A WEAK CONVERGENCE THEOREM FOR GAUSSIAN SEQUENCES

BY CHANDRAKANT M. DEO

University of California, Davis

In this note a weak convergence result in the Skorohod space $D^2[a, b]$ for a sequence of stochastic processes generated by the sample extrema of a stationary Gaussian sequence is obtained.

1. Introduction and main theorem. Let $\{X_n: 1 \le n < \infty\}$ be a stationary, Gaussian sequence of random variables with $E(X_1) = 0$, $E(X_1^2) = 1$ and $E(X_1X_{n+1}) = r_n$. In this note we obtain a weak convergence result for a sequence of stochastic processes related to the extreme order-statistics of X_1, X_2, \dots, X_n . Specifically, we consider the joint behavior of the maximum and the minimum of X_1, X_2, \dots, X_n . The results parallel those of R. E. Welsch in [5] and [6] wherein he investigates the joint behavior of the maximum and the second maximum.

Let $0 < a < b < \infty$. Define the sequences a_n , b_n by $a_n = (2 \log n)^{-\frac{1}{2}}$ and $b_n = (2 \log n)^{\frac{1}{2}} - \frac{1}{2}(2 \log n)^{-\frac{1}{2}}(\log \log n + \log 4\pi)$. We consider the stochastic process $\{(m_n(t), M_n(t)) : a \le t \le b\}$ where

$$m_n(t) = a_n^{-1} \{ \min (X_1, X_2, \dots, X_{[nt]}) + b_n \}$$

and

$$M_n(t) = a_n^{-1} \{ \max(X_1, X_2, \dots, X_{[nt]}) - b_n \},$$

[•] being the greatest integer function. If [nt] < 1 then write $m_n(t) = a_n^{-1}(X_1 + b_n)$ and $M_n(t) = a_n^{-1}(X_1 - b_n)$. Let D[a, b] be the Skorohod space of right-continuous functions on [a, b] having left-limits and let $D^2[a, b] = D[a, b] \times D[a, b]$. Clearly the stochastic process $\{(m_n(t), M_n(t)) : a \le t \le b\}$ has sample paths in $D^2[a, b]$.

Let $\Lambda(x)$ be the type III extreme-value distribution function $\Lambda(x) = \exp(-e^{-x})$ and let $\{M(t): a \le t \le b\}$ denote the "extremal process" corresponding to Λ . Such processes are described in Dwass (1964) and in Lamperti (1964). $\{M(t)\}$ is a Markov process whose sample paths are right-continuous, non-decreasing, step-functions (and hence in D[a, b]) and for which

- (i) $P\{M(t) \le x\} = \Lambda^t(x), -\infty < x < \infty, a \le t \le b.$
- (ii) $P\{M(s+t) \le y \mid M(s) = x\} = \Lambda^t(y)$ if y > x; = 0 if $y \le x$ with $a \le s \le s+t \le b$.

Let $\{m(t): a \le t \le b\}$ denote a stochastic process which is independent of $\{M(t)\}$ and has the distribution of $\{-M(t): a \le t \le b\}$. Then the two-dimensional stochastic process $\{(m(t), M(t)): a \le t \le b\}$ can be regarded as a random element in $D^2[a, b]$.

Received April 27, 1972; revised February 14, 1973.

AMS 1970 subject classifications. Primary 60G15; Secondary 60F15.

Key words and phrases. Weak convergence, Gaussian sequences.

The object of this note is to show that if $\{X_n\}$ satisfies one of the mixing conditions introduced by Berman (1964) viz. either

- (i) $r_n \log n \rightarrow 0$ or
- (ii) $\sum_{n} r_n^2 < \infty$

then the sequence of stochastic processes $\{(m_n(t), M_n(t)) : a \le t \le b\}$ converges weakly, in $D^2[a, b]$, to the stochastic process $\{(m(t), M(t)) : a \le t \le b\}$.

THEOREM. Let either $r_n \log n \to 0$ or $\sum r_n^2 < \infty$. Then the sequence of stochastic processes $\{(m_n(t), M_n(t)) : a \le t \le b\}$ converges weakly in the Skorohod space $D^2[a, b]$ to $\{(m(t), M(t)) : a \le t \le b\}$.

2. Proof. The proof is broken up into the following lemmas. Lemma 1 is probably well known.

Lemma 1. If $\{X_n\}$ are i.i.d. standard normal variables then the random variables $M_n(1)$ and $m_n(1)$ are asymptotically independent with limiting distribution functions $\Lambda(x)$ and $1 - \Lambda(-x)$ respectively.

