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ERGODIC BEHAVIOR FOR NONNEGATIVE KERNELS

By RICHARD W. MADSEN AND PATRICIA S. CONN’

University of Missouri, Columbia and Purdue University, Fort Wayne

Ergodic behavior for Markov chains can be determined by studying the
properties of the corresponding sequence of stochastic transition kernels.
Dobrushin’s ergodic coefficient has been useful for this purpose. In this
paper we define pointwise strongly and weakly ergodic behavior for se-
quences of nonnegative kernels and use Dobrushin’s ergodic coefficient to
give sufficient conditions for these two types of behavior. Applications are
given to sequential probability ratio tests.

0. Summary. Two types of ergodic behavior for non-homogeneous Markov
chains were considered by Paz [9] and Madsen [8]. In [8] the existence of
stochatic transition density kernels P,(x, y) was assumed and the ergodic behavior
was related to the ergodic coefficient defined by Dobrushin in [4]. In this paper
we define two types of ergodic behavior for the case where the kernels are not
stochastic, but only nonnegative. Further, by transforming nonnegative kernels
into stochastic ones, we can use Dobrushin’s ergodic coefficient to give sufficient
conditions for these two types of ergodic behavior to hold. (See Sections 3 and
4 below).

Conn in [2] defined two types of ergodic behavior for nonnegative kernels in
essentially the same way as in Definitions 1.1 and 1.2, but considered only kernels
uniformly bounded above and below by positive numbers. Blum and Reichaw
[1] generalized the use of the ergodic coefficient of Dobrushin to the case of
nonnegative kernels rather than stochastic kernels. They made use of the ergodic
coefficient to give conditions under which the sequence of superpositions of
kernels is Cauchy.

In Section 5, we give some other sufficient conditions for ergodic behavior
which may be easier to verify than those given in Sections 3 and 4. Section 6
gives applications of these results to ordinary and generalized sequential proba-
bility ratio tests.

1. Introduction. Throughout this paper we make various assumptions about
the kernels under consideration. Let (S, <, 1) be a o-finite measure space and
let {M,} be a sequence of nonnegative measurable kernels defined on § x S.
Assume that the kernels are sufficiently well behaved so that sequential super-
positions defined by

(1'1) Mm,m’f‘ﬂ(x’ y)
= SS e SS Mm(x’ Zl)Mm+l(zl’ 22) e Mm+n(zn’ _y)/‘[(dzl) v ‘U(dZﬂ)
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996 RICHARD W. MADSEN AND PATRICIA S. CONN

exist for all x and y € S. (For notational convenience, all integrals will be as-
sumed to be over the whole space S unless otherwise indicated.) We also assume
throughout that for nonnegative f e L,(x), 9,(y) = § fix)M,(x, y)p(dx) is integrable
for all n. Note that a sufficient condition for g, to be integrable is that there
exist a finite B, such that

M,(x, §) = § My(x, y)(dy) < B, .

Further, if M, is a stochastic kernel, the number 1 is such a bound. Finally we
assume that M, (x, S) > 0 for all n and all xe S.

A non-homogeneous Markov chain is determined by a sequence {P,(., )} of
stochastic transition kernels and an initial probability distribution over the state
space S. Assuming a density f, exists for this probability distribution, the density
function

Ja) = § furd() Pu(x, y)p(dx) = § fo(%) Py (%, y)(dX)

gives the probability density over S at time n.

Two basic types of ergodic behavior can be described in terms of the sequence
of functions {f,}. If the effect of the initial probability distribution is lost as
n — oo, the behavior is “weakly” ergodic. If, in addition, the sequence of func-
tions {f,} converges as n — co, the behavior is “strongly” ergodic. Various
authors (for example [2], [4], [5], [8], and [9]) define ergodic behavior in dif-
ferent ways. We will consider pointwise behavior in ways made explicit in
Definitions 1.1 and 1.2.

Let M, be a sequence of kernels and let f; be a nonnegative function satisfying

(1.2) 0 < § fi(0)u(dy) < oo .

Such functions f; will be called starting functions and the collection of all starting
functions will be denoted by .. For such functions we define, for m < n,

Srua(y) = § ful()M,, (x, y)r(dx)
SrnY) = faua DS fra(¥)ee(dy) -

For notational convenience we will let f, = f, .

and

DerFINITION 1.1. A sequence of nonnegative kernels {M,(x, y)} will be called
pointwise weakly ergodic (PWE) if for all m,
uniformly in y e S and f, g,€ & x "

DEFINITION 1.2. A sequence of nonnegative kernels {M,(x, y)} will be called

pointwise strongly ergodic (PSE) if there exists a function ¢(y) such that for all
m

|faaly) = 4()] =40
uniformly in y € S and f, € &
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REMARK. The conditions are required to hold for all m so that PWE or PSE
behavior does not come about because of the effect of one (or indeed a finite
number) of kernels in the sequence. However, the proofs given in subsequent
sections in no way depend on m, so without loss of generality we take m = 1.

2. Results for stochastic kernels. For stochastic kernels P(x, y), the ergodic
coefficient of Dobrushin [4] is defined as

a(P)y =1 —sup,, sc |4 [P(x, y) — P(z, y)lu(dy)|
or equivalently

a(P) =1 —sup, . § [P(x, y) — P(z, y)]"1(dy)
=1 —dsup..§|P(x, y) — P(z, y)|p(dy) -
For convenience we often consider 6(P) = 1 — a(P).

We now state as lemmas some known results concerning 6(P). For further
detail, the reader is referred to [4] or [9].

LemMaA 2.1. If P(x, y) is a stochastic kernel, then 0 < 6(P) < 1.

