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A METHOD FOR COMPUTING THE ASYMPTOTIC
LIMIT OF A CLASS OF EXPECTED FIRST
PASSAGE TIMES!

By WALTER A. ROSENKRANTZ

University of Massachusetts at Amherst

The precise asymptotic behavior of certain expected first passage times
plays an important role in C. Stone’s theory of weak convergence of
Markov processes. For a special class of random walks studied by Harris
(1952), Lamperti (1962) and Karlin-McGregor (1959) we present a new
method, using a maximum principle for a linear second order difference
operator, that yields these asymptotic estimates. As a corollary we obtain
an alternative proof of Lamperti’s (1962) invariance principle.

1. Introduction. In his thesis “Limit theorems for birth and death processes
and diffusion processes” C. Stone (1961) derived a set of necessary and sufficient
conditions for the weak convergence of a sequence of one dimensional Markov
processes X, (¢) to a limiting diffusion process X(¢). The results to be presented
in this paper arose out of the author’s attempt to apply the general theory of
Stone to a class of random walks that has been extensively studied by T. E.
Harris (1952) and J. Lamperti (1962). As we shall see in a moment the method
of Stone requires that one be able to compute the precise asymptotic behavior
of a sequence of expected first passage times based on the processes X, (7). A
consequence of our work would be an alternate derivation of Lamperti’s invari-
ance principle based on the general theory of Stone.

2. The method of C. Stone—a brief sketch. We shall suppose that the state
space of the process X(#) is an interval 7 with left and right hand end points
denoted by r, and r, respectively. We define the first passage times z(x,, x,) and
7(x,) via the formulas

T(xy, X,) = inf {#: X(f) = x, or X(©) £ x}} if x; < X(00) £ x,
(2.1 t(x,) = inf {r: X(1) = x}} if X(0) < x,
t(x;) = inf {r: X(f) < x} if x < X(0).

Replacing the Markov process X(7) in the above definition by the processes
X, (f) produces a sequence of first passage times 7,(x,, x,), 7,(X;) whose asymp-
totic behavior plays a crucial role in the general theory of Stone. As is well
known the functions M(x, x;, x,) = E(7(x,, x;)) and p(x, x,, x;) = P,(v(X;, x;) <
+ oo and X(z(x,, x,)) = x,) are of major importance in the modern theory of
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1036 WALTER A. ROSENKRANTZ

diffusion processes. The functions M,(x, x,, x,) and p,(x, x,, x;) are defined in

exactly the same way replacing the X(¢) process in the definition by X, (7).
With these preliminary definitions out of the way we can now give a brief

sketch of part of the main theorem of Stone (Theorem 3.1 on page 19 of [11]).

THEOREM. The sequence of Markov processes X, (t) is weakly convergent to X(t) if

(2.2)  for every compact subinterval I' C I

(a) lim,_, p,(x, x5, X;) = p(x, X, X;)
(b) lim,_ . M, (x, x,, x,) = M(x, x,, x,), uniformly for xe I,

with other conditions to be imposed depending on the nature of the boundaries r, and r,.

In the special case to be studied in this paper r, will be a natural boundary
(so no boundary condition can be imposed) and r, will either be an entrance or
a regular boundary in which case Stone’s boundary conditions for convergence
are

(2.3) lim,_, E, (v,(x)) = E, (7(x)) for every x > r;.

The main contribution of this paper is to give a new method for evaluating
the limit (2.3). The method will be illustrated by the following specific example,
other applications will undoubtedly occur to the interested reader.

