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FOR GAUSSIAN PROCESSES
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Strassen’s law of the iterated logarithm for Brownian motion is
extended to a class of Gaussian processes. Let {X(f), ¢ = 0} be a real con-
tinuous Gaussian process with X(0) = 0, mean zero and continuous covari-
ance kernel R(s,t). Define a random sequence {fx(t, )} in C[0, 1] by
falt, ) = X(nt, »)/(2R(n, n) log log n)*. Under certain conditions on R it is
shown that with probability one { fa(t, ®)} is equicontinuous and the set of
its limit points is the unit ball of the reproducing kernel Hilbert space with
reproducing kernel I' determined by R. The result generalizes the author’s
earlier result (1972).

1. Introduction. Let X = {X(¢, w), 0 < r < oo} be a real, sample continuous
Gaussian process with X(0) = 0, mean zero and continuous covariance function
R(s, t). Define, for each w, a sequence of functions { f,(¢, ®)} in the space C[0, 1]
of all continuous functions vanishing at the origin, with the sup norm [|.||., by

) fu(t, @) = (20%(n) log, n)~tX(nt, w), 0<tr=<1,n=23,4,...,

where ¢*(n) = R(n, n) and log, n = log log n.

Strassen (1964) proved that if X is a Brownian motion, then, for almost every
(a.e.) w, the set of limit points of the sequence of functions {f, (¢, )} coincides
with the set K, of all absolutely continuous functions # in C[0, 1] such that
{5 (dh/dr)*dt < 1. An extension of the above theorem of Strassen to a class of
Gaussian processes is given in Oodaira (1972), and the set of limit points of
{f.(t, ®)} is characterized as a bounded set (the unit ball, if R is normalized) of
the reproducing kernel Hilbert space (RKHS) H(R) with reproducing kernel
(rk) R(s,1),0=s,t < 1.

One of the assumptions in Oodaira (1972) is the following: there is a positive
function v(r), r = 0, such that v(r) 1 co and

(2) R(rs, rt) = v(r)R(s, 1) forall r,5,: > 0.

Note that if such a function v(r) exists, it must be of the form ro with p > 0.
Gaussian processes satisfying the condition (2) are called semi-stable and studied
by Lamperti (1962). The purpose of this paper is to generalize the result in
Oodaira (1972) by replacing condition (2) by the following asymptotic one:
there are a positive function v(r) and a covariance kernel I'(s, #) such that
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v Y(r)R(rs, rt)y —> I'(s, 1) as r — oo uniformly in 0 < 5, t < 1. Under this con-
dition, together with other conditions which will be stated in Section 2, the set
of limit points of {f, (¢, w)} is characterized as the unit ball of the RKHS H(I")
with r.k. I'(s, 1), 0 < 5, t < 1.

Consider, for example, the process X defined by

3) X(1) = §4 Y(u) du,

where {Y(«)} is an Ornstein-Uhlenbeck process with covariance function e,
This process X is not semi-stable. However, it is easy to see that (2r)"'R(rs, rt)
tends to the covariance kernel of standard Brownian motion, and we may con-
clude that the set of limit points of { f,(¢, ®)} for the process (3) is the unit ball
of the RKHS associated with Brownian motion, i.e., the set K,. The details of
this example and other examples will be given in Section 8.

Although the class of semi-stable Gaussian processes is relatively narrow, it
should be noted that under our conditions the limit kernel I" satisfies condition (2).

The results will be stated in Section 2. In Section 3 several known proposi-
tions that are needed in the proofs are stated as lemmas without proof. The
proofs given in Sections 4-7 differ from those of Oodaira (1972) in that a dif-
ferent approximation to a subsequence of {f, (¢, ®)} is used instead of “partial
sums” of the norm convergent orthogonal expansion of X. Section 8 contains
some examples and remarks.

2. Results. Let X = {X(¢, w),0 < t < oo} be a real separable measurable
Gaussian process defined on a probability space (Q, &, P), satisfying the con-
ditions stated in the beginning of the introduction. Further we assume the
following Condition A.

ConpITION A. There exist a positive function v(r) — oo, a covariance kernel
I'(s,7), 0 < 5,t < 1, and a positive non-decreasing function g{x), x = 0, such
that

(A-1) supyg, < [VHP)R(rs, rt) — T'(s, t)] — o0 as r — oo,
(A-2) |R(rs, rs) — 2R(rs, rt) + R(rt, rt)| < v(r)g(|s — t|) forall r, s, t = 0, and

§°gie™) du < oo,

(A-3) T'(s,t) is strictly positive definite and I'(z, f) is strictly monotone
increasing.