LeEMMA 2.2, If P and Q are stochastic kernels and if PQ denotes the superposition
of P and Q, then 6(PQ) < d(P)o(Q).

THEOREM 2.1. Let {P,} be a sequence of stochastic kernels such that for all n,
0< P, <A, < co. Then forany m < n,
supz Pm,n(x’ .y) - infx Pm,'n(x’ y) é Ana(Pm,n—-l) .

Proor. We have

[SUp, Prn(x, y) — inf, Py (, )]
= SUP, ;. {§ [P uca(Xs W) Po(8y y) — Pros(2, )Py, y)]pe(du)}
= Sup,, § {{Pmua(Xs #) — Poua(z, )]*
= [Pana(Xs #) = P sz, W)} P8, y)su(du)
sup,, {sup, Po(#, ) § [P n-s(X ¥) — Pr iz, #)]*pe(du)
— inf, Po(#, y) § [Pmacs(X5 ) — Pruna(2, 0)]7p(du)}
sup, Po(u, y) sUp,,; § [Prnnos(X, 4) — Proi(2, 4)]* 1(dut)
8,0(Pp i) - , g

CorOLLARY 2.1. If{P,}isa sequence of stochastic kernels satisfying0 < P, < A
and if for each n 6(P,) < 0, then for all m < n,

IA

<
<

sup, P, .(x,y) —inf, P, .(x,y) < Ao"™.
Proor. This follows from Lemma 2.2 and Theorem 2.1. []

Let P" denote the n-fold superposition of P with itself. The next corollary
shows that under certain conditions P"(x, y) converges, uniformly in x, to a
function g(y) which is a left eigenfunction of P(x, y) corresponding to the eigen-
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value 1. These results are not surprising in view of the well-known results in
the matrix case as in Doob [5] or Feller [6], for example.

REMARK. Theorem 2.1 and Corollary 2.1 describe pointwise ergadic behavior
for stochastic kernels and so are somewhat different than the results in [4] or [8]
which describe ergodic behavior in the L, sense.

COROLLARY 2.2. If P is a stochastic kernel satisfying0 < P < Aand 6(P) < 1,

and if sup, P¥(x, y) is an integrable function of y for some k, say k,, then there exists
a function q(y) such that

(@) |P*(x,y) — q(»)] =, 0 uniformly in x

(®) § g(x)P(x, y)p(dx) = 9(y)-

Proor. It follows from Corollary 2.1 that
2.1 sup, P*(x, y) — inf, P*(x, y) < Ad(P)"*.
which tends to zero as n — co.

Consider the sequence of functions {sup, P*(x, +)}. This is a non-increasing
sequence since

sup, P"*!(x, y) = sup, § P(x, z) P*(z, y)u(dz)

< sup, [sup, P*(z, y) § P(x, 2)u(d?)]

= sup, P(z,y) .
Hence for each y, {sup, P*(x, y)} is a non-increasing sequence which is bounded
below. Thus the pointwise limit, call it ¢, exists. Similarly, for each y,
{inf, P*(x, y)} is a non-decreasing sequence which is bounded above by the num-
ber ¢(y), hence its pointwise limit also exists. In fact, in view of (2.1) g(y) must
be the common limit.

Now (a) holds since

[P"(x, y) — q(y)| < sup, P"(x, y) — inf, P*(x, y) < Ao(P)"*.
To prove (b), consider for n > k,

P (x, y) = § Pr(x, 2)P(z, y)(dz)

and apply Lebesgue’s dominated convergence theorem. Then by (a) formula (b)
holds. [J

REMARK. If ;£(S) < oo, then the condition P(x, y) < A implies the integrability
of sup, P(x, y). Also, under the hypotheses of Corollary 2.2, it is possible to
show that a homogeneous Markov chain with transition kernel P(x, y) is strongly
ergodic in the sense defined in [8]. In view of this, it follows that g integrates
to 1.

3. Weak ergodicity. In Section 2 4 is assumed to be o-finite. We now assume
#(S) < oo. The following conditions are listed for convenient referencing in
what follows.
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CoNDITION 1.

(3.1) 0 M,(x,y) £A.

CONDITION 2.
(3.2a) M,(x,8)=v>0 for all x
(3.2b) M(S, ) =v>0. for all y

ConpitioN 3. For each kernel M, there is an eigenvalue 4, with corresponding
right and left eigenfunctions @, and ¢, satisfying

(3.3) 0<b< D)< B< oo

(3.4) 0<d=<g,()<D< oo
ConpITION 4. The sequence {P,} defined by

(3.5) P,(x, y) = M,(x, y)®,(7)/2,D,(x)

satisfies for some 4,

(3.6) i(P)=d<1.
ConpITION 5. The sequence {Q,} defined by

3.7) 0u(x,y) = LM (3> )/ 2,90(%)

satisfies for some 0,

(3.8) Q) =d< 1.

RemARK. It follows from Conn’s work [2] that if Condition 1 is replaced by
ConNbpITION 1%
(3.9) 0<A M <A <o

then all of Conditions 2 through 5 are satisfied. Harris [7] showed that for
primitive kernels the eigenvalue 2, described in Condition 3 is simple and that
both (3.3) and (3.4) are satisfied.

