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.

This paper is mainly a survey of results on the problem of finding nec-
essary and sufficient conditions for a Gaussian process to be continuous.
The relationship between this problem and the same one for random Fourier
series is explored.

Some new results are presented that give continuity conditions for
stationary Gaussian processes in terms of the spectrum of the process. Let
X(t) be a real-valued stationary Gaussian process; EX(¢) =0, EX%t) = 1.
Define F by the equation EX(t + h)X(t) = §= cos 2k dF(2). Assume that
F(2) is concave for 2 = 2 > 0 then X(¢) is continuous a.s. if and only if

§= (1 — Fxy
x(log x)}

A similar result holds for Fourier series with normal coefficients.

dx < co.

In this paper we present some new results on the continuity of stationary
Gaussian processes with concave spectrum and survey recent work on the con-
tinuity of Gaussian processes and random Fourier series. Some Gaussian pro-
cesses are random Fourier series with normal coefficients. However, in Kahane’s
(1968) treatment of random Fourier series he obtains extensive results on con-
tinuity none of which depend upon the series being Gaussian. For Gaussian
Fourier series we obtain somewhat sharper results but the proofs involve special
properties which are unique to Gaussian processes. This raises some interesting
questions about random Fourier series in general.

As a survey this paper is meant to be a sequel to Section 1 of Marcus and
Shepp (1971). Many of the important basic results such as the Theorem of
Belyaev (1961) and Eaves (1967) that are discussed there are not repeated. Sur-
veys of progress in the study of Gaussian processes have appeared recently in
Cramér and Leadbetter (1967), Kahane (1968), Garsia, Rodemich and Rumsey
(1970), Fernique (1971), Marcus and Shepp (1971) and Dudley (1972). In this
paper we consider only the problem of determining when the sample paths of
Gaussian processes are continuous. Rapdom Fourier series are introduced be-
cause the two subjects are interrelated and developments in one often lead to
results in the other. We specialize in real-valued processes on R' although ex-
tensions to R* are generally immediate.

Let X(f) be a real-valued stationary Gaussian process with zero mean and
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EX(¢)* = 1. Define
7(h) = EX(t + h)X(t) = {7 cos AhdF(4) ; a*(h) = 2(1 — y(h)).

F(2) is sometimes called the spectrum of X(7). Suppose that there exists a 4, and
that F(4) is concave for 1, < 2 < co. We obtain the following

THEOREM 1. Under the above conditions X(t) is a.s. continuous if and only if

— b
(1) 1(Fy = = L= FO) gy o
x(log x)t
A similar result holds for stationary Gaussian Fourier series, i.e. series of the
form

) >iw_0a,[§, cosnt 4 &, sin nt]
where §, and ,’ are independent N(0, 1). As a corollary to Theorem 1, we obtain

THEOREM 2. Consider X(t) in (2). Suppose that |a,| is eventually non-increasing,
then
e 4
3) (ZEn ) o
n(log n)t

is a necessary and sufficient condition for the continuity of X(t).

In Marcus (1972a) we show that (1) is a sufficient condition for continuity of
a stationary Gaussian process without additional conditions on the spectrum F.

THEOREM 3. Let X(t) be a stationary Gaussian process with spectrum F. Then
X is continuous if I(F) < oo.

There are two interesting aspects of Theorem 3. First it extends Hunt’s Theorem
(1951) to the best possible integral condition for continuity of stationary Gaussian
processes involving the spectrum. Hunt showed that

(4) §= [log (1 4 A" dF(2) < oo

is a sufficient condition for the continuity of X(¢). We show in Appendix (i) that
(4) implies (1). It is easy to see that (1) holds for processes for which the integral
in (4) is infinite. That (1) is best possible is discussed in Marcus (1972a). Hunt
obtained his results using techniques of Paley and Zygmund (1930a), (1930b),
(1932) on random Fourier series in which the independent random variables are
Bernoulli, i.e. they take on the values +1 equally likely. We shall discuss later,
in some detail, random Fourier series.

A second interesting aspect of Theorem 3 is that it is a corollary of the Fernique
(1964), (1965), Delporte (1964) theorem on a sufficient condition for continuity
of Gaussian processes. Their result applies to any Gaussian process X; no sta-
tionarity requirements are imposed.