REMARK 1. If v=Y(r)R(rs, rt) has a finite nonzero limit as r — oo, for 0 < s,
t < 1, then the limit I'(s, 7) is a covariance kernel. Without loss of generality
we may and do assume

(A-4) T(1,1) =1,
and then the kernel I'(s, #) is uniquely determined.

REMARK 2. It follows from (A-1) and (A-3) that o(r) is a regularly varying
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function with exponent p > 0, i.e., v(r) = r*L(r), where L(r) is slowly varying
(see Section 8).

Let H(T') be the RKHS with r.k. I'(s, 7), 0 < 5, t < 1. For,the theory of
reproducing kernels we refer to Aronszajn (1950) and Parzen (1959). Let K
denote the unit ball of H(T'), i.e.,

K ={he HI)||lA]l, = 1},

where ||+||; is the norm of H(I'). Note that H(T') — CJ[0, 1], since I' is continu-
ous by (A-1). Define, for each w, a sequence of functions {f,(, )} in C[O0, 1]
by (1).

THEOREM 1. If conditions (A-1), (A-2) and (A-4) are satisfied, then, for a.e. w,
the sequence of functions { f,(t, )} is equicontinuous.

THEOREM 2. [If Condition A is satisfied, then, for a.e. w, the set of limit points
of {f.(t, w)} is contained in K.

To prove the inverse inclusion relation we assume the following stronger
Condition B. Let L(X, ) denote the closed linear manifold spanned by
{X(£),0 £t <t} and let

L*(X, rd) = Miso L(X, rd + h) for 0 <0<,
L'(X, rd) = L(X, r) © L*(X, r9) (orthogonal complement) .
Let X5(f) and X/,(r) be the projections of X(f), 0 <t < r, on L*(X, rd) and
L'(X, ro), respectively. Set
R%(s, 1) = EXA()XX(1) , 0<st<r,
R1i(s, 1) = EX/;(5)X/,(1) O<sr=r.
Clearly we have R(s, t) = R}i(s,t) + R.;(5,1), 0 s, t<r, 0Z6< 1, and
R,(s, t) = 0 if min (s, 1) < rd.

ConpIiTION B. For each 0 < d < 1 there exist covariance kernels I';*(s, 1)
and I')/(s, 1), 0 < 5, t < 1, such that

(B-1) SUPg<, et [V PR (rs, rt) — T'y*(s, 1)) = o((log 1)),

SUPos <1 [VTH(N R (rs, r1) — T/(s, 1) = o((log n)7)

(B-2) H(I') = H{T',*) ® HT',"), where I'(s, 1) = I';*(s, t) + I',)/(s, 1),

(B-3) I';*(t, 1) > 0as 6 — 0, uniformly in0 < r < 1,

(B-4) T')/(s,1), 6 <s, t<1. is strictly positive definite and T,(s, 1),
0 <t £ 1, is strictly monotone increasing.

Remark 3. T';*(-, ) and I')’(+, ) belong to H(T") forall0 < ¢ < 1, and (B-2)
means that H(I';*) and H(I",’) are isometrically isomorphic to the orthogonal sub-
spaces spanned by {[',*(+, ), 0 < ¢t < 1} and {I',(+, 1), 0 < t < 1}, respectively.

THEOREM 3. If Conditions (A-2), (A-4) and B are satisfied, then, fora.e. w, the
set of limit points of { f,(t, w)} contains K.
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Combining Theorems 2 and 3, we have

THEOREM 4. If Conditions A and B are fulfilled, then, fora.e. w, the set of limit
points of { f,(t, w)} coincides with K. '

Suppose that Condition (2) holds, i.e., X is semi-stable. Then Conditions

(A-1) and (B-1) are trivially satisfied, and we have the following corollary (see
also Oodaira (1972)).

CorOLLARY. If Conditions (2), (A-2) (A-4) and (B-2)—(B-4) are fulfilled, then,
fora.e. w, the sequence of functions { f,(t, w)} is equicontinuous and the set of its limit
points is the unit ball of the RKHS H(R) with rk. R(s, 1), 0 <5, t < 1.

It is easy to see that all conditions of the corollary are satisfied for Brownian
motion, and hence the above corollary generalizes a theorem of Strassen (1964).

3. Preliminaries. In this section we list several known propositions which
will be used in the proofs given in Sections 4-7.

