—t > 92
Now take any 7 € (0, [log p|~*) and let n’ = [p log n], n”” = [y logn]. Define
An = [Xn g a, Xn—l g a, -+, Xn—n”+1 g a]
B, =S¥ Xz a X3 — ]
For k > p™*, let n, = [2pk log k]. Then -
PAnk = p[vlcznk] > (2pk 10g k)—vllozm
Since y|logp| < 1, }} P4, = co. We note that
P Xy = —e]
= P2 (=17 X,y = k], where ¢ = (logn)r*
S e Eexp(— 2 X, 1)
S {exp{—te + 02 M., ), by (31), if n is large

—0 as n— oo .
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Therefore for all » sufficiently large,

(34) P[ZZ:’+1j_an—j+1 > —5] > %
Obviously, on the event 4,
(35) DX gz a DT

It then follows from (34) and (35) that PB, > 1{PA,, andso }; PB, = co. We
observe that B, , B, , , - - are independent for k = k,. Hence P[B,i.0.] =1
and
(36) lim sup,_. (log n)™=* 332, j77X,_; ., Z ap*7[(1 — 1) a.e.

Let ¢ = 3e~Y(log n)". Since ep’T > 3, it follows that zj~7 < T'if j > n’. Hence
using (31), we have

P[X% i) X jin = —e(logm)™7]

= P[ D% (=7 ) Xasjin Z ve(log n)™7]
< exp(—3log n)E exp(— X541 7 " Xujn)
< Cexp{—3logn + (** 3 n . j77}
< Cn 2.

Therefore by the Borel-Cantelli lemma

(37) liminf, ., (logn) = 3ir 77X, ;4.0 = —¢ a.e.

From (36) and (37), we obtain that with probability 1,

(38) lim sup, ., (log n)"~* 3%, j 77X, _;u Z a(l — )97 — e

By the zero-one law, the upper limit on the left-hand side of (38) must be equal
a.e. to a constant, say K, and (38) implies that co = K, = a(1 — )77 — ¢
for any ¢ > 0 and 5 ¢ (0, |log p|~*). Therefore K, > a(l — y)~*|log p|"™* > 0.

Proor oF THEOREM 7. To prove (i), we note that using Lemma 3 and sym-
metrization as in the proof of Theorem 3, we can without loss of generality
assume that X; is symmetric and we shall make such an assumption. For any
sequence (c,, n = 0) such that 3} ¢’ < oo, let Z, = 37, ¢, X, Given ¢ > 0,
choose ¢ such that te2 = a > 1. Then using Lemma 5, we have

T Pl 200 € X > e(log ’7')%] = Ju, P[Z}? > ¢logn]
é Z;o=l n—aE exp(thz)
< oo.

To prove (ii), let |X;,| < C. Then (31) holds with { = C (which we can assume
to be > 1). Also since E|X;| # 0, we can clioose @ > 0 such that P[X, = a] =
p > 0. Therefore Lemma 6 implies that K, > 0. It remains to show that K, < co.
Choose ¢ > 0 such that

(39) 2y — 1)er— > 9C2.



LIMITING BEHAVIOR OF WEIGHTED SUMS 821

Letting n = [5 log n], we have
PIEE 1) "Xy 2 (log np]

< exp{—t(logn)"T}Eexp(t Xim ., JTX;) where f = 3(log n)"
< exp{—3logn + C# 3%, j%}
< n?.

The last inequality above follows from (39). Therefore using the Borel-Cantelli
lemma, we obtain

(40) limsup, ., (logn)=* 30, 77X, _;,, <1 a.e.
Furthermore, it is easy to see that
(41) |55 Xyl = €(1 = 7)7(0 log n)'=7(1 + o(1))

Therefore it follow from (40) and (41) that K, < co.
Suppose X;, X,, - - - arei.i.d. coin-tossing random variables, i.e., P[X; = 1] =
P[X, = —1] = 1. Then it is well known ([4] page 210) that
limsup, ., N, log2/logn =1 a.e.
where N, denotes the length of the success run beginning at the nth trial. From
this it follows that for k = 2,3, ...,

lim sup, ., (log, n)™* 21528 X, _;,./j(10g,)) - - - (log,—j) =1 a.e.
Using Lemma 4, it can be proved that
lim sup, ... (10g, n)™* 2 %-r10g w41 Xa—js1/j(1080)) - - - (1084 j) = 0 a.e.
Therefore we obtain
(42) lim sup, ., (log, n)™ 3%, _, Xa—jsa/j(1080)) - - - (10g_5j) = 1 a.e.
If instead of the weighting sequence j(log, j) - - - (log,_, j), we use the weighting
sequence j(log, j) - - - (log,_, j), then the corresponding weighted sum of i.i.d.

random variables with Ee,(|X,| log [X;|) < co and EX; = 0 will, with probability
1, be of smaller order than log, n, as we shall show in the theorem below,

THEOREM 8. Supposek € (2,3, ---}anda = 1. Let X,, X,, - - - bei.i.d. random
variables such that EX, = 0 and Ee,(t|X,|* log* |X}|) < oo for all t > 0. Let (c,,
n = 0) be a sequence of real numbers such that

lim sup, ., |¢,|n(log n) - - - (log,_, n)(log, n)?*~» < oo for some B> lja.
Then
lim,_,, (log, n)=v* 3", ¢, ., X, =0 a.e.
Proor. Choose 1 > 0 such that for n > e,
le,ln(log r) - - - (log,., n)(log, m*= < 2.
Let n’ = [log n], and let

