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A WEAK CONVERGENCE THEOREM FOR
GAUSSIAN SEQUENCES

By CHANDRAKANT M. DEo
University of California, Davis

In this note a weak convergence result in the Skorohod space Da, b]
for a sequence of stochastic processes generated by the sample extrema of
a stationary Gaussian sequence is obtained.

1. Introduction and main theorem. Let {X,: 1 < n < oo} be a stationary,
Gaussian sequence of random variables with E(X,) =0, E(X?) =1 and
E(X,X,,,) = r,. Inthis note we obtain a weak convergence result for a sequence
of stochastic processes related to the extreme order-statistics of X;, X, ---, X,.
Specifically, we consider the joint behavior of the maximum and the minimum
of X, X,, ---, X,. The results parallel those of R. E. Welsch in [5] and [6]
wherein he investigates the joint behavior of the maximum and the second
maximum.

Let 0 < a < b < < oco. Define the sequences a,, b, by a, = (2logn)~* and
b, = (2logn)* — %(2logn)~t(loglogn + log4r). We consider the stochastic
process {(m,(t), M, (t)): a < t < b} where

m,(f) = a,”{min (X}, Xy, -, X)) + 6,
and

M, (1) = a,7{max (X, Xy, - -+, Xpan)) — b}
[+]being the greatest integer function. If [nf] < 1 then write m,(f) = a,” (X, + b,)
and M, (t) = a,”%(X, — b,). Let D[a, b] be the Skorohod space of right-continuous
functions on [a, 5] having left-limits and let D*[a, b] = D[a, b] x DJ[a, b]. Clearly
the stochastic process {(m,(t), M,(f)): a < t < b} has sample paths in D[a, b].

Let A(x) be the type III extreme-value distribution function A(x) = exp(—e~*)
and let {M(r): a < t < b} denote the “extremal process” corresponding to A.
Such processes are described in Dwass (1964) and in Lamperti (1964). {M(1)}
is a Markov process whose sample paths are right-continuous, non-decreasing,
step-functions (and hence in D[a, b]) and for which

(i) PM(t) £ x} = Al(x), —c0o < x < o0,a <t < b,

(ify PIM(s + t) < y|M(s) = x} = A'(y)if y > x; =0if y < xwitha < s <
s+t <6,

Let {m(f): a < t < b} denote a stochastic process which is independent of {M(1)}
and has the distribution of {—M(f): a < ¢t < b}. Then the two-dimensional

stochastic process {(m(f), M(t)): a < t < b} can be regarded as a randomni element
in D[a, b].
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The object of this note is to show that if {X,} satisfies one of the mixing con-
ditions introduced by Berman (1964) viz. either

(i) r,logn—0or

@iy X r2<oo
then the sequence of stochastic processes {(m, (1), M,(f)): a <t < b} converges
weakly, in D’[a, 8], to the stochastic process {(m(z), M(t)): a < t < b}.

THEOREM. Leteitherr,logn—0or Y r,* < co. Then the sequence of stochastic
processes{(m, (1), M, (1)) : a < t < b} converges weakly in the Skorohod space D¥[a, b]
to {(m(1), M(1)): a < 1 < B}.

2. Proof. The proof is broken up into the following lemmas. Lemma 1 is
probably well known.

Lemma 1. If {X,) are i.i.d. standard normal variables then the random variables
M, (1) and m,(1) are asymptotically independent with limiting distribution functions
A(x) and 1 — A(—x) respectively.

ProoF. Let x, y be fixed real numbers. Note that a,x — b, is eventually less
than a,y + b,. For such n, then, P{m,(1) > x, M,(1) < y} has logarithm equal
tonlog P(a,y + b, > X, > a,x — b,}. Nownlog P(a,y + b, > X, > a,x—>b,}
isasymptotically equalto —n[1 — Pfa,y + b, > X, > a,x — b,}]. But —n[1 —
P{an}’ + bn > Xl >a,x — bn}] = _nP{Xl > a,y + bn} - nP{Xl <a,x — bn}
And —nP{X, > a,y + b,} > log A(y) and —nP{X, < a,x — b,} — log A(—x).
Thus the probability P{m,(1) > x, M,(1) < y} - A(—x)A(y) and the proof of
the lemma is complete.