We need an upper bound for the “tail” distribution of the supremum of X,
and the following bound due to Fernique (1964) will be used. A similar result
obtained by Marcus (1970) may also be used.

LemMmA 1 (Fernique). LetY = {Y(¢), 0 < t < 1} be a sample continuous, separa-
ble, real Gaussian process with mean zero and continuous covariance R(s, t). Suppose
that E{Y(s) — Y()} < ¢&(|s — t|) and ¢(h), h = 0, is positive and increasing. Then,
for all integers p and all x = (1 4 4 log p)}, we have

P{IIYlle = x([IRllc* + 4§ (p~) du)} < 4p* §7 e du,
where ||+||; is the supremum.

Next, in the proofs of Lemmas 5 and 6 and Theorem 3 we shall approximate
a geometric subsequence of { £, (¢, )} by a sequence of functions belonging to
H(T"). The following proposition due to Parzen (1959) is useful for our purposes.

LemMMA 2 (Parzen). Let T be a separable metric space and let I" be a continuous
strictly positive definite kernel defined on T x T. Let T, = {t, 1y, -+, typ}, n =
1,2, ..., be a monotone increasing sequence of finite subsets of T such that J;_, T,
is dense in T. Let C denote the class of all continuous functionson T. Define, for any

feCand forn=1,2, ..., the set {¢,(f), -+ > ()} bY
fit) = DY (N5 1) j=12,---,Nn),
and, for any f, g € C, define
“4) (s 9 = 28 e N9(t) = 28T el@)f(n) -
Then,

(i) for any fe C, (f, f), is monotone increasing,
(i) fe Candlim, (f, f), < oo if and only if fe H(T'), and
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(iii) if f, g € H(T'), then lim, (f, 9), = (f, 9) > Where (+, ), is the inner product
of H(T).

Applying Lemma 2, it is readily shown that K is closed in C[0; 1], and since
K is also relatively compact, we have (see Oodaira (1972))

LemMmA 3. K is compact in C[0, 1].

Finally the following Lemma 4 will be used in the proof of Theorem 2. A
real matrix 4 = (a,;) with positive diagonal elements is said to be a matrix with
dominant principal diagonal if the sum of absolute values of all the off diagonal
elements in each row is less than the diagonal element in that row. Forsucha
matrix we define a,; = |a,;|, i, j=1,2,.--,n, and 5, = }%,a,;, — a

1,2, ...,n. Then the following lower bound for det |4| is obtained (see
Ostrowski (1952)):

w L=
det [4] = It (@ — 50) -
This implies the following (see Marcus (1968))
LEMMA 4. A matrix with dominant principal diagonal is strictly positive definite.

4. Proof of Theorem 1. The proof is quite similar to that of Oodaira (1972)
(see also Chover (1967)).

It suffices to prove that for any ¢ > 0 there is a § = d(¢) > 0 such that for
a.e. w and for some integer N = N(e, w) = 3,

(5) Ifn(s’ w) - f'n(t’ w)l <e
if s —f) < dand n = N. Let ¢ = ¢g(¢) be an integer, which will be specified
later, and put d(¢) = 27¢. By (1), (5) can be written as

| X(ns, w) — X(nt, ®)| < &(26%n) log, n)},
where s — | < dand 0 < 5, r < 1. Let
A(n) = {@|SUP|,_yc2-0,054,e21 | X(nS) — X(nt)| = &(20%(n) log, n)t} .

We wish to prove that P(lim sup, 4A(n)) = 0.
Put n, = 2*¥, k = max (q, 3), and let

Blk) = {@ | MaXyegy cobr1 SUP,_yyca-0 050,031 | X(n5) — X(nr)| = ¢(20°(2") log, 2)1} .
It suffices to show that P(lim sup, B(k)) = 0. Let
C(k) = {@[SUPyghgakt1-a,0s<einsor+t [ X(1 + k) — X(1)] = (20°(2*) log, 2¥)}}
and
C(k, v) = {@[SUP, ineram [X( 4+ B) — X(2)] = &(20%(2) log, 2%)*} ,

where I(k, v) = [(v — 1)2k=+1, (v + 1)26-0+1],y = 1,2, ..., 29 — 1. Since B(k) C
C(k) ¢ ULt C(k, v), it is enough to show that for each v

P(lim sup, C(k,v)) = 0.
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Let
D(k,v) = {@|Sup,¢ 1., [ X (1) — X(2,)] = (¢/2)(20%(2%) log, 2%)H},

where 1, = (v — 1)2¢-7+1, Then P(C(k, v)) < 2P(D(k, v)) .
Define
Y(s5 k,v) = X(s2%79%2 1)) — X(2)),

0<<s<lLv=1,2,...,20 -1,
By Condition (A-2), we have, for0 < 5, r < 1,

E(Y(s; k, v) — Y(t; k, v)} < v(25 %) g(|s — 1)
d
" |EY(s; k, ) Y(1; k, v)| < v(2k-7+)g(1) .