LemMma 3.1.
(a) (3.1) implies M,, ., < A**iu(S)"
(b) (3.1) and (3.2a) imply that for f, a starting function

(3.10) 0 < §fulx)u(dx) < oo and  f5(y) = fu(n)/§ fu()edx) = Afv
(c) (3.1), (3.2a), and (3.4) or (3.1), (3.2b), and (3.3) imply

(3.11) 0<v=E24, =48
(d) (3.1), (3.2a), and (3.4) imply
(3.12) Q,< AD/vd

(e) (3.1), (3.2a), (3.3), and (3.4) imply P, < ABJvb.
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Proor. (a) follows easily by induction. If we note that

(G.13) S Lmdy) = §§ fui(OMo(x, y)(dx)e(dy)

5 = § fuca(O)[§ Mo(x, y)p(dy)]p(dx) = v § f,_y(x)px(dx)
an

(3-14) [u) = S fura(M(x, y)p(dx) < A fooi(x)p2(dx)

then (b) and (c) can easily be proven.

Using (3.11), (d) and (e) also can be easily proven. []

A sequence of kernels satisfying (3.1), (3.2a), (3.3), (3.6) and either (3.2b)
or (3.4) is said to satisfy Condition W.

THEOREM 3.1. Let M, be a sequence of kernels satisfying Condition W. If
(3’15) S I(Dn(x) - (Dn+1(x)|lu(dx) a 0
then there exist a sequence of functions {q,}, independent of f;, such that
uniformly in x and f,.

LemMA 3.2. Under the conditions of Theorem 3.1, for all k,

S Mn+1,n+k(x’ y)(Dn+k(y) —

P ’ d nO
A(n, k)@, ,,(x) ni1 k(X5 V)| p(dX) —

where we write A(n, k) = T[22k, A,.

Proor. When k = 1 the result holds since by (3.5) the integrand is zero.
We proceed by induction. Assume the result is true for k and consider

Mn+l,n+k+l(x’ y)q)n+k+1(.y) —_—
An, k + 1@, 44 44(x)
— Mn+l.n+k(x’ Z) (D'n+k+1(z) — (Dn+k(z)
B s]s { A(n, k) [fbnfkil(x) <I>,,+k<x>}
Mn+l,n+k(x’ Z)q)n+k(z) .
ein 4| ot D0l Pyt )|} Pusea(z, yyu)
A"A*p(S) i§ ‘q)n+k+l(z) _®,..(2)
vk (D'n+k+l(x) (I)'n+k(x)

, M, 1% 2)@p(2)
+ gy Mgt

§

Pt mrra(Xs y)i w(dx)

w(d)

u(dz) ()

Pn+1,'n+k(x’ Z) [,l(dZ)ﬂ(dx) ’

where A’ = AB/vb.
Considering the first term of (3.17) and using the bounds of (3.3), it can be
shown that

(I)n+k+1(z) — (I)n+k(z)
Qpria(x)  Poya(x)

1 B
é ’17 I(Dn+k+1(z) - (I)”+k(2)| + Z? ](I)n”(x) - (I)»+k+1(x)| *
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Since the space is of finite measure, it follows from (3.15) that the first term
goes to zero. ,

In the second term of (3.17) the integrand is bounded independently of n.
Since ¢(S) < oo, the bounded convergence theorem and the induction hypothesis
imply that the second term goes to zero. []

LEMMA 3.3. Under the conditions of Theorem 3.1, given ¢ > 0, there exists a

sequence of functions {1,} such that for all n > N(e), | f,* — t,| < ¢, independently
of the choice of f;.

Proor. Define s5,*(y) = sup, P,,, ,,i(x, y). Since P, is bounded for all n by
A" and since 9(P,) < 0 < 1, Corollary 2.1 implies that given 7 > 0, if kK > N(7),
(3.18) 1:0) = Prsrwan(X )| < B0FH <
Define r,*(y) = 5,5(»)/®@,..(y) and R* = § r,*(y)u(dy). We will show that for
suitable k,, the appropriate sequence of functions {#,(y)} can be defined by

tn+k0(y) = rnko(y)/Rnko .

Let (D, f) = § O(x)f(x)u(dx). For any k,

« (y) — Soee(D) § fur(y)e(dy)
f’n+k(y) A(n, k)Rnk((D"_'_k, f")
fn*+k(y) an+k(y)/’l(dy) —t k(y)‘
A(n’ k)Rnk(q)n+k’ fn) "
< sup. f* 1 — § fass(¥)(dy)
S e )

fn+k(.y)
+ A(ﬂ, k)Rnk((Dn+k’ fn)

= sup, [5IS 4.5(0)dy)| + |4.5(p)|

Where Ank(y) = {fn+k(y)/A(n’ k)Rnk((Dn+k’ fn)} - tn+k(y)’ In VieW Of (3’10) and
since x(S) < oo, it suffices to show that |4,*(y)| can be made uniformly small
for some fixed k and n sufficiently large. We begin by finding lower bounds for
Rnk and (q)n+k’ fn*): .
R} = § [5:())/Pri(¥)](dy) = (1/B) § SUP, Pryynii(X, y)p(dy)
= (1/B) § Pyyysalior Yee(dy) = 1/B

where x, is any point in S.

(@ i) = § B, (X)pa(dx) = b fo*(x)pld) = 6.