Let X(0), X(1), - --, X(n), denote the successive positions of a particle per-
forming a random walk on the nonnegative integers /* = {0,1,2, ---, n, ---}
with transition probabilities given by

pli) = P(X(n + 1) = i + 1] X(n) = i) = ¥(1 + (7/i))

q() = P(X(n + 1) =1 — 1| X(n) = i) = (1 — (7/))) = 1 — p())
where 0 <y <land0+#i=1,2,.... At0 we have the “reflecting barrier
condition” p(0) = +1. These random walks are a special case of a more general
class of random walks studied by Harris (1952), Lamperti (1962) and Brezis,
Rosenkrantz and Singer (1971b). The Markov processes X, () to which we shall
apply the general theory of Stone are defined by the equation X, (r) = X([nt])/n?
where [f] denoted the integer part of . Using another method, Lamperti has
established an invariance priniple for the sequence of Markov processes X,(t);
that is to say he has demonstrated the weak convergence of the sequence X, (¢)
to X(f) where X(f) is a time homogeneous Markov process with state space
R* = [0, o) and with infinitesimal generator G given by Gf(x) = 1f"(x) +
(r/¥)f'(x), 0 < x < +oco. In the language of the analytic theory of semi-groups
we have U(x, t) = E, f(X(¢)) = T(t)f(x) satisfies the singular parabolic partial
differentiable equation

2.4 U _ 12U, 1 U _

L= -4+ " = Gu, x=0
ot 2 ox x 0x -
with initial condition U(x, 0) = f(x) and boundary condition dU(0, r)/ox = 0

for all ¢ = 0.
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The precise conditions on f for which there exists a unique solution to (2.4)
is that fe domain of the infinitesimal generator G, denoted by D(G)—a char-
acterization of which has been given in Brezis, Rosenkrantz and Singer (1971a).

It is to be observed that O is a regular or entrance boundary according as
0 <7 < }tory = %and that oo is a natural boundary. Herer, = Oand r, = .

In Part 4 it will be shown using a suitable martingale that E(z(x)) =
x*/(2r + 1) and therefore we must prove that lim,_, Ey(z,(x)) = x*/2r + 1).

Let 7/(a) denote the first passage time of the Markov chain {X(n), X(0) = 0}
to the integer a. Clearly r,(x) = ¢/([xn}])/n and it therefore is sufficient to
establish the following exact asymptotic estimate

a2
2y + 1
Exact formulas for these expected first passage terms have been given by T. E.
Harris, op. cit., but it is very doubtful that they can be exploited to obtain
(2.5). We shall proceed by another road.

Let a denote a fixed positive integer and set D, (i) = E,(7'(a)) where 0 < i < a.
In Feller’s terminology D,(i) is called the expected duration of the game with a
reflecting boundary at the origin and an absorbing boundary at a (cf. Feller
(1968) 1). It is easily checked that D,(i) satisfies the following inhomogeneous
difference equation

(2.6) PO+ 1) + gDy — 1) = D) = —1, 1<i<a—1

with the boundary conditions D,(0) = D,(1) 4 1, D,(a) = 0.
We denote this difference operator by Gi.e.

Gf) = p()f(i 4 1) + qf i = 1) — f)), 1<i<a—1.

It is to be observed that if the function f has an interior maximum at j i.e.
iy < f(j) foralli,0 <i<a,1 <j<a— 1,then Gf(j) < 0, hence if f satisfies
the difference inequality Gf(i) > 0, 1 < i < a — 1, then f cannot have an interior
maximum or in other words max {f(i), 0 < i £ a} = max {f(0), f(a)}. Similarly
if Gf(i) < 0, then f cannot have an interior minimum.

Consider the functions W(i) and Z(i) defined by the formulas

(2.5) Ey(7'(a)) ~ as atl 4+oo.

a — 2

W(i)=2+1 0<i<a
7

N 2r o
20 = <’iﬁ;’1> @=9

An elementary calculation yields
GW(i)y= —1, I<i<a-—1
W(a) =0, w(0) = w(l) + 1/(2r + 1), thus

W(i) satisfies the same inhomogeneous difference equation but with a slightly
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different boundary condition at 0. Another calculation shows that
GZ(i) <0, 1 <i<a—1 and that
Z(a) =10, Z0) = Z(1) +27/2r + 1).