- 1 a—1
Ta = (Z"ge" n(log n) - - - (log,_, n)(log, n)ﬂ/“>
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Without loss of generality, we shall assume that X, is symmetric. Given ¢ > 0,
define for n = e,,
X0 = XnI[[X,,,;ge(logkn/logkﬂn)l/“]
Xn(Z) = XnI[[Xn[>e(logkn/logk.Hn)l/“]
Xn, = an{Iangs(logkn)l/“]
X, = an{an|>s(logkn)1/“] .
It is easy to see that with probability 1,
(43) lim sup, ., (log, n)="*| 317 , ¢, X ;| < Ze, if a=1
=0, if a>1.
Using Holder inequality in the case @ > 1, we obtain that
|212ek chm;,l < Za |X(2)J|a'
where d;7* = j(logj) - - - (log,_, j)- Lettmg o, = 2%, d;, it then follows that.
P[lZJZek c.’l X(z)al > el/a(log n)l/a]
(44) é [Zaﬂ ZJZek JIX(z) |a > € logk n]
e
= Pl:e,H( Do, 41 X024 ) > e, <e log, n)]
T,

a~“n

3 Zek 3

é [ ZJsz ]ek—l(th(z)Jla) > ek 1 <71'

t’:)a log, n)] .

The last inequality in (44) follows from Jensen’s inequality, since e,_, is a convex
function. Set et = 24*m,log, ., n. Then e, ,((stA~*/7,w,)log, n) = 2logn for
n > n,. Furthermore, if e, < j < n’, then

HXP | = [XP |27 ,e7  log, ., n < 0| X2 ;| logt | X2 4

for n > n, = n,, where 0 = 4ai*r,e~'. Hence it follows from (44) that for n = n,,

Pl X%, ¢ X025 > e/o(log, n)¥]

é l: Z]Zek 7ek—l(alX(2)y|a IOg IX(z)Jl) > 210g n]
< n?E exp{ngek a)n“ldj ek_1(5]X‘2’ J| log ]X(z’ J])}
=n’? ?/gek {Ee,(3]X;|* log* | X;[)}en "

I

n~2Ee (0| X;|* log* |X;]) .
Hence 3}, P[|37%., ¢; X2, > ¢/*(log, n)V*] < oo and therefore

(45) lim sup,_,., (log, n)~"*| X752, ¢; X2, < /% a.e.
Since lim,_,, (log, n)"V*X, = 0 a.e., it follows that

(46) lim, ., (log, n)=¥= 3»=0 ., ¢; X, ;=0 a.e.
Using Lemma 4, it can be proved that

47) lim sup,_,., (log, n)~"*| 3320 11 ¢; X, ;| < 26 a.e.

The desired conclusion then follows from (43), (45), (46) and (47).
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4. Extension to double arrays of weights. The following theorem is an ex-
tension of a theorem of [2] concerning double arrays of weights.

THEOREM 9. Let X,, X,, - - be i.i.d. random variables such that 'EXl = 0. For
1 £ a <2, E|X,|* < oo if and only if for every array a,, of real numbers such that
lim sup,_.. 2.7 a2, < oo, we have
(48) lim,_ v Y% _a,,X, =0 a.e.

ProoF. Suppose E|X|* < oo and a,, is a double array of real numbers such
that limsup, ., 4, = 4 < co, where 4, = > 1a2,. For ¢ >0, choose M =
M(e) > 1 such that E|X|*/; x5y < ¢* and define

X, = XkI[IXkléM] - EX1][|X1|§M]
X =X, ][le|>M] - EXII[[X1|>M]
T, =n7V" 3l au X,/

T, = nV 3 1a,X" .

By the strong law of large numbers,

1T = n {28 an X} < n (2T @) (XF X))

= ntA4," T X

< APE|X|%(1 + o(1)) < 294°%(1 + o(1)) a.e.
Therefore
(49) limsup,_. |T,”| < 24% a.e.

From Lemma 4,

P[T, = 4] < exp(_z% n2/a> .

n

Therefore 3} P[T,” = 4¢] < oo and so
(50) limsup,_., T,’ < 4¢ a.e.
From (49) and (50), we obtain
lim sup, ., 7V 317, a,, X, < (4 + 24Y)e  a.e.

Replacing X, by — X, we obtain (48) since ¢ is arbitrary. To prove the converse,
leta,, = Ofor k = nand a,, = 1. Then (48) implies that lim,_., n~"/*X,, = O a.e.
and so E|Xj|* < oo.

Theorems 2 and 5 also can be easily extended to double arrays of weights.
We state the results below.

THEOREM 10. Let X, X,, - - . bei.i.d. random variables such that EX, = 0. Then
Ee'"™1 < oo for all t > 0 if and only if for every array a,, of real numbers such that
lim sup, ., > 1 a2, < oo, we have

(51) lim,_, >%_,a,X,/logn =0 a.e.

THEOREM 11. Let X}, X,, - .- bei.i.d. random variables such that EX, = 0. For
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a>0andk =1,2, ..., Ee(t|X;|*) < oo for all t > 0 if and only if for every
array a,, of real numbers such that lim sup,_,, >1%_, |@,,| < oo, we have

(52) lim,_., (log, n)~V* 3% ,a,, X, =0 a.e.
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