Thus Lemma 1 can be applied to obtain

P(D(k, v)) < 4p* Sy e du
where

y(k) = (¢/2)(2 log, 25)a(25)[v} (27" *)H{gH(1) + 4 §7 g*(p~") du}™ .
Since ¢*(r) ~ v(r) = r°L(r), p > 0, we have
g(2‘°)/vé(2k—q+2) > C2ta-2p/2

with some C > 0 for all sufficiently large k, and so we can choose ¢ sufficiently

large so that
¢ = (¢/2)o(2¥)/vr(2k- 1t H)C" > 1

for all sufficiently large k, where

g}(1) + 4§ gH(p ) du £ C' < oo
Then we have

P(C(k, v)) < 8p* {=,, e*** du < C"(log 2%~ < C"k~*',

and, by the Borel-Cantelli lemma, P(lim sup, C(k, v)) = 0. This completes the
proof.

The following corollary enables us to work with a subsequence of {f,(t, )}
for the proof of Theorem 2 (see Chover (1967)).

COROLLARY. For any ¢ > O there is a 0 = d(¢) such that for a.e. w and for some
integer N = N(e, w), we have || f,, — f,||; < eforallm,n = N with |1 — (m/n)] < a.
Proor. Forn>=m = 3,
fa((m[n)t) = (a*(m) log, m/a*(n) log, n)if,.(¢) ,
and hence
[fa(t) = (O] = |1 — (o%(m) log, m[o*(n) log, mH|| £u(1)] + | £u((m[m)t) — fu(0)] -
Note that log, m/log,n — 1 as m/n — 1, and |o*(m)/o*(n) — 1| — 0 as m, n — oo

and m/n — 1. Since f,,(0) = 0, we have, fora.e. o, | f,(t)] < C for all sufficiently
large m. Therefore, if m/n is sufficiently close to 1, then, for a.e. w, the first
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term is less than ¢/2 for all sufficiently large m and n. By Theorem 1, for a.e.
o, the second term is less than ¢/2 for sufficiently large n, if m/n is sufficiently
close to 1. The corollary is proved.

5. Lemmas. We shall show that any geometric subsequence of {f,(z, w)} can
be approximated by a sequence of functions in H(I').

Define the random variables & ;(o; m, n), j=1,2,...,2™, form,n=1,2,-.., by

T éj(w; mymL(t;, 1)) = v H(n)X(nt,, o),
where ¢, = i/2™, t; = j/2",i,j = 1,2, ...,2™. Note that § (w; m, n) are Gaussian
and that, for each w, the functions
?";léj(w;m,n)l_‘(t, t;), 0<tr<1l,mn=1,2,...

belong to H(T').

LemMMA 5. For any geometric subsequence of indices {n, = [c*], ¢ > 1} and for
any ¢ > 0, there exist, for a.e. w, some integers m = m(c) and k, = k¢, w, m)
such that

SUPy<isy | fo, (1, @) — vH(n,)(20%(my) log, m)™F 332, €(w; m, m) (2, 1)) < e
forall k = k,.
Proor. Let
A(m, k) = {@|SUPozizs | o, (1, @) — v(m)(20%(ny) log, )~
X 37:1 § (w5 m, n)L'(t, tj)l = ¢}
= {0|suppgiz [V () X(ne t, @) — 252, 6 (w3 m, m)D (1, 1)

= e(o(m)v™4(n,))(2 log, )t} .

It suffices to prove that P(lim sup, A(m, k)) = 0 for sufficiently large m.