LEMMA 2. Under conditions of Lemma 1 the finite dimensional distributions of the
process {(m,(1), M, (1)) : a < t < b} converge to those of {(m(t), M(1)): a < t < b}.

Proor. Leta < t, < 1, < b. Fix real numbers x, < x, and ¥ < ). We have,

P{m,(t) > xi, m,(t) > x5 M (1) < yi, M, (1) < o}

(2.1) = Pla,x, — b, < X;<a,y, + b, for 1 <j<[nt] and
anx2 - bn < Xj < an.y2 + bn for [ntl] + 1 é,] é [nt2]}
(2.2) =Pla,x, — b, < X;<a,y +b;1 =)< [n1])

X Pla,x, — b, < X;<a,y,+ b,; [l +1</< [nt,]}.

Now proceeding as in Lemma 1 it is easy to see that the first factor in (2.2) con-
verges to A"i(y,)A"(—x,) and the second factor converges to At yo)Ali(—x,).
Thus the probability in (2.2) converges to Ab(y) At Al(—x) A= —x,).
This verifies the assertion of the lemma for two-dimensional distributions. The
convergence of the higher-dimensional distributions can be similarly verified.
The proof of the lemma is complete.

LEMMA 3. Suppose now that {X,} isa stationary, Gaussian sequence with E(X,)=0,
E(X?) = 1 and E(X,X,,,) = r, and suppose further that either r, logn — 0 or
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21 1.' < oo. Then the finite dimensional distributions of {(m, (1), M(1)): a < t < b}
converge to those of {(m(t), M(t)): a < t < b}.

Proor. The proof is based on inequality (4.5) of Berman (1971). Again we
restrict ourselves to two-dimensional distributions. The proof for higher-dimen-
sional distributions is exactly the same. Let x, < x, and » < y, be real numbers
and let a <, < 1, < b. Denote by A, the difference in the probabilities of the
event {m,(1,) > x;, m,(t;) > x,;; M,(t,) < y,, M,(,) < y,} computed under the hy-
potheses of Lemma 2 and Lemma 3 respectively. We want to estimate A, using
the inequality (4.5) in [2]. Toward this end let o(u, v; 1) be the standard bivariate
normal density with marginal means zero, variance one, and correlation coef-
ficient 2 i.e.

o N A1—1 w — 2Auv + v?
o(u, v; ) = [2n(1 — )] exp{———h—z(l e }

Let us write u;, = a,x, — b,,i=1,2; and v, = a,y, + b,,i = 1,2. Leta be
any one of the four numbers u,, u,, v,, v, and let {3 also be any one of these four
numbers. It is easy to see that

a* =2logn — loglogn + 0,(1),
(2.3) B =2logn — loglogn + 0,(1), and
|[4af| < |2|(2 logn — loglogn) + 0,(1), —l<agl.
Under either of the two conditions 7, logn — 0 or 3 r,? < oo it follows that
r,— 0. By stationary, then, sup, |r,| = é < 1. Using (2.3) it is easy to see that
2.4 o(a, f; 2) < Kn=>a+1) Jog n forall 2] <4,
where K is a constant independent of n and 1.
Now, by the inequality (4.5) of [2],
A, < Yigistug-1 ((nt] — J) §54' {o(vy, vy; 2)

(2.5) + 20(vy 15 2) + @(uy, w3 )} da

+ Ztasistago ([(M6] = J) §59' {@(vy, 033 2) + 20(v,, 1, 2)

+ @(uy, uy; A)} dA .

Using (2.4) and (2.5) we get
(2.6) A, = 4K Xigjstar- ([n0] — j)n=>/+ri0(log ) .

One can now imitate the proof of Theorem 3.1 of Berman (1964) to show
that the right side of (2.6) goes to zero if, either r,logn— 0 or 3 r,? < co.
This completes the proof of Lemma 3.

Now to complete the proof of the main theorem we need only show that both
sequences of stochastic processes {M,(f): a < t < b} and {m,():a <t < b} are
tight in the Skorohod space D[a, 4] under either of the two conditions r, logn—0
or 3 r,’ < oo. Thetightness of {M,(7)} isshown by Welsch in [6]. The tightness

of {m,(1)} follows from that of {M, (1)} since in distribution, {m,(1)} is equivalent
to {—M,(n}. This completes the proof of the main theorem.,
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