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WEAK CONVERGENCE OF MULTIDIMENSIONAL EMPIRICAL
PROCESSES FOR STATIONARY ¢-MIXING PROCESSES!

By PraNAB KUMAR SEN
University of North Carolina, Chapel Hill

For a stationary ¢-mixing sequence of stochastic p(= 1)-vectors, weak
convergence of the empirical process (in the Ji-topology on D#[0, 1]) to an
appropriate Gaussian process is established under a simple condition on the
mixing constants {¢,}. Weak convergence for random number of stochastic
vectors is also studied. Tail probability inequalities for Kolmogorov-
Smirnov statistics are provided.

1. Introduction. Let {X; = (X;;, - -+, X;,)’, —co < i < oo} be a stationary ¢-
mixing sequence of stochastic vectors defined on a probability space (Q, %7, P)
with each X; having (marginally) a continuous distribution function (df) F(x),
x € R?, the p(= 1) dimensional Euclidean space. Thus, if _Z*, and _#=, be
respectively the o-fields generated by {X,,/ < k} and {X,,i = k + n}, and if,
Ae #*,and Be _#,, then for all k: —co < k < oo,

(1.1) |P(A N B) — P(A)P(B)| < ¢,P(A), ¢, = 0, forall nonnegative n,

where ¢, is | in n and lim,_., ¢, = 0. We denote the marginal df of X,; by Fi,,,
letY;; = Fp(Xy),j=1,--,p; Y, = (Y, - -+, Y,)), —co < i < oo,and denote
the df of Y, by

(1.2) G(t)y = P[Y, < t}, te E? (sothat G ,(t) = P{Y; <t} =1t;
Oété l;j: 1, "',P),
where E? = {t: 0 < t < 1} is the p-dimensional unit cube, 0 = (0, -+, 0), 1 =

(1, ---,1)and a < b means that a; < b;, | < j < p. Note that G(t) = 0 if at
least one coordinate of t is 0. For a sample X,, - - -, X, of size n, the empirical
df for Y,, - .-, Y, is defined by

(1.3) G,(t)y=n'3r7 c(t—Y)), teEr,n>1,

where c(u) = 1 iff u > 0, and 0, otherwise. Also, G,(t) = 0, when at least one
coordinate of tis 0. The empirical process W, = {W,(t), t € E?}is then defined by

(1.4) W,(t) = n}[G,(t) — G(t)], teEr,n>1.

For every n > 1, the process W, belongs to the space D?[0, 1] of all real valued
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functions on E? with no discontinuities of the second kind, and with Dr[0, 1],
we associate the (extended) Skorokhod Ji-topology. For excellant expositions
of weak convergence of processes on D?[0, 1], we may refer to,[1], [S], [12].
Also, for p = 1, a detailed account is given in Billingsley (1968).

When the X; are independent and identically distributed (i.i.d.), i.e., ¢, = 0
for n = 1, W, converges in distribution (in the J;-topology on D?[0, 1]) to an
appropriate Gaussian process ([1], [S]) (for p = 1, Brownian bridge). For ¢-
mixing processes and p = 1, weak convergence of W, to an appropriate Gaussian
function has been studied by Billingsley ((1968) page 197) and Sen (1971). Our
first objective is to show that for general p > 1, the weak convergence of W, to
an appropriate Gaussian function holds under identical conditions.

For i.i.d. random variables, Pyke (1968) has studied the weak convergence of
empirical processes for random sample sizes. Related results for multidimen-
sional empirical processes are treated in [1], [11], [13]. Our second objective
is to extend these results for ¢-mixing processes.

For i.i.d. random vectors, Kiefer (1961) has obtained an exponential bound
for the tail probability of the Kolmogorov-Smirnov statistics. Bounds for the
tail probability of the Kolmogorov-Smirnov statistics for multivariate ¢-mixing
processes are studied in the last section of the paper.

2. Weak convergence of empirical processes. Let us write

1) A9 = T+ Dt and  A(P) = T (n + 1)*g,,
k=0.