[f(D) — L) £

+

- tn+k(y)

4] = | ANG) L@ £,)
A(n’ k)Rnk((Dn+k’ fn*) S fn(y)/‘l(dy) Rnk(q)n+k’ fn*)
< B Sure(D) — rEOND, ., foF
=0 IR0 s ey G S
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= § LMy 1 min(X5 y)p(dx) K\ . p
‘ A(n, k) § fu(3)e(dy) §Ef ) Pors(fa* () 4( X)‘

B
b
< % Sf,,*(x)‘ ) sn*(y)<I>"+k<")‘ #(dx)
B
b

A(n, k) D,.(y)

sup, f,*(x) § D, 1(x) {\Mn+l,n+k(x’ PNPuii(y) _ Prinea(%s y)l

q)n+k(y) A(n’ k)q)n+k(x)
+ |Pn+1,n+k(x’ y) - Snk(y)l}/j(dx)
S iA {S ‘Mn+l,n+k(x’ .y)q)n+k(.y)
T b A(n, k)@, ,4(x)
+ § 1Panars(®, ) = KD}

where the last inequality holds from (3.3) and (3.10). From (3.18) it is clear
that given y > 0, there exist a k, such that A’d*~x(S) < 7, hence
§ 1 Prss,nrig(Xs ¥) — 8:50(p)|p(dx) < A'6*07'pu(S) <7

Further, from Lemma 3.2, given k,, there is some N = N(k,, r) such that for
n = N(ky, 1),

S Mn+1.n+ko(x’ y)q)n+ko(y) _
A(n, k)@, 4(X)

— Prpr (X, }’)‘ p(dx)

Pt mirg(%: V)| p(dx) <7 .

Hence

(3.19) |4,k < 2B*Ay[b*v = c .

Since 7 can be chosen arbitrarily small and since (3.19) holds for all y, the proof

follows. [

Proor oF THEOREM 3.1. Let {¢;} be a sequence of numbers decreasing to zero.
From Lemma 3.3, there are (increasing) sequences {k,} and {N(k,, ¢;)} and a
sequence of functions {z,'} such that for n = N; = N(k;, ¢;),

lfn*-l-kj(y) - tit{lzkj(.y)l < ei *
By construction, the following sequence satisfies the conclusion of Theorem
3.1.

‘In()’)=l/ﬂ(s) n=1a2””,Nl+k1
= tn(j)(y) n= Nj+ kj + 1’ "',Nj+1+ kj+1aj: 1,2, ct e D

REMARK. It is clear that the existence of functions {q,} satisfying (3.16) is
equivalent to the condition in Definition 1.1.

Note that if the sequence of kernels under consideration is stochastic, then
®,(x) = 1is a positive bounded right eigenfunction for all n, hence (3.15) holds
trivially. Also § M, (x, y)u(dy) = 1 for all nimplies that (3.2a) s satisfied. Hence
to apply Theorem 3.1, only conditions (3.1) and (3.6) need be verified.

4. Strong ergodicity. We first prove some results relating to PWE behavior
and from these results we obtain sufficient conditions for PSE behavior.
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If m > n, the notation M,, , will mean the ‘“reverse order” superposition of
kernels, M,,, M, -+, M,. When positive left eigenfunctions exist for a non-

m—-1s °

negative kernel M, define
R(x, ) = $()M(x, y)[24(y) -

Thus, Q(x, y) = R(y, x), and
(41) Rm,n(x’ y) = Qn,m(y> X) *

A sequence of kernels satisfying (3.1), (3.2a), (3.4), and (3.8) is said to satisfy
Condition S.

Since ¢ is assumed to be bounded (condition (3.4)) it follows that it is integrable.
Hence, we can take ¢ to integrate to 1.

The following lemma is needed in proving Theorem 4.1.

LemMA 4.1. Let {M,} be a sequence of kernels satisfying Condition S.

(@) If {¢, — ¢,..} converges to zero in L,(yt) then so does

Mn+1,n+k( ) y)¢"n+k

gty i)
for every k and y.
(b) If
(4.2) $,5(X) = SUp, Quyinsa( Vs X)
then d -
s'nk(x) Z [WJ ;,[T.S‘_)

PRrooF. (a) is proved similarly to Lemma 3.2. To prove (b) use inequalities
(3.4) and (3.11) to get
Snk(x) = sup, S e S Qn+k()” Zk) e Q‘n+1(ZZ> x)/l(dzk) e ‘u(dza)
S M, (205 )) -+ - Moyii(X, 2,)
A(n, k)

O inlZe) L. Dua(X) dz,)) .- ul(d
X [m(y) ¢n+1(zz>] Pz o dz)

=sup,§ -

d k
P up, M X .
= < DA (S) > sup, n+1,n+k( s }’)

It therefore suffices to show that sup, M, ,..(x, y) = v*/u(S). But this follows

as a consequence of M, ., .. .(x, §) = v* which in turn follows from (3.2) and
Fubini’s theorem. []

THEOREM 4.1. Let {M,} be a sequence of kernels satisfying Condition S. If
§ |u(X) — @ pia()|p2(dx) —, 0, then | f *(x) — ¢, (x)| —, 0, uniformly in x and f, € .

Proor. Define 1, *(x) = 5,5(x)f,(x)/¢,.1(x) and T} = § 1, *(x)p(dx). Then
(4.3) | fo(X) — Dupa(x)]

® _ faE(x) § fruru(x)p(dx)
= | faa(x) A(n,rf)_’lij‘

fn+k(x) .
+ m ¢ﬂ+k(x) *
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Since ¢,,,(x) integrates to 1, it follows that (4.3) is

= sup, (IS A4:F()p(dx)] + [A4.4(x)]
where A,%(x) = f,,.(x)/A(n, k)T * — ¢, (x). It suffices to show that for some

ko, |A,%o(x)| will be less than some preassigned ¢ if n is sufficiently large. By (b)
of Lemma 4.1, we have

§ OO ) = Ls ooty 2[ 52T 5re =

Duin() D DAu(S) ) DuS)
Thus,
|An"(x)| — fn+k(x) an(}’)ﬂ(d}’) _ Tnk an()’)ﬂ(d)’)¢n+k(x)
Am, TS fu(yudy)  T,*S f.(p)dy)
Snk(}’)fn*()’) d - fn+k(x)
2 | s
» SO n®) g
(4.4) g 2O y)\
Ll £ OMoinmees ) i Gan(®)
s o [§ L nnllo ) i) — § 7200500 S22 @)
_ i g Lack() [ Mt i Ys )0 a(y) ok
= |3 170) %(y)[ YRR s,4(0) | )|