THEOREM 4 (Fernique, Delporte). If for 0 < s < t < ¢ there is a function ¢
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for which
() E(X(s) — X(0) = ¢*(t — )
where ¢ is non-decreasing on [0, ¢] and

) -
(6) J(¢) = §; u(log IW du <

then X is continuous a.s.

The proof of Theorem 3 consists of showing that whenever (1) holds for a
stationary Gaussian process X, the increments variance of the process o*(h) =
2 §7 (I — cos Ah) dF(4) is majorized by a monotone function ¢*(k), k € [0, ¢] for
which J(¢) < oo.

Nisio (1969), using Kahane’s work on random Fourier series, obtained the
following sufficient condition for the continuity of a stationary Gaussian process
X with spectrum F. Define

(7) 5,2 = F(2") — F(2"); n=0,1,2,....

She showed that if s, is non-increasing and )7, s, < oo, X has continuous sample
paths a.s. This result is included in Theorem 3. To see this we first present a
useful lemma which allows us to relate different results about Gaussian processes.

LemMmA 5 (Copson). (See Hardy, Littlewood and Pélya (1934) Theorem 345).
For any sequence b,

Zn b'n é Zn (n_l Zloco='n bk2)%

and a partial converse Boas (1960), if the b, are non-increasing and nonnegative

Zn (n—l Zloco='n bkz)é é 2 Zn bn .
(For simple proofs of these specialized cases of more general inequalities see
Marcus, Shepp (1970) page 389, and Jain, Marcus (1973).)
To apply the lemma define H(n) = 1 — F(n); the integral I(F) is finite if and
only if

Notice that s> = H(2") — H(2"**). The second part of Lemma 5 shows that
Theorem 3 contains Nisio’s result. (Actually Nisio makes a more general state-
ment involving a decreasing majorant for the s5,. Nevertheless, the same dis-
cussion applies in the general case.)

Necessary conditions for the continuity of Gaussian processes and a partial
converse to Theorem 4 have been obtained by Marcus and Shepp (1970) for sta-
tionary processes and by Jain and Marcus (1973) without requiring stationarity.

THEOREM 6 (Jain, Marcus, Shepp). If for 0 < s < t < ¢, there is a function ¢
for which
E(X(s) — X(1) = ¢*(r — 9)
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where ¢ is non-decreasing on [0, ¢] and the integral in (6)

J(g) = oo

then X is discontinuous a.s.

Tt is shown (Marcus, Shepp (1970)) that even restricting attention to stationary
processes /(¢) < oo is not necessary and sufficient for continuity of X. However,
it is necessary and sufficient if we consider only these ¢ monotone near zero.
Theorem 6 has another interesting application. The new results of this paper
Theorems 1 and 2 are corollaries of Theorem 6. The novel part of Theorem 1
is the necessary conditions for continuity (sufficiency is covered in Theorem 3).
This is obtained by showing that when F is concave and I(F) = oo there exists a
monotone ¢*(k) < ¢*(k) for which J(¢) = oo. The proof is given in Appendix (ii).

For stationary processes Nisio’s extention of Kahane’s results gives necessary
conditions for continuity not covered by Theorem 6.

TueoreM 7 (Kahane, Nisio). Let X(f) be a stationary Gaussian process, s, as
in (7); then if X is continuous a.s.

(8a) s, < oo
(There are no monotonicity conditions on the s,.)

Actually Nisio included an extraneous condition which is removed by a
Theorem of Fernique (1970) and Landau and Shepp (1971). Further discussion
of this point can be found in Marcus, Shepp (1971).

In Appendix (iii) we show that Theorem 7 does not imply the necessary part
of Theorem 1, i.e. we exhibit an F eventually concave for which I(F) = co with
3 s, < oo. Of course, in this example s, is not decreasing nor can it be ma-
jorized by a decreasing sequence {M,} such that 3} M, < oo.

Finally we combine Theorem 1, 3 and 7 and Lemma 5 to present conditions
on stationary Gaussian processes for which /(F) < oo gives necessary and suffi-
cient conditions for continuity.

THEOREM 8. Let X be a stationary Gaussian process with spectrum F and s, defined
as in (7); then I(F) < oo is necessary and sufficient for continuity of X a.s. if

(i) F(R) is concave for 2, < 4 < oo, or
(ii) s, are non-increasing, n = N.