Then, [A4,(¢) < o] = [4,(§) < ], Vg <k, and [A4,(¢4%) < o], Vg < 2k.

Consider now a p-dimensional Gaussian process W = {W(t), t ¢ E?}, where

EW(t) = 0, te E?, and for every s, te E?,

r(s, t) = E[W(s)W(t)] = E{[c(s — Yye(t — Y)] — G(s)G(t)}
(2.2) + i Efe(s — Yye(t — Y,) + e(s — Y,)e(t — Y)
— 2G(s)G(t)} .
Note that by Theorem 20.1 of Billingsley ((1968) page 174), the series on the
right hand side (rhs) of (2.2) converges when 4,(¢) < co. The following theorem

extends Theorem 22.1 of Billingsley ((1968) page 197) to the case of p > 1 under
the conditions of Sen (1971). '

THEOREM 2.1. Under (1.1)and A,(¢) < oo, W, converges in law (in the Skorokhod
Ji-topology on D*[0, 1)) to a Gaussian process W for which (2.2) holds.

Proor. We need to establish

(a) the convergence of the finite dimensional distributions of {W,} to those
of W, and
(b) the tightness of {W,}.

Under Ay(¢) < oo and (1.1), the proof of (a) follows along the same line as in
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Billingsley ((1968) page 197), so that in the remaining of the proof, we only
establish the tightness of {,}. Also, it is understood that p > 2. Since, the
usual techniques for proving the tightness of multiparameter stochastic processes
[viz., Neuhaus (1971) and Bickel and Wichura (1971)] are not directly applicable
for ¢-mixing processes, we adapt a modified approach.

For general ¢-mixing processes, it has been observed in Sen (1972a) that
empirical processes behave quite smoothly for large n. This, along with the
treatment of the univariate case in Billingsley ((1968) pages 198-199), suggests
the following approach. First, using the basic inequality between the modulii
of continuity for C?[0, 1] and D?[0, 1] spaces [cf. Billingsley (1968) page 110 and
Neuhaus (1971) page 1288] and the fact that W,(t) = O when at least one co-
ordinate of t is 0, it suffices to show that for every ¢ > 0 and » > 0, there exist
a 0 > 0 and an integer n,, such that

(2.3) Plo,(W,) > e} <7, nzn,,
where forevery 0 < 6 < landn > 1,
(2.4) 0, (W,) =sup{|W,(t) — W,(s)|:s,te E* and |t — s| < d}.

Second, by a direct multiparameter extension of Theorem 8.3 of Billingsley
((1968) page 56), it suffices to show that for every 0 < b, < 1, e > 0and 5 > 0,
there exist a d: 0 < 0 < 1 and an integer n,, such that for B ={t: b, < t <
b, + 01} and n = n,,

(2-5) P{supce s [W,(t) — Wa(bo)| > e} < n[n(B) + 97]/2,
where p(B) = P{Y, € B}. [Note that [z(A) + ||4]||]/2 (where ||4]| is the Lebesgue
measure of 4) is < 1 for every A € E”, and as p(A) is bounded from above by
any side of 4, we have 67 < p(B) + 0* < 6 + 0 - 0as d — 0.]

For a given ¢ > 0 and > 0 (to be chosen later on), select n, so large that
0 > n,"te/2p. Let then (for n = n,),

(2.6) b, (i) = b, + (n~t¢/2p)i, 0<i<m,;
2.7) m, =m, -1 and m, = [2pontle] + 1 (= 1).

Also, let

(2.8) B(i, n) = {t: b,(i) < t < b,(i + 1)}, i>0.