Using inequalities (3.4) and (3.10), it follows that (4.4) is

(4.5) < AD {S ‘ M iimei(Ys X)Pniny) _

= e, U7 K, By () He)

Rn+1,n+k(y’ X)

5 Rpnnna0s ¥) — KOt} -
It follows from (4.1) and (4.2) that the second term of (4.5) is

S IQn+k,n+1(x’ )’) - Supz Qn+k.n+l(x’ }’)Lu(d)’) *

Using the bound A’ = AD/vd from (3.12) and using Corollary 2.1, it follows
that given y > 0, there exists k, such that

[Quskgnsr(X5 ¥) — SUP, @y mir(X, Y)| = A70%7 7 /pe(S) -
Then for every x,

(4.6) § |Qn+k0,n+l(x’ y) — sup, Qn+k0'n+1(x’ »lpdy) < A'd*7p(S) <7 .
By Lemma 4.1, given k, and 7, there exists an N = N(k,, r) such that for
n>=N,
(4'7) S M’IL+1,'IL+k0(_y’ x)¢'n+k0(y) _
A, Ko)pari(X)
Combining (4.6) and (4.7), we have that for n = N(k, 1), |4,}k(x) <
(2AD/dc,v)y as was to be shown. Note that in this proof, k, and N(k, ¢) are
chosen independently of f; and x. []

Rn+l,n+k0(y’ x) #(dy) < T °
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CoRrOLLARY 4.1. Let {M,} be a sequence of kernels satisfying Condition S. If for

each x, |, (x) — ¢,1(X)] >, 0, then for every starting function So(x)s |fu¥(x) —
¢.(x)] —, 0 uniformly. ,

Proor. Follows from the bounded convergence theorem. []

THEOREM 4.2. Let {M,} be a sequence of kernels satisfying Condition S. If the
sequence of left eigenfunctions {¢,} converges uniformly to ¢, then {M,} is pointwise
strongly ergodic.

Proor. Using
1f2(x) = ()] = |fo*(x) — du(x)] + [dulx) — d(x)] ,
and Corollary 4.1, the proof is straight forward. []

REMARK. In view of Corollary 4.1, under Condition S,

(48) |¢n(x) - ¢n+l(x)| n 0 lmphes |fn*(x) - fn*+l(x)| —a 0.

Under some additional conditions, it is possible to show that the converse of
(4.8) holds.

A sequence of kernels satisfying Condition S and such that the eigenvalue 21,
(corresponding to eigenfunctions ¢,(x) and ®@,( y)) is simple and such that ®,(y) >
b > 0 is integrable is said to satisfy Condition S’.

Note that all the conditions for Condition S’ are satisfied for kernels which
satisfy (3.9). Further the conditions that 1, be simple and that @, (x) be integrable
are satisfied for primitive kernels according to Harris [7].

LemMmA 4.2. Let {M,} be a sequence of kernels satisfying Condition S’. For a
given starting function f,, define

On = § faeaD(@)/§ [o(p)2(dy) -
I §1£,5(9) = faD)i(dy) —, 0, then for all k,
1125 (p) — 0uF § X () MA(x, y)(dx)]| —, 0,

uniformly in y.

Proor. Using (3.13) and (3.14), it is easy to see that p, satisfies
(4.9) 1Ap(S) = o = 1)v.

Now proceed by induction. When k = 1

2 () = 0a § L5 ()M,(x, y)pe(dx)|

= |5 o S @) — 0§ LM (@)

= 0 A § 1) — £u¥(0)| m(dx)

= (B/) S 1f254(x) — fu¥ ()l (@) -
This last expression tends to zero by the hypothesis, further it gets small in-
dependently of the choice of y.
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Now assume the result holds for & and consider

0,51 § fuX ()M 43 (x, y)p(dx) — f.*(p)
= |on § 04 F()[§ MH(x, 2)M,(2, y)p(dz)](dx)
— 0a § [ZA(D)M (2, y) 1(d2)|
(4.10) = .8 [§ 0 ()M (x, 2)p(dx) — f,%(2)
+ fu*(2) — f34(2)IM, (2, y)px(dz)|

= 218 M D) — £, @)

+ §1f2%(2) — fisu(@)|m(dz)} -

By the induction hypothesis, the integrand of the first term of (4.10) goes to
zero uniformly in z. Since p(S) < oo, the first term goes to zero. The second
term of (4.10) goes to zero by the hypothesis of the lemma. []

The following lemma considers iterates of single kernel, i.e., the stationary
case.

LemMMA 4.3. Let M be a kernel which satisfies Condition S'. Then
M*(x, y) D, u_
M) — og(y)| < 2 v

where A’ = DA/dv and 0 < ¢ < 1.

Proor. Since @(x) is assumed integrable and ¢(x) is bounded, these functions
can be chosen in such a way that § ®(x)¢(x)u(dx) = 1. From (3.12), Q(x, y)
is bounded by A’ = DA/dv, and by assumption (3.8), 6(Q) = d < 1. Hence
Corollaries 2.1 and 2.2 can be applied, so we know that

(4.11) sup, Q%(x, y) — inf, Q¥(x, y) < A’*!

and that there exists g(y) = lim,_,, sup, Q*(x, y) = lim,_, inf, Q¥(x, y) which is
a left eigenfunction of Q(x, y) corresponding to the eigenvalue 1. In view of
our remark after Corollary 2.2, we know that ¢(y) integrates to 1.