It is not surprising that I(F) is involved in continuity conditions for X. Under
certain smoothness conditions on 1 — F(x) it is comparable to ¢(1/x), see Pitman
(1961). Since 1 — F(x) is monotone, o(k) has monotonic majorants and minor-
ants of the form Const. (1 — F(1/A)). In these cases, Theorems 4 and 6 and a
change of variables of integration give continuity conditions for X in terms of
I(F). Of course, I(F) < oo is not a necessary and sufficient condition for the
continuity of X in general. It is easy to see this; we shall pursue this point when
we look at Gaussian Fourier series.
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We shall consider the following examples of random Fourier Series

) -0 au[n, cos nt + 5, sin nt]

where7,, 7,’ are independent identically distributed random variablés £(z,) = 0,
E(p,) =1, and

(10) > a, cos (nt + ®,)

where @, are i.i.d. random variables with a uniform distribution on [0, 2x].

The series (10) are called Steinhaus series.
For these series, (9) and (10)

EX(HX(s) = Xiz_pa,cosn(t — )
thus they represent a class of weakly stationary processes all having the same

covariance function. They have the same spectrum F with F(n + 1) — F(n) =
a,?; without loss of generality, we assume }] a,> = 1. For these series
(11) st =X tae,t

When 7,, 7,” = N(0, 1), (9) is a stationary Gaussian process. Generally speak-
ing continuity properties for weakly stationary processes are very different than
for stationary processes but, as we shall see, there are no known continuity results
that hold for some values of 7, (satisfying the above moment conditions) and not
for others. When 7, = +1 with equal probability (Bernouli random variables)
the series in (9) are called Rademacher series because in earliest treatments (e.g.
Paley, Zygmund (1930a)) i.i.d. Bernouli random variables were generated by
Rademacher functions. Paley and Zygmund (1930a), (1930b), (1932) considered
Steinhaus and Rademacher series and showed that (4) is a sufficient condition for
them to be continuous and that (8a) is necessary. Salem and Zygmund (1954)
considered Rademacher series and showed that (3) is a sufficient condition for
them to be continuous. Kahane (1968) extended their results to all series (9) and
(10), in fact, to a much wider class of random Fourier series than these.

THEOREM 9 (Kahane). Consider the series
(12) >ra,X,cos(nt + D)

where X,e'®r are independent symmetric random variables, EX, = 0, EX,’ = 1.
(The X,, and @, are not necessarily independent.) A sufficient condition for the con-
tinuity of (12) is ‘

13 (X5na)} .

(13 n(log n)t <

I

(14) EX' < CEX,}D) for C independent of n

then a necessary condition for the continuity of (12) is

(15) L5 < oo
for s, as defined in (11).
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For X, i.i.d. condition (14) is always satisfied as long as a fourth moment exists.
Condition (13) is expressed differently in Kahane ((1968) page 65). It is given as
(16) T2 (TR s < oo '
with the remark that when s; | (16) implies 3] s; < co. In Appendix (iv) we
show that (16) is equivalent to (13). Lemma 5 and (8) show that (13) and
2, s; < co are equivalent for s; |.

Theorem 2 contains a result for the series (9) when 7, and 7, are N(0, 1) that
is not contained in Theorem 9. Namely that if (13) is infinite and |a,| | the series
is not continuous. We have already shown in Appendix (iii) that this case is
not covered by (15). The proof of Theorem 2 is an immediate consequence of
Theorem 1 and the following lemma and its corollary which are themselves
consequences of Slepian’s (1962) lemma.

LemMMA 10. Let X(t), be stationary Gaussian processes with covariance functions
Ly(k), T(0) = 1,i =1, 2. Let Y(t) be a stationary Gaussian process with covariance
function T'\(h)Ty(h). If X(t), i = 1, 2 are continuous so is Y(t), and conversely.

CoRrOLLARY 10a. Let X be a stationary Gaussian process with spectrum F such
that F(n + 1) — F(n) = a,’ and F'(2) = Const.,, n <2< n+4 1 where n =0,
1, .... Consider the Gaussian Fourier series (2) with these values a,’. Then the
two processes are mutually continuous or discontinuous.

Lemma 10 and Corollary 10a are proved in Appendix (v).

THEOREM 11. Consider the stationary Gaussian Fourier series (2); then (13) is
necessary and sufficient for continuity of these series if

(i) |a,| are non-increasing, n = N, or
(ii) s, are non-increasing, n = N.