Let
Y(t; m, k) = v¥(n)X(n, 1) — 32, 6,(m, n)L'(1, t)) 01

a,(s, 1) = v(n,)R(n, s, n,t) — I'(s, 1), 05,11
and

@), = SUPyg,,.51 |@(Ss 1)] -
Then

E{Y(s; m, k) — Y(t; m, )} = 2[E{o=(n)(X(n, ) — X(n, )}
+ E{Z55 €,0m, m)(T(s, 1) — D@ 1,)F] -
The first term in the bracket is < g(|s — ¢|), by (A-2). The second term in the
bracket can be written as
IT(s ) = T Dl 4 (T(e5 8) = T(s 1), (@(es %), D 5) = T 1)) s
where (., %), is defined by (4) with ¢, = j)2", j=1,2,...,2", and ||+’ =
(5 *)nm- Since
[(T(es 8) = T 1), (@u(e5 #)s T, ) — T, 1))l
< Cap||T'(s, 85) — T(e, 0)|| 2 — 0 as k— oo
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and [|T'(e, 5) — T'(+, 0]],2 < |IT(+, 5) — T'(+, 0)]|,% the second term is <
CL(s, 5) = T'(+, || < C'g(|s — 1|) for all sufficiently large k. Hence

E{Y(s; m, k) — Y(t; m, k) < C*g(|s — 1)
for all sufficiently large k. We have also
SUPy<, (<1 |EY(s; m, k)Y(t; m, k)|
< SUpy<, < E(Y(25 m, k))?
< SUPyg,<y (VU M) R(n, 8, n 1) — T'(2, 1))
(6) + Supog,<, [Tt 1) — IT'(e, D)7
+ SUPo<<y 2[( (e, 1), ay(es 1))l
+ SUPo<t<1 ](F(" t)’ (ak(" *)’ F(*’ t))m)ml
=< SUPogi [I'(6 1) — |IT(e, D[ + Cay .

Since ||I'(+, 1)||,;* converges to I'(z, ) uniformly in r by Lemma 2 and Dini’s
theorem, (6) can be made arbitrarily small for all sufficiently large k by choosing
m sufficiently large.

Thus Lemma 1 can be applied to obtain

P(A(m, k)) < 4p* S5y € du,
where
y(m, k) = e(a(n,)v=4(n,))(2 log, n,)H{[SUPys,,c<1 [EY(s; m, k)Y (t; m, k)|]}
+ 4(C*)E §5 g¥(p~) du} .

Note that §; g}(p™*) du — 0 as p — oo and o*(n,)/v(n,) — 1 as k — oo. Hence
we can choose first m and then p sufficiently large so that

¢ = 380 () v (mN[SUPosy, e [ EY (53 my k)Y (15 m, K)|]?
+ HCH) ST gA(p) du)
> 1
for all sufficiently large k. Then
P(A(m, k)) < Cy(log c*)=*" = C, k=

and the Borel-Cantelli lemma gives P(lim sup, A(m, k)) = 0. The proof is
complete.

For the proof of Theorem 3 we need to modify Lemma 5 as follows. Define
the random variables & (w; 6, m, n), j = 1,2, ..., 2™ form,n=1,2, ..., by

DA Ew; 0, my m)L/(1,, 1)) = v=i(n) X (nt,, @),
where #, = 6 + (1 — 8)i/2"™, 1; = 6 + (1 — d)jj2™, i, j = 1,2, ---, 2™, Then

LEMMA 6. For any geometric subsequence of indices {n, = [c*], ¢ > 1} and for
any ¢ > 0, there exist, for a.e. w, a 0 = d(¢) > 0 and some integers m = m(c) and
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ko, = ky(e, 0, m, w) such that

SUPysisr | fay (5 @) — VH(n)(20°(ny) log, my) ™ 332, € (w3 0, m, m)T5/ (1, 1)) < e
for all k = k,. '

Proor. The proof proceeds in the same manner as that of Lemma 5, replacing
by '), Let

Y(t; 0, m, k) = v=¥(m) X, s(nt) — 2321 €40, m, n)T5/ (1, 1))
Bi(s, 1) = v ()R, s(ne s, met) — Ti/(s, 1),
B = SUPos,, i1 [Bi(s: 1)| -
Then, corresponding to (6), we have
SUPo<, ¢1 |EY(S; 0, m, k)Y(¢; 0, m, k)|
< SUPygest [T5* (4 0 + SUPogesy [T3'(5 1) — |IT (o5 Dll"| + CBy

By Conditions (B-1) and (B-3), this can be made arbitrarily small for all suf-
ficiently large k by choosing ¢ sufficiently small and then m sufficiently large.
Applying Lemma 1 just as before, we obtain the conclusion.