Now ®(x) is a right eigenfunction corresponding to the simple eigenvalue 2,
and it is easy to show that g(x)/¢(x) is also a right eigenfunction for the same
eigenvalue. However, since 2 is simple, it must be that ®(x) = g(x)/¢(x), since
both g(x) and ®(x)¢(x) integrate to 1.

It is easy to see that Q%(y, x) = ¢(x)M*(x, y)/A*¢(y). Also from (4.11), we
know that |Q¥(y, x) — g(x)| < A’0*7?, hence

PN — 0pg(y| = SO MED) — ag(y)| < aor

*(y) gyl A
and so
M¥(x, y) _ DY) Arse—1 DA o,
e ) ‘I"">¢(y)|§¢—(x;“ < D2 g, 0



ERGODIC BEHAVIOR 1007

REMARK. Harris [7] proved a result similar to this one for primitive kernels.

THEOREM 4.3. Let {M,} be a sequence of kernels satisfying Condition S'. For a

given starting function fo, if § | £,*(y) — fa(y)|p(dy) =, O then | £,*(y) — du(¥)] =40,
uniformly in y.

PRroOF.
1200 = 20 = | 100) = e |l — 000
. _ 1 Ly
< sun, O = ) s ~ )

= sup, ¥ 4 D] + [4 D))
where 4,5()) = [£,*(D)/p. 4A®@,, 5] — $,(»)- It suffices to show that for ,
and n sufficiently large, |4,%(y)| can be made small.

LX) _ S fX)MHx, y)p(dx) l

kA‘ k l”k

1
4.12 Ak
@12) 40 S g |

o [SETMLC DAL g )0, (0174t |

The second term of (4.12) is less than or equal to
M,
(4.13) sup, £,%(9) §| ML) — 0, (3)0,(5)| et
From Lemma 4.3, we know that given r > 0, there is a k, such that for all n,

M"ZO(:Z, ») — 0.0, (x)‘ A’ ko~

Ay(S>
Hence (4.13) is less than or equal to 7.

Using the bounds in (4.9) for p,, the bounds for 4,, and Lemma 4.2 we know
that for k, fixed and y > 0 given, there exists an N = N(k,, 7) such that for
n>=N,

[fa*(0) — a0 § L ()M Fo(x, y)pe(dx)| < [vAp(S)]For

Hence
LA0) _ S LHOM, o, )
o,k ko A,%o
= s 0) = oS LMoyt = [ 2 <
Pn"04,"0 On

Using these inequalities with (4.12), we see that for n > N(k,, 1), |4,%(y)| <
2y/b. [0

CoROLLARY 4.2. Let {M,} be a sequence of kernels satisfying Condition S'. If
for some starting function fo, |f,*(y) — fF.(y) —. 0, then [P, (¥) — ¢pia(¥)| =4, 0.



1008 RICHARD W. MADSEN AND PATRICIA S. CONN

Proor. This follows from the bounded convergence theorem and the inequality
92(3) = s = 190(3) = f*()]
+ |f”*(}’) —fn*+1(y)| + |fn*+l(y) - ¢n+l(y)| * U

RemARk. The hypotheses of Corollary 4.2 require that for some starting func-
tion fy(x), | f.*(y) — f¥.(y)] —. 0. It follows from Corollary 4.2 and (4.8) that
if this condition does hold for one starting function, then it will hold for all
starting functions.

We can summarize the results of this section by noting that under Condition
S’, since u(S) < oo

[9a(¥) = ¢npa())| =, 0 ifand only if |f,*(y) — f¥:())]| —.0,

for all starting functions fy(x). Further, either condition implies |f,*(y) —
¢.(y)| — 0. Hence the sequence {f,*(y)} converges if and only if {¢,(y)} con-
verges, and {M,(x, y)} is PSE if and only if {¢,(y)} converges uniformly.

REMARK. When the kernels {M,} are stochastic, the right eigenfunction cor-
responding to 4 = 1 is ®,(x) = 1, which is bounded and integrable. Condition
(3.2) is also satisfied. Hence one need only check the remaining conditions of
S’ to apply the above results.

5. Convergence theorems for eigenfunctions. In general, it is not easy to find
the eigenfunctions of a kernel, making it difficult to verify the sufficient condi-
tions of Theorems 4.1 and 4.2.

In this section we give sufficient conditions for the uniform convergence to
zero of ¢, — ¢,,,, which may be easier to verify than the convergence itself.

A sequence of primitive kernels satisfying Condition S’ is said to satisfy
Condition C.

REMARKS. The condition that 0 < A; < M,(x, y) < A, < oo for all nimplies
Condition C. Also, Harris [7] has shown that for primitive kernels, the eigen-
values corresponding to positive bounded eigenfunctions is in fact the dominant
eigenvalue or dominant root.

THEOREM 5.1. Let {M,} be a sequence of kernels satisfying Condition C. If
§ Mo (x, y) = Mypi(x, y)|(dx) —., O uniformly in y, then |2, — 2,,,| —, 0.

Proor. This proof is based on a characterization of the dominant root of
primitive kernels given by Harris [7]. According to Harris, if

S, = {4’ > 0: there exists a bounded nonnegative function f(x) such
that § f(x)M,(x, y)p(dx) = 2,/f(y), with strict inequality for some y}

then 4, = sup 4,’ € S, is the dominant root.