Let V(i) = D,(iy — (W(i) + Z(i)). Since G is a linear operator we get that
GV(i) > 0 for 1 <i <a — 1and hence the maximum of V(i) is taken on at 0
orata. Now at 0 we have that D,(0) = D (1) + 1, W(0) = W(1) + 1/2y + 1 and
Z(0) = Z(1) + 2r/2r + 1 and this implies that ¥(0) = ¥(1). If max,,., V(i) =
V(0) = V(1) then it would follow that ¥ would have an interior maximum at
i =1 and so G¥(1) £ 0, this contradicts the fact that G¥(1) > 0. Therefore
max,., ., V(i) = V(a) = 0, so V(i) £ 0 and therefore D, (i) < W(i) + Z(i). In
particular D,(0) < @*/(2y + 1) + 27/(2r + 1)a. Therefore lim sup,_., D,(0)/a* <
1@y + 1).

To obtain the inequality in the opposite direction we proceed in exactly the
same way except that we use a minimum principle.

Let U(i) = D,(i) — (W(i) — Z(i)). Then GU(i) = GZ(i) < 0,1 <i<a — 1,
hence U(i) = min (U(0), U(a)). But U(0) = U(1) + 47/(2r + 1)i.e. U0) = U(1)
and this implies that min,_,., U(/) = U(a) = 0. Thus D,(i) = W(i) — Z(i) for
0 </ < a, and in particular lim inf,_, D,(0)/a> = 1/(2y 4+ 1). The proof is now
complete.

Actually the asymptotic estimate (2.5) holds for a much wider class of random
walks including the “ultra spherical” random walks of Karlin and McGregor,
see [8]. For example suppose p(i) satisfies the less restrictive condition p(i) =
1 —q(@) = 1/2(1 + y/i + O(@i™*)) as i — + oo and p(i) — ¢g(i) > 0 for all i + 0.

As before we assume p(0) = +1. Then the asymptotic estimate D,(0) ~
a@[(2r + 1) as a — + oo still holds.

Proor. Let G denote the difference operator corresponding to the random
walk whose transition probabilities satisfies the less restrictive growth condition
pi) = 1/2(1 + 7/i + O(i7?)) as i > +oo. Let Z(i) = C(a — i), where C > 0 is
to be determined later. The calculations are in the same spirit as before and so
we merely sketch the details. One checks easily enough that

, 1 2i . ;
GW(i) = EET R R { (P() —q(®) .
From our hypotheses on the asymptotic behavior of p(i) we get p(i) — ¢(i) =
(r/i)(1 + O(i™Y)) and therefore GW(i) = — 14 O(i~*). Moreover GZ(i) = C(p(i) —
g(0) = —C/i)(1 + 0™) < 0. Let V(i) = D(i) — (W(i) + Z(). GV(i) =
—~GZ(i) + 0(i™) = +C(r[i)(1 + O(Y) 4 O(i~Y) = +Cy/i + O(~*) > 0 provid-
ed C is large enough and i > k, where k is some sufficiently large positive integer
depending only on the O(i™!) term. Asfor 1 <i < k — 1 we have

2
2y + 1

) (p@) — q(i) > 0
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for1 <i < k — 1 provided C s sufficiently large and positive. Hence GV{(i) > 0
for 1 £i<a— 1, where C was chosen independently of a. Our maximum
principle now yields max,,., V(i) = max (¥(0), V(a). But ' V0) = m(1) +
27/(2y 4+ 1) — C and therefore when C > 2y/(2r + 1) we have V(1) > ¥(0), so
max,g,., V(i) = V(a) = 0. Thus D,(i) < a*/2y + 1) + Ca, from which we con-
clude as before lim sup, .., (27 + 1)a~*D,(0) < 1. The inequality in the opposite
direction is proved in exactly the same way using a minimum principle applied
to the function U(i) = D (i) — (W(i) — Z(i)) and noting that U(0) = U(1) +
2r/(2r + 1) 4+ C or U(1) < U(0) and hence min,,., U(i) = U(a) = 0.