6. Proof of Theorem 2. Let K(¢) be the e-neighborhood of K. It suffices to
show that for arbitrary ¢ > 0 the sequence {f,(#, ®)} ultimately lies in K(3e).
Letn, = [c¥]withc > 1. Choosing ¢ = c(¢) sufficiently close to 1, |1 — (n/n,)| can
be made arbitrarily small for n, < n < n,,,. By Corollary to Theorem 1, it is
hence sufficient to show that the sequence {f, (¢, )} ultimately lies in K(2¢).
Now, by Lemma 5, it is enough to prove that

Z(t, w3 m, ny) = v¥(m,)(20%(m) log, m)™* 137, € (w5 m, m)I'(1, 1))
with a sufficiently large m lies ultimately in K(¢). In the following lemma we
shall prove that (1 4 ¢)7*Z ¢ K. Then
1Z — (1 + &) Z[lc = ¢||(1 + 72|
< €l|(1 + ¢)7'Z]| 4 Supogess (T'(2, 1))
se,
and we have Z ¢ K(¢). Thus it remains to prove the following
LEMMA 7. ||Z]|; £ 1 + ¢ ultimately for a.e. w.

Proor. Let
A(k) = {0 |Z]l4* > (1 + ¢)}
= {o| X7 _ &(0; m, n)é (w; m, n)L(t,, 1))
> (1 + €)(0*(n)[v(n))(2 log, )} -
We shall show that P(lim sup, A(k)) = 0.

Let (I') and (), denote, respectively, the 2™ x 2™ matrix (I'(z;, t;)) and the
2"-column vector (§,(w; m, n,)). Let S be the nonsingular matrix such that
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$'(I')S = I, where the prime denotes the transpose, and put (1), = S7(§),. Then
& T)E) = )’ ()x» and, if (R/v), and (a), denote respectively the 2™ x 2™-
matrices (R(n,t;, n,t;)/v(n,)) and (a,(, t;)), then the covariance matrix of (1),
is given by
Ay = E@u(n)’ = S'(R[v), S = S'((T) + (2)i)S =T + (). S -
Since a, — 0 as k — oo, (1 + ¢')] — A, with ¢ > 0 is a matrix with dominant
principal diagonal for all sufficiently large k. By Lemma 4 it is strictly positive
definite, and, since A, is also strictly positive definite, so is the matrix
(1 + ¢")A,~* — I. Let T, be the nonsingular matrices such that 7,/A,~'T,, = I'and
let (), = T,7'(),. Then ({), = ({;(w; k)) are independent Gaussian random vari-
ables with mean zero and variance one. Since (1),/(%), < (1 + ¢)®)/' A () <
(1 + €).' (€),, we have, for any ¢’ > 0,
Tie E@; my )€ (w5 myn)l(n, 1)) < (1 4 ¢) 252, (w5 k)

for all sufficiently large k.

Let ¢’ be small enough so that (1 + ¢)?/(1 + ¢’) > 1. Then for ¢” such that
A4 A+)>e”>1,

P(A(K)) = P{X5% 83 k) > (14 o)/(1 + &) (@ (m)/v(n,)(2 log, n,)}
< P{X G (03 k) > (2 logy )

for all sufficiently large k, because o*(n,)/v(n,) — 1 as k — co. Since 3 %", H(w; k)
has the y’-distribution with 2™ degrees of freedom, we have P(A(k)) < Ck™",

and, so, by the Borel-Cantelli lemma, P(limsup, A(k)) = 0. The proof is
complete.

7. Proof of Theorem 3. Since K is compact (Lemma 3), it suffices to show
that, for any #¢e K and for any ¢ > 0, there are, for a.e. o, infinitely many
f2, (1, @) in some subsequence {f, (1, ®)} such that ||f, — hl|; < 3e. By Lemma
6, choosing ¢ sufficiently small and m sufficiently large, we have, for a.e. o,

(7)1 fa (s @) — vi(m)(20%(n,) log, m) ™4 3337, & (@5 6, m, n)Ty/(e, 1))l < e
h can be approximated as follows. Let

ho(t) = (h(+), T/ (5 D) 0<r<1.
Then #, ¢ H(T';’) and, by (B-3), '
[1h — Aylle < 11Alln SUPoses {T5* (1, )} — 0 as 0 —0.