Note that by (1.2) and (2.6), for every i > 0,

(2.9)  mG(b,(i + 1)) — G(b,(I)] = X351 m*[GCrsn(i; + 1) — Gip(iy)]
= 2P (ef2p) = ¢/2.
Hence, on using the fact that for te B(i, n), G,(b,(i)) £ G.(t) < G,(b,(i + 1))

and G(b,(i)) < G(t) < G(b,(i + 1)), we obtain by (1.4), (2.9) and a few routine
steps [as in Billingsley (1968) page 199] that

(2.10)  supeey [Wo(t) — Wo(by)| = maxogicm, |Wa(ba(l) — Wa(bo)| + /2.
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Thus, it suffices to show that forevery ¢ > 0O and » > 0, there exista 6: 0 < 0 < 1
and an integer n,, such that for n > n, and every b, € E*.

2.11)  PmaXogism, [Wa(b,(0)) — Wab)| > 3¢} < dnlp(B) + 07] .

Now, by (1.4) and (2.6), for every i = 0,

(2.12) Wb, (i + 1)) — Wo(bo) = Zosisi Va(B(, 1))

(2.13)  Vy(B) = i, (B) — u(B)]5  p(B)=[§ of Y,eB,i=1,.--,n]n,
for every B e E?, where by Lemma 2.1 of Sen (1971), under 4,(¢) < oo,
(2.14) E[V.XB(1, m)] = K,[#A(B(1, n)) + n~'p(B(i, m))] -

Unfortunately p(B(i, n)), though bounded from above by e/2n, can be arbitrarily
close to 0. For example, if G(t) is degenerate on a lower dimensional space, then
w(B) may be equal to 0 for some Be E?. To overcome this difficulty, we define

(2.15) 2,(1) = max {p(B(i, n)), (¢/2pnt)r}, Vi=0.
Now, (2.15) implies that 2,(i) = (¢/2pn?)? i.e., (2p/e)?4,”?(i) = n~*. Hence, from
(2.14) we have under 4,(¢) < oo,

(2.16)  E[V,(B(i, n)] = K,{4.)(}) + (2p[e)[2,DO]**7} = K, [4.0))°,

where

(2.17) B=1+2/p>1 and K, <Kl + (2p/e))} < oo, Ve>0.
By virtue of (2.17) and Theorem I of Bickel and Wichura (1971), we obtain that
for every ¢ > 0.

(2.18)  P{maxegizm,1 [S.(D)] > de} = (16K5./¢)(Dosism, -1 4:(1)"

where K (< oo) depends on e through K, . in (2.17). Now, 4,(i) = p(B(i, n)) +
(¢/2pn*)?, Vi = 0, so that the rhs of (2.18) is bounded by

(2.19) (16K [e9[(B,) + 6,77, p=1+2p>1,

where B, = {t: b, < t < b, + (¢/2pn*)m,} and 6, = m,(¢/2pnt). By (2.6), 0 <
w(B,) — p(B) < ¢f2n* and 6 < 4, < 0 + ¢/2pnt. Thus, using the fact that §,? <
w(B,) + 8,» <4, + 4,7, we obtain that for every » > 0, there exist a § > 0 and
an n,, such that '

(2.20) : (B,) + 0,7 = §(u(B) + 07), nzn,
(2.21) (16K% [e)[1(B,) + 6,717 < 7/3 nzn,
which completes the proof of (2.11). Hence the proof of Theorem 2.1 is complete.

Consider now a sequence of stochrstic processes {W, * = [W, *(t, u), te€ E?,
0 < u < 1]; n = 1}, defined on the D**'[0, 1] space, where

(2.22) W, *(t, 1) = [nu] W (t)/nt, O0=<u<1 and tek,
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[s] being the largest integer contained in 5. Also, let W* = [W*(t, u), te E?,

0 < u < 1] be a Gaussian function with EW*(t, u) = 0 and

(2.23) E[W*(s, v)W*(t, u)] = min (u, v)r(s, t), for every' s, teE?,
0su,v 1,

where y(s, t) is defined by (2.2). Then, we have the following theorem.

THEOREM 2.2. Under(1.1)and A($) < oo, W, * convergesinlaw (in the extended
Skorokhod J,-topology on D**1[0, 1] space) to W* for which (2.23) holds.