The proofs of many major results on Gaussian processes depend on two facts
that are unavailable when studying series of the form (9), (10) and (12). For
instance, Theorem 4 requires knowing the probability distribution of X(r) — X(s),
a simple matter for Gaussian processes but probably impossible for the series (9).
Theorem 6 from which Theorems 1 and 2 are derived has as its critical component
Slepian’s lemma, or, to be more precise a corollary of it.

LeMMA 12 (Marcus, Shepp (1971)). Let X and Y be Gaussian processes for which
(17) E(Y(s) — Y(1))" = E(Y(s) — X(0))*
for0 < s <t < 0. Thenif X is continuous on [0, 6], so is Y.

We can show that the only series of the form (9) that satisfies Slepians’ lemma
are the ones with »,, »,” = N(0, 1). However, it is possible that for others a
result such as Lemma 12 is true.

QuesTioN 1. For what stochastic processes with second moments can we
obtain Lemma 12? Does Lemma 12 hold for any of the processes of the form
(9) besides the Gaussian process?
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For any of the series (9) for which the answer to Question 1 is affirmative,
Theorem 2 will be true.

The method of proof employed by Kahane for Theorem 9 follows lines es-
tablished by Paley, Salem and Zygmund which utilize the fact that they are
dealing with trigonometric polynomials. Bernstein’s Theorem on the behavior
of the maximum of a trigonometric polynomial of degree n plays a critical role
in their proofs. It is interesting to note that the elegant proof of Theorem 4 by
Garsia, Rodemich and Rumsey (1970) employs a lemma that Garsia (1970)
describes as an analogue of Bernstein’s inequality for linear combinations of
eigen-functions. Kahane also uses measure theoretic arguments to extend con-
tinuity properties first obtained for special examples of random Fourier series
to all the series (12). It would be interesting to know if the following general
statement is true.

QuUESTION 2. Are all the series (9) and (10) or even (12) mutually continuous
or discontinuous depending only on the values of a,? Or, a more restricted
question, is Theorem 2 true for all the series (9) and (10) or even (12)?

A somewhat related question is

QuEsTION 3. Suppose that (9) represents a continuous process X(7). Let X, (¢)
be independent copies of X() and {c¢,} e . Is 3 ¢, X,(7) continuous? It is if X
is Gaussian but what about the other cases? (It is not necessarily if the X,(¢) are
not all independent copies of the same process.) This question can be asked for
any continuous process Y(r) with EY = 0, EY* = 1.

Random lacunary Fourier series satisfy continuity conditions that are different
than those for series with “smoother” spectrums. (In Marcus (1972b) this same
phenomenon is described for the moduli of continuity). We shall use these series
to show that /(F) < oo is not a necessary and sufficient condition for continuity
of Gaussian Fourier series. Consider the lacunary Fourier series

(18) Direo by[n, cos 2kt 4 3’ sin 2%¢]
where as in (9), »,, 7,/ are i.i.d. random variables E(y,) = 0, E(y}?) = 1,
> b2 = 1. It follows from Szidon’s Theorem (see Zygmund (1959) Section 6.4)

that the series (18) are continuous if and only if }; |5,| < co. Refer to (11),
s, = b,; therefore

THEOREM 13. The series (18) are continuous a.s. if and only if 3, 5, < oo.

It is easy to see that } s, can be finite and /(F) = oo; take s = 1/k*, k =
1,2, ...;all other s, = 0 and use (8). (The reason the example in Appendix (iii)
is more delicate is that the a, (see (2)) are non-increasing.)

Clearly we cannot find necessary and sufficient conditions for continuity
involving the s, or integral conditions on F, since /(F) < oo is a condition for
one class of processes and }; 5, < co for another. For further progress one
must consider the relations between |a,| as n varies. Imposing the condition |a,| |
eliminates gaps in the series; it is the gaps that cause difficulties.
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Dudley’s (1967), (1972) sufficient condition for the continuity of Gaussian
processes based on the metric entropy of compact subsets of a Hilbert space is
a candidate for a necessary condition for the continuity of a stationary Gaussian
process on R*. His approach to the study of Gaussian processes is to consider
a single process defined as a linear norm preserving map from compact subsets
of a Hilbert space into normal random variables. His version of Theorem 4
involves the number of sets of diameter 2¢ necessary to cover certain compact
subsets in the domain of the map. The apparent strength of this approach is
for processes with infinite dimensional time parameter; however, his result is
also stronger than Theorem 4 for processes on R™.