Define 4, j=1,2, ..., 2", by
i B U5 (1 1) = hy(1)
where 1, = 6 + (1 — 0)i/2™, t; = 0 + (1 — d)jj2, i,j= 1,2, ---,2™, and let
hin(t) = 200 0Tt 085) 0sr<1.
Then #;,, € H(T',’) and, by Lemma 2,

e = hoalle? < s = Bogllit = [[Ba]l = Al — 0 as m— oo,
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where ||+||, is the norm of H([',’). Hence, for any ¢ > 0, we can make, by
choosing 4 sufficiently small and then m sufficiently large,
® 1h = haglle <<
Let 6 and m be so chosen that (7) and (8) hold, and let n, = [(2/0)*]. It is
then sufficient to show that P(lim sup, 4(k)) = 1, where
A(k) = {o][[v}(n,)(20%(m,) log, 1)
X N (w3 0, my n)Ty (o5 1) — hap(e)lle < €}
= (0| || 2% {§(@; 8, m, n,) — (20°(ny) log, n)*v~4(n,)h )
X Ty(es t))llo < €(20%(n,) log, m)*v=4(n)} .
Let
B(k) = {0 ||| D%, {§ (@3 6, m, n,) — (20%(m) log, 1) * v~ (n)h )
X Ty(es )]s < e(20%(n,) log, m)*v=4(ny)} -
Then A(k) D B(k), since ||+ < ||-||,- Let (I';’) denote the matrix (I';'(#;, 1,))
and let S be the nonsingular matrix such that §'(T',’)S = 1. Put

7]:’(“); k) = ;Zl Sjpsp(w; 6’ m, nk) ’
m
hi* = 255 8, s

where s;, are the elements of $~!. Then we have

|52 (6,00, m, ) — (20%(n,) log, m)*v™4 ()3T («5 1)1
= N7, n,(k) — (20°(n,) log, m)v=H(n kY
Let
C(j, k) = {@|[n,(k) — (20°(n,) log, n,)tv=4(n,)h;*|
< 27720y logy m)oHmy)},  j=1,2, 00, 2
Then B(k) D N2*, C(j, k), and hence it suffices to show that, for each j,
P(lim sup, C(j, k)) = 1.

The random variables 7,(k) are normally distributed with mean zero, and the
covariance matrix of 7,(k), j= 1,2, .-+, 2", is I + S'(B),S, where (B), is the
2™ x 2m-matrix (8,(t;, t;)). Further, if k' < k, then Ep,(k)y;(k") = 0, because
(k") € L*(X, n,d) and p,(k) e L'(X, n,d). Therefore, for each j, {n,(k)} is a
sequence of independent Gaussian random variables with mean zero and vari-
ance 1 4 w,,, where |w,,| < CB, with some constant C.

Let @ be the distribution function of the standard normal distribution. Then

P(C(j, k)) = @((h;* + 27™%)(1 + w) " ta(n)v~4(m,)(2 log, m,)t)
— O((h* — 27"2%)(1 + wy,)ta(n)vH(m)(2 log, m,)?)
= O((|h;*| 4+ 27™2%)(1 + w)ta(n)v~H(m)(2 log, my)?)
— O *|(1 + wy)ta(m)(v74(m)(2 log, n,)t)
= C(1 + wy)te!(n,)v¥(n,)(log, n,) ™
X exp(—[h*(1 + w;) 0% () v (n) log, me) -
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Note that
()Y = D kT, 1) = (]l < k| < (Al = 1,
and
(1 + wy) ' (m)v(n,) = 1 4+ o((logn,)™) = 1 + o(k™).

Hence we have

P(C(j, k)) = C"(log, m)™* exp(—(1 + o (k™)) log, n,)
> Cm(k1+o(k—l) 10g k)—l

and 37, P(C(J, k)) = oo. Since C(j, k) are independent, we obtain
P(limsup, C(j, k)) = 1
by the Borel-Cantelli lemma. This completes the proof.

8. Examples and remarks. (a) The process X defined by (3) in the introduc-
tion has the covariance function

R, t)y=s5+t—|s—t|—14e* et —elt ",
It immediately follows that Condition A is satisfied with g(x) = x, v(r) = 2r, and
T(s,0) = (s + 1 — |s — 1)),

which is the covariance function of Brownian motion. Since

X(1) = §¢ Y(u) du for 0<t<rd
= o2 Y(u)du + Y(ro) §i; e+ du for <t<r,
we have
Ri(s, 1) = R(s, 1) for min (s, 1) < rd
=2(r6 — 1 —e ™) + (e — 1)(2e7™ — e™* — €7¥)
+ efri(emmt —e*)(em? — et for min (s, 1) = ré .
Put

T,(s, 1) = Vi (s, (1 u) du
T,/(s, 1) = §4 (s, w)(t, ) du

where y(t, u) = 1 for u < rand 0 for u > r. It is now easy to check Condition
B, and hence the set of limit points of {f, (¢, w)} for the process X is, for a.e. w,
the unit ball K, of the RKHS associated with Brownian motion.