Proor. Here also, the convergence of the finite dimensional laws of W, * to
those of W* poses no problem, so we shall only prove the tightness of {W, *}.
As in (2.3)—(2.5), it suffices to show that for every byje E», 0 < 4, < 1,¢ >0
and » > 0, there exist a 6: 0 < 6 < 1 and an integer n,, such that for B* =
{(La)y:b, <t < (by+ )AL, uy<u< (4 + 0) Al}and n = n,

(2.24) P{SUD ¢,y c 5o [ W, 5 (L, 1) — W, *(by, up)| > ¢} < on[p(B) + 67]/2,
where B={t: b, < t < (b,+01) A1}, (B) = P{Y, € B}and a Ab=(min (a;, b)), - -,
min (a,, b,)). Let now k, = [(¢/4)n}] + 1, and
(2.25)  0.%(1,)) = (b, uo) + ((e/4pnt)i, n7jk,) . 0<i=m,* 0<j=<m>**,
where m,* = m, *1, m,* = [4pont/e] + | and m,** = max {j: jn~%, < 0} + 1.
Then, by the same technique as in (2.10), we have by a few standard steps that
(2'26) Sup(t,u)eB* [Wn*(t’ ll) - Wn*(bO’ ”o)l

S MaXgjgp v MAXggigm « [W,*(0,%(1, /) — W, *(by, to)| + /2,
where by Lemma 2.1 of Sen (1971), under A4,(¢) < oo,
(2.27)  E[W,*(b,*(1, /) — W, (b, uy)]"

< K, (k)2 (BG, ) + n7k, p(B(, m)} K, < oo,

and B(i, n) is defined by (2.8). Repeating then the steps (2.14) through (2.21)
and replacing 2,(i) by
(2.28) A3, j) = (n7Yk,)A,(1) for 0 < m**, 0i<m*,

the proof of (2.24) follows along the same line as of the proof of (2.11). Hence,
the details are omitted. []

Let now {N,, v > 1} be a sequence of positive integer valued random variables
such that as v — oo, v7IN, — £, in probability, where & is a positive random
variable defined on the same probability space (Q, %, P). Then, by virtue of
Theorem 2.2, we conclude that {W, } converges weakly to W as v — co.

3. Tail probability inequalities for Kolmogorov—Smirnov statistics. Fori.i.d.
stochastic p(= 1) vectors, Kiefer (1961) has shown that for every ¢ > 0, there
exists a positive c,(¢), such that for every n > 1 and 2 > 0.

(3.1 P{supee o [Wa()] > 2} < ¢ (e)fexp[—(2 — ¢)2]} .
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For ¢-mixing processes, such a strong result is not known. We provide here
with certain alternative bounds depending on A4,(¢) < oo for some positive k.
For this, we consider first the following lemma which extends Lemma 2.1 of
Sen (1971) to general k > 1. Let {T, = T(X,), —co < i < oo} be stationary
mixing such that (1.1) holds and
(32) ET:O, ETf:Z‘; Og‘l‘él,
P(T,| > 1} =0 and E|IT)| < cr, 0<ce< oo,

Let then, S, =T, + ... 4 T, forn = 1.

LemMA 3.1. Under (1.1) and (3.2) if A,(¢) < oo for some k(= 1), then for every
nx=1,
(3.3) E(S,2 ) < K {nt + -+ + (n7)**1}, K, < oo,
where K, depends only on {¢,} and c.

Proor. Note that for k£ > 0,
(3.4) E(S,** V) < [(2k + 2)!]n 200 spen |E(Ty T, --- Ti2k+1)|
where the summation 3, ,.,, extendsoverall 1 < i, < .-+ < iy, < n. Also,
note that if £ and » be _Z*_and 7, measurable, E|§| < oo and P{|p| > 1} =0,
then [cf. Billingsley (1968) page 171]

(3.5) |E(§7) — EGE)| < 24, El8] Vi

Proceeding as in the proof of Lemma 2.1 of Sen (1971) and using (3.5), we
obtain that if 4(¢) < oo, under (1.1) and (3.2),