PROOF. Let x,y be fixed real numbers. Note that a_nx-b_n is eventually less than a_ny+b_n . For such n, then, $P\{m_n(1)>x,M_n(1)< y\}$ has logarithm equal to $n\log P(a_ny+b_n>X_1>a_nx-b_n\}$. Now $n\log P(a_ny+b_n>X_1>a_nx-b_n\}$ is asymptotically equal to $-n[1-P\{a_ny+b_n>X_1>a_nx-b_n\}]$. But $-n[1-P\{a_ny+b_n>X_1>a_nx-b_n\}]=-nP\{X_1>a_ny+b_n\}-nP\{X_1< a_nx-b_n\}$. And $-nP\{X_1>a_ny+b_n\}-\log \Lambda(y)$ and $-nP\{X_1< a_nx-b_n\}-\log \Lambda(-x)$. Thus the probability $P\{m_n(1)>x,M_n(1)< y\}-\Lambda(-x)\Lambda(y)$ and the proof of the lemma is complete.

LEMMA 2. Under conditions of Lemma 1 the finite dimensional distributions of the process $\{(m_n(t), M_n(t)) : a \leq t \leq b\}$ converge to those of $\{(m(t), M(t)) : a \leq t \leq b\}$.

PROOF. Let $a \le t_1 \le t_2 \le b$. Fix real numbers $x_2 < x_1$ and $y_1 < y_2$. We have,

$$P\{m_{n}(t_{1}) > x_{1}, m_{n}(t_{2}) > x_{2}; M_{n}(t_{1}) < y_{1}, M_{n}(t_{2}) < y_{2}\}$$

$$= P\{a_{n}x_{1} - b_{n} < X_{j} < a_{n}y_{1} + b_{n} \text{ for } 1 \leq j \leq [nt_{1}] \text{ and}$$

$$a_{n}x_{2} - b_{n} < X_{j} < a_{n}y_{2} + b_{n} \text{ for } [nt_{1}] + 1 \leq j \leq [nt_{2}]\}$$

$$= P\{a_{n}x_{1} - b_{n} < X_{j} < a_{n}y_{1} + b_{n}; 1 \leq j \leq [nt_{1}]\}$$

$$\times P\{a_{n}x_{2} - b_{n} < X_{j} < a_{n}y_{2} + b_{n}; [nt_{1}] + 1 \leq j \leq [nt_{2}]\}.$$

Now proceeding as in Lemma 1 it is easy to see that the first factor in (2.2) converges to $\Lambda^{t_1}(y_1)\Lambda^{t_1}(-x_1)$ and the second factor converges to $\Lambda^{t_2-t_1}(y_2)\Lambda^{t_2-t_1}(-x_2)$. Thus the probability in (2.2) converges to $\Lambda^{t_1}(y_1)\Lambda^{t_2-t_1}(y_2)\Lambda^{t_1}(-x_1)\Lambda^{t_2-t_1}(-x_2)$. This verifies the assertion of the lemma for two-dimensional distributions. The convergence of the higher-dimensional distributions can be similarly verified. The proof of the lemma is complete.

LEMMA 3. Suppose now that $\{X_n\}$ is a stationary, Gaussian sequence with $E(X_1) = 0$, $E(X_1^2) = 1$ and $E(X_1 X_{n+1}) = r_n$ and suppose further that either $r_n \log n \to 0$ or

 $\sum r_n^2 < \infty$. Then the finite dimensional distributions of $\{(m_n(t), M_n(t)) : a \le t \le b\}$ converge to those of $\{(m(t), M(t)) : a \le t \le b\}$.

PROOF. The proof is based on inequality (4.5) of Berman (1971). Again we restrict ourselves to two-dimensional distributions. The proof for higher-dimensional distributions is exactly the same. Let $x_2 < x_1$ and $y_1 < y_2$ be real numbers and let $a \le t_1 < t_2 \le b$. Denote by Δ_n the difference in the probabilities of the event $\{m_n(t_1) > x_1, m_n(t_2) > x_2; M_n(t_1) < y_1, M_n(t_2) < y_2\}$ computed under the hypotheses of Lemma 2 and Lemma 3 respectively. We want to estimate Δ_n using the inequality (4.5) in [2]. Toward this end let $\varphi(u, v; \lambda)$ be the standard bivariate normal density with marginal means zero, variance one, and correlation coefficient λ i.e.

