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WEAK CONVERGENCE OF CERTAIN
VECTORVALUED MEASURES

By PauL RESSEL
University of Freiburg, Breisgau

There are two kinds of vectorvalued measures which are involved in
the theory of weakly stationary processes: orthogonal (Hilbert space valued)
and multiplicative (projection-valued) measures. For both classes we show
that weak convergence is equivalent with the convergence of integrals over
bounded continuous functions. Moreover we prove continuity theorems
for the Fourier transformation as well as for the Laplace transformation
of such measures.

1. Introduction. Let X be a weakly stationary stochastic process on the real
line which is continuous in quadratic mean. Then it is known that there exists
a uniquely determined measure M on the Borel-sets with values in the Hilbert
space L? over the basic probability space for which

X(t) = § e dM(2) —0 <t < oo,

i.e., X is the Fourier transform of M. This measure is of a special nature: it is
orthogonal in the sense that {M(A4), M(B)) = 0 for disjoint Borel sets 4, B ([4]
Chapter I, Theorem 4.2). Now if one has a sequence X, X,, - .- of such pro-
cesses, it is natural to ask how the pointwise convergence of {X,} is reflected by
the associated measures {M,}. It turns out that a complete analogue of Lévy’s
continuity theorem holds. This is also the case for the Laplace transforms of
orthogonal measures on R, = [0, co) (or more generally on R,”) defined by

Y(t) = § e~ dM(2) 0<1<oo.

A second class of vectorvalued measures involved in the theory of stationary
processes are the socalled “multiplicative measures”, i.e., projectionvalued o-
additive mappings .7 on the Borel-sets with _#Z(A4) o _#Z(B) = _#(A n B) for
all 4, B. By ([2] page 512fT) to each stationary process X corresponds a uniquely
determined one-parameter-group {U,: —co < t < oo} of unitary operators on
the Hilbert space [X(IR)] (closed linear hull of X(IR)) with the property

U, X(0) = X(v), —0 <t < o

and the mapping U(t ~ U,) is the Fourier transform of a uniquely determined
multiplicative measure on IR (Stone’s theorem). So the convergence of multi-
plicative measures becomes also interesting and we shall prove that in this case,
too, weak convergence is the appropriate convergence-concept.
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The author wishes to thank the referee for pointing out an error in the original
proof of Theorem 1 and for suggesting a way to get rid of it.

2. Weak convergence of orthogonal measures. Let Z be a metric space with
Borel-sets %7 and H a complex Hilbert space. oca (%, H) denotes the set of all
H-valued orthogonal measures on .%” and C(Z) the space of bounded continuous
complexvalued functions on Z.

DEeFINITION 1. A sequence {M,, M,, ...} C oca (%, H) is said to converge
weakly to M e oca (%7, H)—in symbols: M, — M — iff M,(A) — M(A) for all
Ae 7 with M(0A4) = 0.

First we want to show that weak convergence is equivalent with the conver-
gence of the integrals over the functions in C(Z).

THEOREM 1. Let {M,, M|, M,, ---} be a sequence from oca (.57, H). Then
M, = M,iff § fdM, — § fdM, for all f e C(Z).

Proor. Let M, = M, fe C(Z) and ¢ > 0; a = sup,, ||M,(Z)|| is finite. We
can assume that f is realvalued and choose an interval (a, b) which contains f(Z).
We put m,(A4) = ||M,(A)||* and we know the existence of 1, =a < 1, < -+ <
t, =bwitht; —t, , < dandm/({t;}) =0,j=1,-.-, k, where ¢’ = ¢/4a. Now
Z = 3k A;, where 4; = f~((t;_,, t;]) and M(94,) = 0.

Let g = 5., 1,1, then |lg — f||, < ¢’ and hence

IS fdM, — § faMi|| < 2¢'a + 35, 1] [|Mo(4;) — M(4))]]
which is clearly < ¢ if n is large enough.

Now we assume § fdM, — § fdM, Vfe C(Z). It follows that §|f|*dm, —
§ | f|* dm, and hence, according to ([1] Theorem 2.1), that m, — m,. Let ¥ =
{Ade o7 m(dA) = 0} be the algebra of m-continuity sets. If Fe & then
my(F) = my(F) so