We shall formulate Dudley’s Theorem for real-valued Gaussian processes on
[0, 1]. Let X(¢, ) be such a process, w € Q, EX(r) = 0, EX(t)* = 1. The process
{X(t, w): t€[0, 1]} is a compact subset of L*(Q). A neighborhood of diameter
2¢ in L*Q) about the element X(f, w) are the elements X(s, w) for which
E(X(s) — X(#)) < e. Forany ¢, {X(1, w): t€[0, 1]} can be covered by a finite
number of neighborhoods of diameter 2e.

Define N(¢) as the smallest number of sets of diameter 2¢ which cover
{X(1, 0): 1€[0, 1]} and H(e) = log N(¢). H(e) is called the metric entropy of
{X(1): te]o0, 1]}.

THEOREM 14 (Dudley). Let X(t) and H(c) be defined as above. A sufficient con-
dition for X(t) to have continuous sample paths is

(19) §o Hi(c) de < o .

Dudley (1967) shows that Theorem 14, stated in a broader context, implies
Theorem 4. We will show this for X(r) stationary with increments variance
a’(h). As in (5), assume o*(h) < ¢*(h) with ¢ 1 for he[0, ]. Then N(e) is less
than 1/¢~'(¢). Therefore H(c) = (—log ¢~'(¢))?. Substituting this in (19), chang-
ing variables, and integrating by parts, we get (6).

An interesting aspect of Theorem 14 in the context of the study of stationary
Gaussian processes is shown by the following theorem (Marcus (1972a)):

THEOREM 15. Consider the series (2). If 3 |a,| < oo, §, H}¥(¢) de < oo.

Theorem 15 does not reveal anything new about the continuity properties of
(2). When 3 |a,| < oo, (2) can be shown to be continuous by the three series
theorem. What is significant is that for the series (18), (19) implies continuity
when 3} b, < co. In other words these examples which show that /(F) < oo is
not a necessary and sufficient condition for continuity of stationary Gaussian
processes do not apply to (19). As far as we know the following question is open.

QuEsTION 4. Let X(f) be a stationary Gaussian process. Is (19) necessary and
sufficient for X(#) to be continuous? If the condition of stationarity is removed
the answer is no (Dudley (1967)).

In some cases smoothing the increments variance or spectrum of a stationary
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Gaussian process that is continuous gives processes which are no longer con-
tinuous. Fernique (in conversation) raised the question: Suppose ¢*(h) is the
increments variance of a continuous stationary Gaussian process;

(20) o¥(h) = ™'\ o u) du

is also the increments variance of a stationary Gaussian process. Is the process
corresponding to ¢*(h) also continuous? The answer is no, not necessarily. In
fact answering this question led to Theorems 1 and 2. The next lemma ties the
two together.

LEMMA 16. Let X(t) be a stationary Gaussian process with increments variance
@*(h). Define o*(h) as in (20) and let Y(t) be the stationary Gaussian process cor-
responding to o*(h). Then the spectrum of Y(f) is concave.

The proof of this Lemma is contained in Lemma A.1 (ii) of the Appendix.
Consider the continuous sationary Gaussian process

(21) 3 k7Y[E, cos 2t 4 &,’ sin 2%/]

where £, £,/ are i.i.d. N(0, 1). Let ¢*(h) be the increments variance of (21) and
o*(h) defined as in (20). Let G be the spectrum of (21) and F the spectrum cor-
responding to ¢*(h). By Lemma 16 the spectrum F is concave with

Fi(2) = X7, (k21,22 < q <2

This F is almost the same as in the example of Appendix (iii). By a minor vari-
ation in the argument of Appendix (iii) and using Theorem 1, we see that the
process with increments variance ¢’(k) is not continuous. The process (21) with
increments variance ¢*(k) is continuous.

Smoothing the spectrum can turn a continuous process into a discontinuous
process. Take the spectrum G of the continuous process (21) and polygonalize
it, i.e. form Fsuch that F(2**"") — F(2**) = G(2**"") — G(2**) and such that F"(2)
is constant for 2* < 1 < 2" By the same argument as above, the process
with spectrum F is not continuous.