3. Uniform convergence of p,, M, to p and M on compact subintervals of
(0, o). We denote the state space of the process X,(f) by I, = {j-n~t:j=0,
1,2, ...} and define the function e,(x): [0, o) — I, via the formula e (x) =
[xnt]/nt = sup{ael,:a < x}. If x, < x<x, are all points in 7, then
Pa(Xy X5, X1), M, (x, X, x,) are defined as in Section 2. If not then we extend the
domains of these functions to all of (0, co) by setting

(31) Pn(x’ Xgs xl) = pn(en(x)’ en(XZ)’ en(xl))
M, (x, x;, X,) = M, (e,(x), e,(x,), e,(xz)) -

From the continuity properties of M and p one easily concludes the uniform
convergence for x € [x,, x,], as n tends to infinity, of p(e,(x), x,, x,) to p(x, x,, x;)
and M(e,(x), x,, x,) to M(x, x,, x,), since lim,_,, e,(x) = x. In order, therefore,
to conclude the uniform convergence of p,, M, to p and M respectively it suf-
fices to prove that

limn—'w Ipn(x’ Xg» xl) - p(en(x)’ Xa» xl)l =0 ’
lim, o, [M(x, x;, x;) — M(e,(x), X;, x,)| = 0

uniformly for x e I, n [x, x,].

To simplify the notation set g(x) = p(x, x,, x;), h(x) = M(x, x;, x,), 9,(x) =
Pa(Xs X, X;) and A, (x) = M, (x, x,,X,). Our proof of the uniform convergence of
g, and %, to g and % respectively uses the fact that g, and #, satisfy difference
equations which are approximations to the differential equations satisfied by g
and 4. Using standard techniques of numerical analysis, in particular we es-
tablish a suitable “‘a priori estimate” for the difference operator G, defined at
(3.6), the uniform convergence is readily established.

The differential equations satisfied by g and 4 are

(3.2) Gg(x) =0, X < x < X,

gx) =0,  g(x) = +1,
and
Gh(x) = —1, x, < x < X
h(x,) = h(x,) =0, where G is the differential
operator defined at (2.4).
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Similarly the difference equations satisfied by g, and #, are

(3.4) G,9.(x) =0 xel, N (x, %),
gu(x) =0, ga(x) = +1, ’
(3.5) Gh(x) = —1, xel, N (x, x,)
ha(x)) = hy(x;) = 0
where
(6 Gufe) =n E{f(%)1 5 = x} - fi9)]

= n[f(x + n=Hp([xnt]) + flx — n~Hq([xnt]) — f(x)],

and p(i) = 3(1 + (7/i) + o(i™") as i — + co.
We are now ready to state the main result of this section.

THEOREM. lim, . g,(x) = g(x), lim,_., &, (x) = h(x) uniformly for xel, N
[x1, x,] and hence conditions a and b of (2.2) are satisfied.

The proof depends on two additional facts, one of which we present in the
form of a

LEMMA. Let G, ¢(x) = ¢(x), xe I, N (x,, X;) and set A = max (|$(x,)], |¢(x5)])-
Then

3.7 [[¢]] £ A 4 K||¢|| where ||¢]| = MAX, 1 a(a),2p |P(X)| and similarly [l¢]] =
MaX, . o(a,2, [P(X)]. K is a constant depending only on x, and x, and is independent

of ¢ and ¢.

REMARK. Estimates of the type just given are very important in the modern
theory of partial differential equations and are referred to as “a priori estimates.”
A useful reference here is Hellwig (1964) especially pages 95-96.

We postpone the proof of the lemma to the end of this section in order to
avoid interrupting our immediate task which is to establish the theorem. To
this end we observe that the solutions to the differential equation (3.2) and (3.3)
are smooth in the sense that g e C®[x,, x,] and ke C?¥[x,, x,] where C™[a, b]
denotes the class of continuous functions with continuous derivatives up to
and including order n on the closed interval [a, ]. This can be established
directly or as a consequence of the results in Brezis, ez al., (1971a). In addition
it was shown, see Brezis et al., (1971b), using a three term Taylor expansion
that for fe C®[x,, x,].