IMy(F) — My(F)|| = |IMy(F — F)|| = (m(F — F))} =0
and hence ||M,(F) — M,(F)|| = (m,(F — F))* converges to zero as n — co. Let
G, = {ze Z: dist (z, F) < a) and choose «a, | 0 with G, e & Vk. F and G,
being disjoint implies there exist§ f.€C(Z) for whichI; < f, < Iaak-_TO e>0
choose k such that my(G, — F) < (¢/3) this implies m,(G,, — F) < (¢/3)
Vn = n,. Then ‘
IM(F) — My(F)|
< [IMo(F) — My(B)|| + IM(F) — My(F)|| + |M(F) — MyF)]|
< (mo(F — F))} + [|M(F) — § f, dM,| |
+ 11 fe dM, — § fo dMy]| + [[§ £, dM, — My(F)|
< (m(F — F) + (m(Go, — P + || fu dM, — § [ dM,|
+ my(G,, — F)}
<e
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for all n sufficiently large. Thus M,(4) — M(4) VAe ¥ and this proves
Mn = Mo D

Now we shall show that for Z = IR? the space C(Z) in Theorem 1 can be
reduced to the set of complex exponentials. '

TueorEM 2 (Continuity-theorem). Ler {M,: ne N}C oca (7, H) and X, (1) =
§ et dM,(2). If X,(t) = lim X, (1) exists Vie R? and if the limit function is con-
tinuous at the origin, then there exists an M, e oca (<4, H) with Fourier transform
X, and M, — M,. Moreover the convergence of X, to X, is uniform on compact
subsets of R?.

PrOOF. Let m,(A) = ||M,(A)|[and B,(1) = § e *dm,(2) = (X, (1), X,(0)). By(1)=
(X(f), X,(0)) = lim B, () exists and is continuous at the origin and thus by
Lévy’s continuity-theorem there exists an m, € ca, (R?) with B(7) = § ettt dm,
and m, = m, - {X,(t), X,(5)> = B,(t — s5) implies (X(1), X\(s)) = B(t — 5); more-
over X, is continuous, for

HXO(t + h) — Xo(l‘)ll2 = 230(0) - o(h) - Bo(_h)
— 0, h—0.

This is sufficient for the existence of an M, € oca (<#'*, H) with Fourier trans-
form X,. Clearly m(A) = ||[M(A)|PVAe 5. S={aeR:m({xeR:x;=
a,)) =0Vj=1, ..., p} is a dense subset of R*. We shall now first show that
M,((a, b]) — My((a, b]) for a, be S, a < b. Let e > 0; choose ¢’ > 0 such that
¢(5 + 2a) + 26 < ¢ where @’ = sup,, m,(R?), and T > max {las], - -+ |a,ls
|by|, - - -5 |b,]} + 1 such that sup, ., m,(IR” — K) <" where K={xeR?: |x;| =T
Vj=1, .-, p}. There exist continuous functions f, : R? — [0, 1] with the pro-
perty that f,(x) = 1 Vxe[a, b] and f,(x) = 0 if dist (x;, [a;, b,]) = vt for at
least one j < p (v = 1,2, ---). We fix v and find a product g of trigonometric
polynomials with period 27 and sup,. |f.(x) — 9(x)| < ¢’ The periodicity of
g implies ||f, — ¢|l. <2 + ¢’. Now we have

1§ £, dM, — § f, aMi|| < |I§ (f, — 9) dML ]| + || § g dM, — § g dM,]
+ 11§ (/. — 9) dMy]

where by assumption the middle term is < ¢’ Vn = ny(¢). Moreover

IS (f, — 9) aM,|| < ¢'(m,(K))* + (2 + &)’
. &2 + a) + &7, n>=0

IA Il

so we conclude ||§ f, dM, — § f, dM,|| < & Yn = ny(¢), i.e., we know that
§f,dM,—§ f,dM,VveN. Ford >0 let B, = {xe R": dist (x, d[a, b]) < 0}.
For every ¢ > 0 there exists >0 with my(B,) <¢ and 6 e(0, 9) with
my(dB;) = 0 which implies that m,(8;) < ¢* for n large enough, say n = n,.
Choose v ¢ N such that f, — I, ,, is zero on R? — Bj;, then

1§/, dM, — M((@, BII* = § |f — Ll dm, = my(B;) < &
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Vn = n,and forn = 0. Henceif n > n,and so large that ||§ f, dM, — § f, dM|| < ¢,
we have

1M, (a, b]) — My((a, b]|| < [IM,((a, b]) — § f, dM,|| + [I§ f, M, — § f, dM,|
+ 1§ f, dM, — M((a, b])|| < 3¢,

i.e., M, ((a, b]) — My((a, b]). It is easy to see that this convergence holds also
if some of the components of » and a are + oo or —oo resp. Because of the
n -stability of {(a, b]: a,be S,a < b} U {@} we have M, (G) — My(G) for all
G e , the algebra generated by this system. < is a subset of ¥ = {de F7:
my0A) = 0} which by his part is also an algebla. Clearly & generates the Borel-
setsand soto A€ “ande > OwefindaGe & withmy(G A A) < 4G A Ae D
implies m, (G A A) < ¢ Yn = ny(¢). If in addition n is so large that ||M,(G) —
M(G)|| < ¢, we have
1Mo (A) — My(A)|| < [|M,(A) — M(G)]| 4 [IM.(G) — My(G)|
+ [|My(G) — My(4)|

= (m(G A A + [IM,(G) — M(G)]| + (my(G 1 A))}

< 3e,
i.e., M, (A) — MyA). This proves M, = M,.