Lete> O begiven. It suffices to show that for all n sufficiently large, (4,,, —¢) €
S, and (4, — ¢) € S,,,, since this implies |2, — 4,,,] < e. Choose 7 < ed. Then
for all n, e¢(y) = ed > r. It follows from the hypothesis that there exists an
N = N(y) such that for n = N(y), § [M,(x, y) — M, (x, y)|p(dx) < 7/D.
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Then

[§ Pnis(CYM(%, p)12(dx) — § Ppys(x)Myy1(x, y)pe(dx)|

< D§M,(x,y) — M, (x, y)lp(dx) < 1.
Hence

§ Puis()M(x, y)p(dx) Z § Pia(X)M,pi(x, y)p(dx) — 7
= Zat19a1() — 7 > (Ais — OP0ra()) -
Therefore (2,,, — ¢) € S,. A similar argument shows that (1, — ¢) € S,,,. [

LEMMA 5.1. Let {M,} be a sequence of kernels satisfying Condition C and such
that § |M,(x, y) — M, ,,(x, y)|u(dx) —, O uniformly in y. Then for all k,
§| Mt )) _ Mia(x,
'znk 2ﬁ+1
Proor. By induction. For notational convenience, define K,*(x,y) =
M ¥(x, y)/2,k. When k =1,

§ 1Ku(x, ) — Kppa(X, )| p(dx)

y)lﬂ(dX)wO-

G =g D g |Mebod)  Maslod) | )
'21: 'zn+l 2n+1 'zn+1
Api1 — A 1
= Au(S) [ + § IMo(x, y) — M,i(x, y)|p(dx)
2n2n+l 'zn+1

1
=2 — LM ) — Mo i)

The first term of (5.1) goes to zero by Theorem 5.1 and the second term by
hypothesis. Next consider
§ K 4(x, y) — KEH(x, )] ()
= § 1§ [KA(x DKo (2, 5) — KH(x, DK, (20 )
(5:2) + KM DK n(2, 9) — Ko, 2K, (2, )| (d2)] ()
= VW KK, 2Kz, y) — Koz, )| (d2) p(dx)
+ SV KM%, 2) — K (xs 2)[K, (2, y)p(d2) p(dx) -
Since K, *(x, z) is bounded, it follows from the first part of this proof that the

first term of (5.2) tends to zero. Applying the bounded convergence theorem
and the induction hypothesis, the second term of (5.2) also tends to zero. []

LEMMA 5.2. Under the conditions of Lemma 5.1,
194(3) = § ¢u(0KZ,(x, y)p(dx)] —, 0 for every k.
Proor. Since ¢,(y) = § 4. (X)[M,(x, y)/2,]p(dx), it follows that ¢,.(y) =
S (,/;"(x)M”"(x, y)/lnk/l(d)() = S gb"(x)K”"(x, y)[l(dX) fOl' ever_y k‘ Hence
192(0) = § Su(IKZ 10, ()] = [§ (KX, y) — Kiya(x, y)]pa(d)]
= D § K (%, y) — Kpa(x, )lre(d)
which tends to zero by Lemma 5.1. []
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The main result of this section is

THEOREM 5.2. If {M,} is a sequence of kernels satisfying Condition C and if

§ IM,(x, y) — M,,\(x, y)|p(dx) —, O uniformly in y, then |$(y) = $uis()] =4 0
uniformly in y.

Proor.

|¢n()’) - ¢n+1(y)l = |¢n()’) - (¢n’ (Dn+l)¢n+l(y)| + ¢n+l(y)l(¢n’ (Dn+l) - 1]

where A4,(y) = ¢.()) — (¢ Pur))Puin(). Since ¢,(y) and 4,(y) are bounded,
it suffices to show that |4,(y)| —, 0.

[4.) = 19(3) — § $u()KZa(x, y)p(d)]
(5-3) + 1§ La()KE (%, y)e(dx) — § Pu(X) P ss(X) P ia(y) ()]
< [9a(0) — § Pa(0)K7 (%, y)p(dx)]

+ D ___Mﬁ‘,;(x, ) D, 1(X)Pnia(y)| 1(dx)

n+1

Since Condition C is stronger than Condition §’, Lemma 4.4 can be applied.
That is, it is possible to choose k, large enough so that the second term of (5.3)
is less than ¢/2. Further, Lemma 5.2 can be applied so that given k,, there exists
an N = N(k,, ¢) such that for n = N, the first term of (5.3) is less than ¢/2.
Hence for n > N(k,, ¢), |4,(y)| < ¢, independently of y. []

It is possible to show by arguments like those given in this section that if {M,}
and M, are kernels satisfying Condition C, and if

(5-4) § IM,(x, y) — My(x, y)|p(dx) =, 0

uniformly in y, then 2, — 4, and ¢,(y) — ¢«()) uniformly in y. Hence, in view
of Theorem 4.2, (5.4) is sufficient for PSE behavior.

ReEmARK. Conditions analogous to those given in Theorem 5.2 can be given
which guarantee that |®@,(x) — @,,,(x)| —, 0 uniformly.

6. Applications. A sequential probability ratio test (SPRT) of H,: f = f,
against H,: f = f, reduces to consideration of i, z; where

6.1) z, = In[fl(x)[fo(x:)] -

The test requires continued sampling if

a=lnB< r,z,<Ind=b.

One accepts or rejects H, depending on whether 337, z, < a or Sz, =b A
and B are determined by the probability of type I and type IL errors. (See Wald
[10]).

RemARK. David and Mendigo [3] considered the relationship between certain
finite Markov chains and binomial SPRT’s. We here consider a more general
situation.
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If the random variables z,, have densities 4, and are independent, then S, =
2., 2, forms a Markov chain with transition kernels given by P,(x, y) = h,(y — x).
If the random variables are identically distributed, the corresponding Markov
chain is homogeneous. The numbers a and b defined above act as absorbing
barriers for the Markov chain.