We have stated that many of the results that have been given can be extended
to processes on R*. As an example here is a sufficient condition for continuity
of random multiple Fourier series which are also stationary Gaussian processes.
Consider

(22) an,n-,nk an1,~~~,nk[5nl,~-.nk cos (nltl + -+ n, tk)
+ E;lnk sin (n,t; + -+ + n,t)]

where (1, - -, t,) is a point in the k-dimensional torus, n,, - - -, n, are integers
greater than or equal to zero, &, .., and & ... are i.i.d. N(0, 1) and
> af‘l""'“k = 1. Define

S(N)y ={(ny, ---, n,):atleastone n, = N, i=1, --., k}

T(N) = Xlsw ail,~~~,nk .

i "k

and
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THEOREM 17. Consider the series (22) and T(N) as defined above.

T(N)?

2 N(log N)}

< oo

is a sufficient condition for the continuity of (22).

A related result holds for (¢, t,, - - -) in an infinite-dimensional torus. Theorem
17 can be obtained from Theorem 4. It probably holds in greater generality
similar to Theorem 9. Kahane has outlined an approach ((1968) page 70, Exer-
cise 3) for multiple Rademacher series. Perhaps the use of Lemma 5 will allow
some simplification. In any case, multiple random Fourier series awaits system-
atic study.

Finally, we refer the reader to Fernique (1971) for an approach to the con-
tinuity problem for Gaussian processes that is quite different from any of those
discussed in this paper.

APPENDIX
(i) It follows from the monotonicity of log 2 and F(2) that (4) is equivalent to

= (1 — F(Z;)(log Ay dl < oo .

Applying Schwarz’s inequality to I(F) written in the form

o (= F(2))}(log ) 1
/z(log A)rran

we obtain the desired result.
(i) Proor or THEOREM 1. We begin with two lemmas.
LeMMA A.1. Let 6*(h) = 1/h §} ¢*(u) du where
o (u) = 2 {7 (1 — cos Au) dG(A) ; then

(a) a*(h) =27 (1 —cos Ah)f(4) dA where f(A) = 7 (1/u) dG(u) and \7 f(R)dA=1.
(b) o*h) = C(1 — G(1}h)), h > 0, C a constant.

Proor.
(k) = 2/h §4 7 (1 — cos Au) dG(7) du
(A.1) — 245 <1 - S%F.‘.?ZE) dG()
i
. sin uh
- 2(1 _ g Su ,,,d(;(u)>.
uh
Also,
i §1Rhﬂﬁ dG(u) = §7 1§ cos Ak di dG(u)
U u

— §¢ cos Ak §7 - dG(u) dA
u

= § cos Ahf(2) dA .
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Since

§o f(A)da = §7 ST%—dG(u) = \g gg%dl dG(u) = 1

we obtain (a). For (b) note that (A.1)

=245 (1 - 2 a6 > et - 6(1m)
LEMMA A.2. Let F be a concave function F(0) =0, F(co) = 1 and f(2) =
F'(2) = 1 for 2€0, 1/100]. There exists a distribution G, G(co) = 1 such that

(A.2) ) =z "llf dG(u) .

Proor. First we consider the case where f decreases only in jumps. Let
f5) = fi»a, < s < a,,,, a, = 0. The function G which satisfies (A.2) isa discrete
distribution with jumps of magnitude a,,,(f, — f.,.,) at a,,,. G is a distribution
function since

2720 @i fi — fur) = D0 i@y — @)
= Do 1 f(s) ds
={rfls)ds=1.

Let f(4) be any decreasing function with f(1) = 1, 2€[0, 1/100] and f,(2) an
increasing sequence of step functions with f(4) as its limit. Let G,(Z) be the
corresponding distribution functions which as we have just shown satisfy (A.2).
Since f,(4) 1, G,(4) 1; also G,(4) < 1. Therefore (A.2) holds for fand G the
limits of f, and G, for all 2 > 0. We do not have to worry about the limit at
4 = 0 since the hypothesis f(4) = 1, 21€[0, 1/100] implies that G(4) = 0 in this
interval.