(3.8) Gf(x) — G, f(x) = O(|| f@|| - n~%) uniformly for xe/Z, n (x,, x,)
where /@(x) denotes the ith derivative of f and || || = sup, <., |/ "(%)|.

A more precise version of (3.8) is
(3.9) lim, ., |II,Gf(x) — G, 11, f(x)] = 0 uniformly for xe (x;, x,)

where TI, f(x) = fle,(x)).
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In particular then we have
(3.10) lim,_., [II,Gg(x) — G,1I,g(x)) = 0  uniformly for xe (x,, x,) and
(3.11) lim, ., |IT,Gh(x) — G,IL,A(x)] = 0 uniformly for xe (x,, X;) .

Given ¢ > 0 pick N(¢) so that for n = N(e), I, Gg(x) — G, 10, g(x)| < ¢- K,
x € (x}, ). Now I, Gg(x) = 0 = G,g,(x), xe I, N (x,, x,) from which it is easily
concluded that |G, (II,g(x) — ¢,(x))| < ¢ - K~*, noting that G, is a linear opera-
tor. We now apply (3.7) of our lemma with ¢(x) = II, g(x) — g,(x) and ¢(x) =
G,(I1,9(x) — g,(x)) and obtain the estimate |II, g(x) — g,(x)| < ¢ because ||@|| <
¢+ K and 4 = 0 since ¢(x,) = ¢(x,) = 0. But this is equivalent to the as-
sertion of the uniform convergence of g, to g on 7, N [x,, x,]. The uniform
convergence of k, to & is established the same way. One first observes that
I,Gh(x) = —1 = G, h,(x) and thus lim,_, |G, A,(x) — G, I A(x)| = O uniformly
xel, N (x,x). Set ¢(x)= I AKXx)— h(x) and ¢ = G, (II,h — h,), apply
estimate (3.7) once again, noting that ¢(x,) = ¢(x,) = 0, and get as before
[IL, A(x) — h,(x)| < e, xe I, N [x, x,]. This establishes the theorem except for
the lemma to the proof of which we now turn.

LEMMA. Assume 0 < a < x < b and a, x, b are all points of the grid I,. Let
f(x) denote a function satisfying the difference inequality G, f(x) = 0, x e (a, b) n I,
and f(a) < 0, f(b) < 0. Then f(x) < 0, provided n is sufficiently large.

Proor. Let W(x) = x* — ¢* where ¢ is a constant satisfying the inequality
¢ > b. We observe that W(a) < 0, W(b) < 0 and from the definition of G,
given at (3.6) we conclude lim, ., G, W(x) = (27 + 1) uniformly on compact
subsets of the interior of (0, o). In the calculation it is assumed that p(i) =
21 + (/i) + o(i™)) as i — oo and ¢(i) = (1 — (r/i) -+ 0(i™)) as i — 4 oo.

We now choose ¢ > 0 but otherwise arbitrary and note that G, ( f(x) 4+ W (x)) =
¢ > 0, provided n is large enough, and that f(a) + ¢W(a) < 0, f(b) + ¢ W(b) < 0.
We claim that f{x) ++ ¢W(x) < 0 otherwise it would have a nonnegative interior
maximum-—but this is impossible. Hence f(x) = —eW(x) foralle > 0. Letting
¢ — 0 yields the result f{x) < 0 and completes the proof of the lemma. A simi-
lar argument yields the

CoroLLARY. Witha, x, b asin the previous lemma let f(x) denote a function satis-
fying the difference inequality G, f(x) < 0, flay = 0, f(b) = 0. Then, provided n is
sufficiently large, f(x) = 0, xe I, n [a, b].

We now apply this result to the proof (3.7).

Let u(x) = a(b® — x*), where « satisfies the condition a(y 4 1) > 1. Then
Gu(x) = —a(y + ¥) < —1 and u(x) = 0 on [a, b].