(3-6) n 2. [E(TiT,)| < [2¢A4(¢%)](n7) ,
and if 4,(¢) < oo [= A(¢*) < o], then
(3.7)  n L. IET T, T,)] < bner 335 (1 4 1) < [6eAy(§7))(n7) 5

(3.8) n s |E(TL T, -+ T;)| < K,[nr + (n7)Y], K, < oo,
Let us now assume that for 1 <a <2k —-1,k=1,n=1,
(3.9) n Yo E(T T, - T,)| < K, fnt + -+ + (n7)**}, K,,< oo,

where a* = t for a = 2tor 2t — 1, ¢t = 1. Then, we shall show that 4,(¢) < oo
implies that (3.9) also holds for @ = 2k and 2k + 1. We consider only the case
of a = 2k + 1 (as the other case follows similarly). For this, we let i, =1, i; =
i+ r,r; 20,1 <j<2k+ 1, and let Y9341 be the summation over all
1<i < --- <y <n for which r; = max{r, ---, 1y}, for j=1,...,

2k + 1. Then

(3.10) 1 Xt [E(TT, - Ty DI S 558 0 Db [E(Ty -+ Ty, DI

where by (3.2) and (3.5), foreach j: 1 < j < 2k + 1,

(3'11) . :zj,;kﬂ lE(Tl e Ti2k+1)| =n an{;k+1 |E(T1 e Ti,-_l)E(th e Ti2k+1)|
+2n Y ¢ E[Ty - - T, 1,
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and the second term on the rhs of (3.11) is bounded by

(3'12) ZnElTll Z:fn{;k+1¢rj é 2ncz' Z::J_=10 (rj + 1)2k¢7j )
< 2ner(LiLe (i + 1)) = [2e4n(¢”)](n7)
and A,,(¢%) < oo. For j =1 or 2k + 1, the first term on the rhs of (3.11)
vanishes [by (3.2)], while for 2 < j < 2k, we have
(3.13) n 3 e [E(Ty — Tij_l)E(Tij e T )
=n Z?j=1 {Zij.i—l |E(T1 e Tij_l)l}
X {Zn—ij+1,2k+1-—j|E(Ti0’ tee Tiék.“_j)l} ’
where i/ =i, —i;+1,1=0,---,2k + 1 —j. Since for 2 <j< 2k, 1<
j—1,2k +1 — j <2k — 1, and by assumption, (3.9) holds for a < 2k — 1,
we obtain from (3.9), (3.13) and the inequality that for ¢ > 0, 6 = 0,
rin — i 4 1) < e(n 4 1)o7+ < c*netbHl o* < oo, that the rhs of (3.13)
is bounded by
(3.14) K, [nt + -+ 4 (n7)**], K,; <oo; k*=k, j=odd,
=k+1, j=even.
Thus, from (3.10) through (3.14), we conclude that (3.9) holds for a = 2k + 1.

Using then (3.6)—(3.8), the proof for general k > 1 follows by the method of
induction.

THEOREM 3.2. Under (1.1) and A,(¢) < oo for some k = 1,
(3.15) sup,, P{sup., |W,(t)] > 2} < C, 272k vizl,
where C, (< oo) depends on {$,}.

Proor. Virtually, we repeat the steps in (2.5) through (2.19) with the follow-
ing changes: (i) in (2.6), (2.7) and (2.15), we let ¢ = ¢ = 1, (ii) in (2.14), with
the aid of Lemma 3.1, we use the moment of order 2(k + 1), and (iii) in (2.18),
we take ¢ = 4, 4 = 1. Then, the corresponding bound in (2.19) appears to be

(3.16) [22+0 K [1 + (1 4 1/pnt)e]fa=2*+0 Kx < K [1 + 4p°] < o0,

where 1 < 8 < max (k + 1,1 + 2k/p), so that (3.15) follows. []
Note that (3.15) implies that under (1.1) and 4,(¢) < oo for some k = 1,

(3.17) sup,, E{sup;. g |W,.(O)[*} < oo, vo<da<l.
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