Proor or THEOREM 1. Let x be a stationary Gaussian process with spectrum
F(2) such that F(4) is concave for 2 > 4,. We can find a function F,(2) that
satisfies the hypotheses of Lemma A.2 and such that (1) = F()for 2 > 1 = A,.
By considering the representation of stationary Gaussian processes by stochastic
integrals we know that the processes with spectrums F and F, are mutually con-
tinuous or discontinuous. Therefore, with no loss of generality we will assume
that F satisfies the hypotheses of Lemma A.2.

By this lemma, the increments variance of X is

a*(h) = 2 {5 (1 — cos Ah)f(A) dA

where f(4) satisfies (A.2) for some distribution G. By Lemma A.1, ¢%h) >
C(1 — G(1/h)) for h = 0. Therefore if I(G) = oo a change of variables gives
J(¢) = oo where ¢*(h) = C(1 — G(1/h)) is a monotone minorant for ¢*(h). By
Theorem 6, X is discontinuous.

We now show /(G) = co. The hypothesis of Theorem 1 states /(F) = oo.

1 — F(x)

= §2 /) & = §7 7 — dG(W di = 7§ L 42 dG(w) = §2“ =X d6(w),
u u u
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Therefore /(F) = oo implies

(55" )

S°° x(log x)é dx = oo

which implies /(G) = oo since

Wl
§s

(iii) In this example F(2) is chosen to be absolutely continuous with F(2) =
(k22 )4 for 22 < 2 < 2%, k > K > 2. Recall 52 = F(29*) — F(29); there-
fore for 2¢ < j < 2++1, 5, = — 297(k*2**")=4 and

D5 55 = Ny LYo (K277)74292 < Const. T k78 < oo .
By (8), I(F) = oo is equivalent to Y, (H(2")/n)! = oo. We have,
H(2¢ o (H(27
o (T = iy ppe (HEDY
J J
= Yy H2P ) piit

1 3
> Const. Y% < ) 20408 = o |
= Const. 37 kol o

(iv) We first show that 3 252(Z 251 st < oo = 3] 263315 5% < oo.
Lo 2S5 5/ = DEa 24T T 5!
= D2 (D s
= Z;o:l lec=1 2k/2(2?,'l:21!_1 sz)é
S CRm 2t st
Next we show that 37 2** (X7 5 5%)} < 00 = 312,((1/n) 5, 5t < co.

e (L 275 = a2t (L 3.)

3
< 2 <§ S sy
= 22 Xa s

We have already observed that condition (13) is equivalent to condition (8),
(H(2") = X5, s;"). What we have above is that (16) implies (8) and consequently
(13).

Finally we show that (8) and equivalently (13) implies (16)

w (1 ¢ 4 1 . b
Dim <— j=n Sj2> = 2% Zzlﬂ ! < 2iien 512)
n n
= N 2T s

H
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(v) Proor or LEMMA 10. Lemma 10 follows from Lemma 12 of this paper.
Note that 15 can be replaced by
E(Y(s) — Y(1))* = kE(X(s) — X(1)y

where k is some constant, since we could prove first that (k~*)Y(7) is continuous
and then infer that Y(r) is continuous.
In the hypothesis of Lemma 10 define

cl(h) =2(1 — T'y(h)), i=1,2.

E(Y(t + h) — Y(1)) = ”lzh) + 02”2(”) _ Ulz(h)jf(h) .

Define Z(f) = X\(t) + X,(f) where the processes X, and X, are constructed so that
they are independent of each other.

E(Z(t + h) — Z(1))' = a,(h) + a,'(h) -

Since Z(¢) is continuous, Lemma 12 implies that Y(7) is continuous. The converse
follows similarly since for 4 sufficiently small

E(Y(t + k) — Y(0) > } max [o(h), o (h)] .
Proor oF CorROLLARY 10 AND THEOREM 2. Consider
(A.3) Dm0 ay(n, cos kt + 7, sin kr)

where 7,, 7, are independent N0, 1), 3] a,> = 1. The spectrum of this process
H(2) has jumps a,* at 2 = k. Let

G() =0 1<0
.y 0<i<1

Define F(2) = (" G(2 — u) dH(u). F is a distribution function which increases
linearly between F(k) and F(k + 1) and F(k + 1) — F(k) = a,>.

Let X(¢) be a stationary Gaussian process with spectrum G(2). By Theorem
3, X, has continuous sample paths. Therefore by Lemma 10, (A.3) and the
process with spectrum F are either both continuous or both discontinuous.
Therefore Theorem 2 follows from Theorem 1.
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