$$\varphi(u, v; \lambda) = [2\pi(1-\lambda^2)^{\frac{1}{2}}]^{-1} \exp\left\{-\frac{u^2-2\lambda uv+v^2}{2(1-\lambda^2)}\right\}.$$

Let us write $u_i = a_n x_i - b_n$, i = 1, 2; and $v_i = a_n y_i + b_n$, i = 1, 2. Let α be any one of the four numbers u_1 , u_2 , v_1 , v_2 and let β also be any one of these four numbers. It is easy to see that

(2.3)
$$\alpha^2 = 2 \log n - \log \log n + O_n(1),$$

$$\beta^2 = 2 \log n - \log \log n + O_n(1), \qquad \text{and}$$

$$|\lambda \alpha \beta| \le |\lambda| (2 \log n - \log \log n) + O_n(1), \qquad -1 < \lambda < 1.$$

Under either of the two conditions $r_n \log n \to 0$ or $\sum r_n^2 < \infty$ it follows that $r_n \to 0$. By stationary, then, $\sup_n |r_n| = \delta < 1$. Using (2.3) it is easy to see that

(2.4)
$$\varphi(\alpha, \beta; \lambda) \leq K n^{-2/(1+|\lambda|)} \log n \quad \text{for all} \quad |\lambda| \leq \delta,$$

where K is a constant independent of n and λ .

Now, by the inequality (4.5) of [2],

(2.5)
$$\Delta_{n} \leq \sum_{1 \leq j \leq \lfloor nt_{1} \rfloor - 1} (\lfloor nt_{2} \rfloor - j) \int_{0}^{|r_{j}|} \{\varphi(v_{1}, v_{1}; \lambda) + 2\varphi(v_{1}, u_{1}; \lambda) + \varphi(u_{1}, u_{1}; \lambda)\} d\lambda + \sum_{\lfloor nt_{1} \rfloor \leq j \leq \lfloor nt_{2} \rfloor - 1} (\lfloor nt_{2} \rfloor - j) \int_{0}^{|r_{j}|} \{\varphi(v_{2}, v_{2}; \lambda) + 2\varphi(v_{2}, u_{2}; \lambda) + \varphi(u_{2}, u_{2}; \lambda)\} d\lambda.$$

Using (2.4) and (2.5) we get

(2.6)
$$\Delta_n \le 4K \sum_{1 \le j \le \lfloor nb \rfloor - 1} (\lfloor nb \rfloor - j) n^{-2/(1 + |r_j|)} (\log n).$$

One can now imitate the proof of Theorem 3.1 of Berman (1964) to show that the right side of (2.6) goes to zero if, either $r_n \log n \to 0$ or $\sum r_n^2 < \infty$. This completes the proof of Lemma 3.

Now to complete the proof of the main theorem we need only show that both sequences of stochastic processes $\{M_n(t): a \leq t \leq b\}$ and $\{m_n(t): a \leq t \leq b\}$ are tight in the Skorohod space D[a, b] under either of the two conditions $r_n \log n \to 0$ or $\sum r_n^2 < \infty$. The tightness of $\{M_n(t)\}$ is shown by Welsch in [6]. The tightness of $\{m_n(t)\}$ follows from that of $\{M_n(t)\}$ since in distribution, $\{m_n(t)\}$ is equivalent to $\{-M_n(t)\}$. This completes the proof of the main theorem.

Acknowledgment. I wish to thank Professor R. E. Welsch of the Massachusetts Institute of Technology for communicating his results in [6] to me.

REFERENCES

- [1] Berman, S. M. (1964). Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist. 35 502-516.
- [2] Berman, S. M. (1971). Asymptotic independence of the numbers of high and low level crossings of stationary Gaussian processes. Ann. Math. Statist. 42 927-946.
- [3] Dwass, M. (1964). Extrema processes. Ann. Math. Statist. 35 1718-1725.
- [4] LAMPERTI, J. (1964). On extreme order statistics. Ann. Math. Statist. 35 1726-1737.
- [5] Welsch, R. E. (1971a). A weak convergence theorem for order statistics from strong-mixing processes. *Ann. Math. Statist.* 42 1637-1646.
- [6] Welsch, R. E. (1971b). A convergence theorem for extreme values from Gaussian sequences. Working Paper, Alfred P. Sloan School of Management, Massachusetts Institute of Technology.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA DAVIS, CALIFORNIA 95616