Now to the uniform convergence of X,. It is easy to see that as in the classical

case the sequence X,, X;, X,, - - - is uniformly equicontinuous. Given a compact

set K — R? and ¢ > 0 one obtains the uniform convergence on K by choosing
a suitable finite d-net for K. []

For the Laplace transforms of orthogonal measures on the semigroup R,? =
{xeR?: x, = 0 Vi} we have a characterisation which is analogous to that of
Fourier transforms: a mapping Y: R,?» — H is the Laplace transform of an
element M ¢ oca (<#,?, H) iff Y is bounded, continuous and {Y(s), Y(¢)) depends
only on s + ¢ ([3] Satz 2). This enables us to prove a continuity theorem for
Laplace transforms.

THEOREM 3. Let {M,: ne N} C oca (ZZ,?, H) and Y (t) = § e"*" dM (4). If
Yy(t) = lim Y, () exists Vi e R,? and if the limit function is continuous at the origin,
then there exists an M, e oca (<%, ?, H) with Laplace transform Y, and M, — M,.
Moreover the convergence is uniform on compact subsets of R, ”.

Proor. Let m (A) = ||M (A)|Pand T (1) = §e-**dm,(2) = ||Y,(/2)|]’. Ty(1) =
||Yo(2/2)|]> = lim T, (1) exists, is continuous at the origin, weakly monotone de-
creasing (especially bounded) and positive semi-definite by which we mean that

», Yt aa; (1, 4 t;) is nonnegative for all (ay, - -+, a,) e R", (1, -+ -, 1,) €
(R,»)"and ne N. Let ke R, ”; then

Lo(t) — To(r + ) = lim § [e~?t — e * ] dm, (2)
< lim§ (1 — e **)dm,(2)
= lim (I(0) — T,(k)) = T'(0) — T'y(h)
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which implies the uniform right-continuity and so the continuity of I',. From
([3] Satz 1) we learn the existence of m, e ca, (R,”) with Laplace transform T',.
Because of lim m, (R,?) = [(0) < oo the first theorem of Helly implies that
every subsequence of {m,} contains a convergent subsequence whose limit is m,
by the unicity of Laplace transform, hence m, = m,. From

[|[Yo(t 4 k) — Yo(0)|]? = T2t + 2h) — 2021 + k) + Ty(21)

and ||Yy(1)||? = T',(21) we conclude that Y, is continuous and bounded, finally
(Yy(s), Yo(t)) = Ty(s + 1) is only a function of s + ¢, so that we find an M, e
oca (£%,?, H) with Laplace transform Y,. Observing that the linear hull of the
functions 1~ e~*t, t ¢ R,” is dense in C([0, co]?) the proof can now be finished
as in the preceding theorem. []

3. Weak convergence of multiplicative measures. Let again Z be a metric
space with metric d and Borel-sets .27, H a complex separable Hilbert space.
msca (.7, H) denotes the set of multiplicative measures on .97, i.e., strongly
s-additive mappings 7 from %7 to the selfadjoint operators on H with the
property that .Z(A) o .#Z(B) = _7(A n B) for all 4, Be .%/. Note that .7 ¢
msca (%7, H) implies {M,: xe H} C oca (57, H) where M (A4) = #Z(A)(x).
The separability assumption guarantees the existence of a finite positive measure
¢, which has the same sets of measure zero as . choose a dense sequence
{x1, X, -+ -} in H and put

= o LA
A) = S | it SV Nt 72 | S
L (A) = 2504 2 1+ [P
DEFINITION 2. A sequence {_#, 7, - - -} C msca (%7, H) is said to converge
weakly to .7 ¢ msca (.7, H)—in symbols: .7, — #Z—iff #Z,(A4) — #7(A)
strongly for all 4 e .7 with _7Z(94) = 0.

THEOREM 4. Let {_#,, A, 4, -} be a sequence from msca (.57, H) and put
M, (A) = AZ,(A)(x) for n =0, xe H and Ae 57. Then #, = #;iff M, , =
M, , for every x ¢ H.