Suppose now that {¥(u)} is a real stationary Gaussian process with spectral
density f(2) = C/(# 4+ a)* (or f(A) = C/(&* + %)), and let X(r) = §} Y(u) du.
Then, by similar computations, it can be shown that the set of limit points of
{f.(t, ®)} for this process is also the set K.

(b) Leté&,, k =0,1, ... beindependent identically distributed Gaussian ran-
dom variables with mean zero and variance one, and set

80:07 Sn=zz;3(”'"k)“fk, 0§a<%,n:192,"'-
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Define a Gaussian process X by
X1 =S, for t =n
= linearly interpolated for n<t<n+ 1.
Then the covariance function R(s, f) of X(r) satisfies the following relation:
SUPgsy <1 |7 VR(rs, rt) — §370 (s — A)%(t — A)*dA| = O(r™Y) .

Conditions A and B are easily checked, and so we may conclude that the set of
limit points of {f,(t, )} for the above X is the unit ball of the RKHS with r.k.
L(s, 1) = Qa + 1) 32t (s — )*(t — A)~dA.

Similarly, if
s.=zi(1- %) 4, a0,
n
it can be shown that the set of limit points of {f,(, )} is the unit ball of the
RKHS with r.k.

D(s, 1) = o+ 1) i3t (1= %) (1- _f_> di.

Some extensions of these examples will be published elsewhere.

(c) We show that if Conditions (A-1) and (A-3) hold, then v(r) = r*L(r) with
some p > 0, where L(r) is slowly varying, and I'(xs, xt) = x*I'(s, f) for all
0<x 5,1t 1

Let0 < x < 1. Then, for0 < s, ¢t <1,

v(rx)[v(r) = (R(rxs, rxt)[v(r))/(R(rxs, rxt)[v(rx))
— I(xs, x0)[T'(s, 1) = ¢(x) < o0 as r— oo .

Then, by Lemma 1, pages 268-9, and Problem 25, page 279, of Feller (1966),
we have ¢(x) = I'(xs, xt)/T'(s, 1) = x* with —oo < p < oo and v(r) = reL(r).
Since I'(¢, ) is strictly increasing, p is positive.

Note that if lim, R(rs, ri)/v(r) = T'(s, t) for 0 < s, t < 1, then lim, R(rs, rt)/v(r)
exists for any s, r = 0 and is equal to I'(gs, g¢)/¢” for any ¢ such that 0 < gs,
gt < 1. Indeed,

R(rs,ro)[v(r) = (R((r/9)9s, (r]9)g0)[v(r[9))[(v(rg)[v(r))
— I'(gs, q1)/q* as r— oo .

Thus, if we define I'(s, ) = lim, R(rs, rt)/v(r) for s, t = 0, then we have I'(rs, rt) =
r’T(s, 1) for all r,s,t =0, i.e., I' is the covariance kernel of a semi-stable
Gaussian process.

(d) The set K, has a simple representation and it could be effectively used in
the proof, provided that the set of limit points of {f,(¢, ®)} is K;. However, a
set different from K, can appear as the set of limit points. Consider, for example,
the following class of (semi-stable) covariance kernels:

Ty, f) = Qa + 1) §300 (s — Dot — )2dd, a>—%0<s1<1
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(see Oodaira (1972)). Let K, be the unit ball of the RKHS H(I',). It is readily
seen that for each #, ¢ [0, 1]

SUPrek, (1)) = (Ta(to, )t = 1,0+t
and A *(+) = T,(+, 1)/(Ta(ty 1))t € K, attains the supremum. It then follows
that K, ¢ K, for « < 8. For, if K, C K,, then 2,* € K, and we would have
h*(t) = 2t < (T y(toy 1)t = 8%t for 0 < 1, < 1. Note that K, = K.

The characterization of the set of limit points of {f,(¢, »)} for Gaussian pro-
cesses in terms of RKHS seems quite natural in view of the role of RKHS in
the theory of Gaussian processes and will be probably valid under conditions
weaker than Conditions A and B. It may also be used for some other processes
which converge weakly to Gaussian processes other than Brownian motion.
Recently Finkelstein (1971) has shown that an analogue of Strassen’s law of the
iterated logarithm holds for empirical distribution functions. It is of interest to
note that the set of limit points characterized there is the unit ball of the RKHS
associated with the Brownian bridge.

Acknowledgment. The author is indebted to the referee for valuable comments.
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