Moreover because u(x)ec’la, b] we have by a previous remark that
lim,_., G, 11, u(x) = Gu(x) < —1, uniformly for xe/, n (a, b). Applying the
operator G, to the function IT(¢(x) + 4 + u(x)||4|) yields G, T1(¢(x) + A +
u()]|9])) < $(x) — lIg]| < 0. Tn addition ¢(a) + A + u(@)||g|| = 0, ¢(b) + A +
u(b)||¢|| = 0 and therefore by the previous lemma we deduce the estimate
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d(x) = — (A + u(x)||4]]). A similar argument using ¢(x) — (4 4 u(x)||$||) pro-
duces the inequality ¢(x) < 4 + u(x)||¢||. Now sup,.,, #(x) = b* — a* and
therefore ||¢]| < A4 + (b* — @*)||¢]|. This completes the proof of (3.7) with
K= xzz — xﬁ.

4. A martingale method with an application to the computation of some ex-
pected first passage times. In this section of the paper we show that

(4.1) E(z(x)) = ¥/(2r + 1),

where z(x) denotes the first passage time of the Markov process X(f) discussed
in Section 2. We use the well known and easily verified fact that the stochastic
process

(42) Z(t, w) = f(X(t, W) — §4 GACX(u, w)) du

is a martingale relative to the sigma fields .7 () = % {X(u, w): 0 < u < t} pro-
vided f belongs to the domain of the strong infinitesimal generator G. We begin
by establishing a more general result of which (4.1) is a particular consequence.
Suppose then that X(z, w) is an arbitrary one dimensional strong Markov pro-
cess with continuous paths and state space / = (r,, r,) on which it is regular in
the sense of Dynkin (1965) page 125. In addition suppose that r, is either a
regular reflecting boundary or an extrance boundary. Under either of these
hypotheses it follows that the integral §! (m(s) — m(r;)) dp(s) is finite for all
b, r, < b < r, where p(s), m(s) denote the scale and speed measures respectively
of the process X(z, w). Let 7(y) denote the first time that the process X(z, w)
hits the point y where r, < a < y.

THEOREM. Let r, be either a regular reflecting boundary or an entrance boundary
of the process X(t, w). Then

(4.3) Ey(z(3)) = Vi (m(s) — m(ry)) dp(s) -

Before proving this result let us derive (4.1) as a consequence. An easy com-
putation yields that m(s) = s***7/(y + %), dp(s) = s dsand so m(0) = 0. Hence
Ey(z(y)) = (§¢ sds)/(y + %) = »*/2r + 1). To prove (4.3) we put G into the
Feller form: Gf(x) = D, D,*f(x) (we refer the reader to Mandl (1968) for a
particularly nice account of the Feller theory of generalized second order
differential operators). Let f(x) = §%(m(s) — m(r;))dp(s) and note that
D, D,*f(x) = —1, D,*f(r,) = 0, f(b) = 0—the reflecting and absorbing barrier
conditions at r, and b respectively. So fis in the domain of D,,D,*, where the
domain is characterized by the two boundary conditions just noted. By formula
(4.2) we get f(x()) + t is a martingale. If X(0) = a then E,(f(x(?)) + 1) = f(a)
for all # > 0 and in particular for the stopping time z(y) where a <y < b we
obtain, using Doob’s optional stopping theorem, that E,(f(X(z(y))) + 7(y)) =
f(a) for E,(z(y)) = f(a) — f(y) since X(z(y)) = y. A routine computation shows

that f(a) — f(y) = {1 (m(s) — m(ry)) dp(s). [I
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It is to be observed that the martingale method used here goes back to Doob
(1955). Our computations are simpler however because we have the Feller form
of the infinitesimal generator at our disposal. The use of the Feller form of the
generator G together with the martingale methods of Doob allow us to compute
expected first passage times of arbitrary one dimensional continuous strong
Markov processes satisfying various conditions at the boundary and without
the use of cumbersome LaPlace transform techniques. For the more traditional
approach the reader is advised to read Feller (1966) 2.
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