Proor. Clearly there is only one direction to prove. Let .7, = _#; and fix
xe H. Weput M, = M, ,, m,(A) = ||M,(A)|* and define algebras & and & by
G, ={Ae 7 #0A4) =0}, = {Ade 7 m(3A4) = 0}. ¥, is a subalgebra
of ¥; what we want to show is that M, (A4) — M(A4) VA e &, but we know it
only if 4 is from &,. Let G C Z be open and A4, = {ze Z: d(z, G°) > a},
a > 0. Because of 94, C {ze G: d(z, G°) = a} and the existence of a finite
measure which is equivalent to _#; there is a sequence «aj, ay, - - - of strictly
positive numbers converging to zero for which 4, e & Vj; we then have
G = U7, 4., This has two consequences: firstly m, = m, by ([1] Theorem 2.2),
secondly that & generates the o-Algebra ©/. Soto Be % and ¢ > 0 we find an
Ae &, with m(A4 A B) < &% A A Be & implies that m,(4 A B) < ¢* for large
n and certainly we have ||M,(4) — M(A)|| < ¢, n large enough. For those n
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we obtain
IM(B) — MyB)|| < |IM(B) — My(A)|| + IM,(4) — M(A)|
+ |My(4) — M(B)]| ’
= (m,(A A B) + M,(4) — M{A)|| + (mA A B)}
< 3e,
hence M, — M, which had to be proved. []

Together with Theorem 1 we have as

CoROLLARY. Let{ #,:n = 0} C msca (S, H). Then #,— #iff§ fd +#,—
§ fd_#; for all fe C(Z).

Now again we take Z = R” resp. Z = R,” and prove two further continuity-
theorems.

THEOREM 5. Let {_#,: ne N} C msca (&7, H) and U,(t) = § et d_#,(3).
If Uy(r) = lim U (1) exists pointwise ¥t € R? and if the limit function is continuous
at the origin, then there exists an _+;c msca (<£?, H) with Fourier transform U,
and A, = _#,.

ProoF. U, (1) — Uy(t) implies Uy(s + ) = Uy(s) o Uy(t) and so the continuity of
U,on R?. U,(0)is the identity on K = Uy(0)(H) because of Uy(0) = lim _,(R?)
and we claim that U, is a continuous grouphomomorphism with values in the
unitary group of K. Now we know the existence of an _/; € msca (<57, K) with
Fourier transform U,; certainly we think of _# as an element from msca (<£?, H).
U, (1)(x) is for fixed x € H the Fourier transform of M, (M, (A) = #,(A4)(x))
and converges to the continuous function Uy(f)(x). Theorem 2 implies M, , —
M, ., hence 7, — ;. []

THEOREM 6. Let {_#,: ne N} C msca (Z,?, H) and V,(t) = § e ** d_#,(3).
If V(t) = lim V() exists pointwise and if the limit function is continuous at the
origin, then there exists an _#,c msca (<%,?, H) with Laplace transform V, and
Ay, = A

Proor. One can easily see that V is a continuous semigrouphomomorphism
with the property that 0 < V() < Id, Vte R,?. This implies ([3] Satz 3) the
existence of an _#; € msca (<%, », H) with Laplace transform V;. By theorem 3
we have M, , — M, , Vxe H and thus 7, — _#,. []

4. Application. Let X;, X, X,, - -- be a sequence of weakly stationary sto-
chastic processes on R (or on IR?), continuous in quadratic mean. The X, are
then Fourier transforms of orthogonal measures M, on <%. Let further U,
denote the uniquely determined one-(or p-)parameter-group of unitary operators
on H, = [X,(R)] with U,(0)X,0) = X,(f), n = 0, and let finally _#, be the
multiplicative measure whose Fourier transform U, is. We shall assume that
X, is not too degenerate in comparison with X, X,, ---, i.e., that H, C H,
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Vn > 0. Clearly U,(f) can be regarded as operator on the separable Hilbert
space H, by setting U,(f)x = 0 for xe H,© H,. We then have

THEOREM 7. From the following four statements

(1) X(1) — Xo(1) M
(2) M, — M,
3) My = Ay
4) U,(t) — Uyd) V't (pointwise)

(1) and (2) are equivalent, (3) and (4) are equivalent and (1)—(2) implies (3)—(4).

Proor. In view of Theorems 1, 2, 4 and 5 only the last assertion remains to
be proved. Suppose that X, (1) — X(r) V¢ and let x = X(s) be given. Then

(Uu(1) = U())(x) = U, ()(Xo(s) — Xo(5)) + Un()X(5) — U(1)Xo(5)
= U ()(Xo8) — Xu(9)) + Xa(s + 1) — Xos + 1)
—0.

Hence U,(f)x — Uy#)x for all xe H,. [J
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