Tostudy the probability distribution over the non-absorbing states, conditioned
on the event that absorption has not yet taken place, define M = P on [a, b] x
[a, b] and set

LX) = f00/8e fa(y) dy

[i9) = SafunsOM(x, y) dx = §o fu(x)M"(x, y) dx .
By checking the conditions of the theorems concerning PSE or PWE behavior,
one might ascertain the asymptotic behavior of f,*(y).

where

ReMARK. If a density, f,, does not exist for the starting distribution, then
set f1(y) = §¢ M(x, y) dF(x). In the case where S, = 0, dFy(0) = 1 and fi(y) is
M(0, y).

ExampLE. For the negative exponential with 8 known, test H,: @ = a, against
H,: a = @;. Without loss of generality, assume 8 =0 and a, > @,. Then

In[ fi(x)/fo(x)] = In (a}/a,) + (@, — a;)x. Defining
(6.2) a = In B/(ay — a;), b =1nA/(ay — ay)
and
7= (Ina, — Inay)f(a, — a) ,
the corresponding SPRT requires continued sampling if a < »7_, (x;, — 1) < b,
etc. If z, = x, — 7, the density for z, is given by
hy(t) = ae D if t=—r
=0 if 1< —-7r.

With a and b as defined in (6.2), the appropriate kernel for this problem, for

(x,y) e(a, b) x (a, b), is
M(x, y) = ae~«w==+D if y—xz=—7r
=0 Caf y—x < —r.

It is not hard to show that this kernel is primitive and bounded, hence it has
a positive left eigenfunction ¢(y). In fact Condition S is satisfied and it follows
from Theorem 4.2 that |f,*(y) — ¢(y)| —, 0. Further we can exhibit the eigen-
function ¢(y) for this kernel.

Define K = ae~*vand ¢, = {:~"" ¢(x)e**dx. Thenforye[b—ny,b— (n— 1)),
(6.3) $(y) = Dia{eur K/ Ty — (b — n)] 7 (r — Dlfemev..
Equation (6.3) holdsforn = 1,2, ..., Nwhere N = (b — a)/y if thisis an integer
or N = [(b — a)/y] + 1, where [+] represents the greatest integer function.
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Weiss [11] defined a generalized sequential probability ratio test (GSPRT) for
testing a simple hypothesis against a simple alternative. With a GSPRT, one
considers sequences of constants {4,} and {B,} rather than fixed constants 4 and
B to determine whether to continue sampling, accept H,, or reject H,.

Ifa,=1InB,, b, =1InA,,and S, = 3,7, z, for z; as defined in (6.1), then the
GSPRT can be thought of as a random walk with changing absorbing barriers.
To study the probability distribution over the non-absorbing states, one considers
the sequence {f,(y)}, where

fa(y) = Sar fas(x)M(x, y) dx
= fon .- S,’;ifo(zl)M(zl, z,) --- M(z,,y)dz, --- dz, .

In this case, M(z,, z,.,) is defined on (a,, b,) x (@,,, b,,,). If a = inf, a, and
b = sup, b, are both finite, then the following transformation will change this
problem to one with non-homogeneous kernels defined on (a, b) x (a, b). For
z € (a, b,), make the transformation z = ¢, + r,w, wherec, = (a,b — ab,)/(b — a)
and r, = (b, — a,)/(b — a). Further, define g,(w) = fi(c, + r,w) and, for (v, w) €
(a, b) x (a, b), define
(6.4) M (v, w) = r,M(c, + 1,0, Cpy + TeaW) .
Finally, for y € (a,,,, b,.1), let w = (y — ¢,,1)/Fus1. Then
(6:5) i) = Sulenis + TaiaW) = Gu(W)

= §a - S gu(w)My (Wi, wy) oo Mo (w,, w)dw, - - dw, .
One can check the theorems of Sections 3 and 4 to investigate the asymptotic
behavior of g,*(w).

In order to apply Theorem 5.2 to this problem, one needs to know that
§¢ M, (v, w) — M, (v, w)| dv —, 0 uniformly in w. The following lemma gives
sufficient conditions for this to hold.

LeMMA 6.1. Let {M,} be a sequence of kernels defined by (6.4) with M(x, y), the
original kernel, nonnegative, and uniformly continuous in both arguments for (x, y) €
(a, 6) x (a,b). If |b,—b,.,|—0 and |a, — a,,,|—0, then §)|M, (v, w)—
M, (v, w)| dv —, O uniformly in w. ‘

Proor. It is easy to see that both |r, — r,,,| and |c, — ¢,,,| tend to zero and
the hypotheses imply that M(x, y) is bounded. Consider

§2 M (v, w) — M, (v, w)|dv = §% |r,M(c, + 7,0, Cppy + TpiaW)
— FaaM(Copy + Ty 05 Cppy + TyaW) dV)
(6.6) = Salrm = rualM(c, + 1,0, Copy + Thiaw) dv
+ $o rnalM(e, + 1,0, ¢y + 1 W)
— M(c,py + Tu1Vs Copy + 1w dv .

The first term of (6.6) goes to zero since M(x, y) is bounded and since |r, —

Fpyal = 0. Sincer,,, <1, |r, — 1,4 —>0,]c, —c,,,| >0, and since M(x, y) is

uniformly continuous, it follows that the second term of (6.6) also goes to zero. []
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COROLLARY 6.1. Under the conditions of Lemma 6.1, if the kernels {M,} satisfy
Condition C, then |g,*(w) — ¢,(w)| —, 0, where g,(w) is defined by (6.5).

Proor. The proof follows immediately from Lemma 6.1, Theorem 5.2 and
Corollary 4.1. [
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