The Annals of Probability
1974, Vol. 2, No. 1, 51-75

NOTES ON CONSTRUCTIVE PROBABILITY THEORY!

By Y. K. CHAN .
University of Washington

This paper is part of the constructive program, initiated by E. Bishop,
of systematic examination of classical mathematics for their computational
content. From this constructive standpoint, basic concepts in probability
theory are studied. Positive proofs are then given to some important
theorems:  Ionescu-Tulcea’s theorem, a submartingale convergence
theorem, and the construction of a Markov process from a strongly con-
tinuous semi-group of transition operators.

0. Introduction. While some mathematicians refuse to talk about meaning
in mathematics and others regard it as a game of symbols, it is the construc-
tivists’ contention that the meaning of mathematical theorems is to be found in
their numerical interpretation. E. Bishop [1] initiated a program of systematic
examination of existing mathematical theorems and theories with this point of
view, giving them (possibly more than one) numerical interpretations and
finding out whether they are still valid under these interpretations. To illustrate,
consider the theorem which asserts that every bounded non-decreasing sequence
a, of real numbers has a limit. Understood constructively, this theorem could
mean that we are able to find, for every given ¢ > 0, an integer m such that
a, —a, < ¢forall p = g > m. Interpreted this way, the theorem is not valid,
as seen from the following counterexample in the style of Brouwer. Let @, = 0
if for all nonnegative integers a, b, ¢, and d such that d > 2 and a + b 4 ¢ +
d < n we have a? 4 b* + ¢?; let a, = 1 otherwise. The sequence a, is then
non-decreasing and bounded by 1. Now let ¢ = { and the reader is invited to
try to find m. By no means is one interested in such pathological “fugitive”
sequences. They serve however to convince us that it is hopeless to find a
constructive proof for certain statements.

The question whether constructivitists prove new theorems is often asked.
The answer is yes, because if a proof of a theorem is given by showing that the
assertion can be deduced from certain axioms according to certain rules, and
if a second proof is given which actually enables us to do certain computation,
then we all agree that the second proof constitutes a new theorem. One can
put it this way: a theorem = the assertion of the theorem 4 what is meant by
the assertion. When a theorem is proved constructively, it has a new meaning.
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An exposition of the constructive view point and methods is in [1], where a
major portion of analysis is constructivized.

The present part of the constructive program intends to (i) develop sufficient
tools in probability theory and (ii) carry out some basic construction to prove
some fundamental theorems in probability theory. The success in (i) should be
measured by the success in (ii).

Section 1 is a summary of the measure theory developed by E. Bishop and
H. Cheng [2]. One superficial difference of this theory from the standard ones
is that a measure is defined via an integration. The reason for this difference is
technical: there often are functions which should naturally be integrable, while
no such thing can be said about subsets. A specific example: the space of bound-
ed continuous functions on R, though too small for measure theoretic studies,
is a natural start, while the collection of all intervals is not—an interval (a, b)
is measurable with respect to the point mass 4, concentrated at x only when we
can prove (x < a)or (a < x < b)or (b < x). In short, if we want to start with
a family of subsets, the choice of that family depends on the measure or measures
we have in mind. This is a nuisance. A more fundamental difference—and a
natural one in view of our insistence on computational meaning—is that the
Monotone Convergence Theorem as stated classically is not valid. Indeed, given
a non-decreasing sequence of integrable functions X, with bounded integrals
1(X,), how can we say lim X, is integrable if we can not even compute its in-
tegral (as would be possible classically by taking the limit of /(X,))? We need
to assume that lim /(X)) exists. In terms of events, this means that in order to
generate an event by taking the union of a sequence of given ones 4,, we must
first prove that lim P(4, v - .. v A4,) exists. We hope to convince the reader that
with such restriction, we still have enough events to study probability theory,
and that the harder work in general is rewarded by clear, positive results.

In Section 2, we deviate from [2] and define measurable functions in a way
more compatible with desirable properties of random variables. Section 3 deals
with measurable spaces. As noted earlier, the measurable functions are too
closely tied to the measures relative to which they are generated. So measurable
spaces are defined in terms of measure spaces. Theorem 3.2 is suggested by J.
Nuber. In Section 4, a transition function is defined. The main Theorem 4.2
will be used time and again in Section 5. We then prove Ionescu-Tulcea’s
theorem and use it to formulate the ‘construction of a discrete parametered
Markov process.

Section 5 contains the main result of this paper. We construct a time homo-
geneous Markov process with a compact metric space S as state space from a
given strongly continuous semi-group of transition operators. Since the con-
structive counterpart of Doob’s notion of separability and that of Kolmogorov’s
theorem [4] do not apply in the present situation where S has no linear struc-
ture, we rely heavily on a regularity of the sample functions in order to extend
them from a dense subset of the parameter set [0, oo) to [0, o). This regularity
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property corresponds classically to the lack of infinitely many oscillations.
Again the computational content is emphasized (5.5). The assumption that S
is compact is convenient rather than necessary. The results can be generalized
to the case when S is locally compact.

Section 6 is independent of the rest of the paper. It extends a constructive
martingale convergence theorem in [1] to submartingales.

1. Measure spaces. The present section is a summary of the constructive
measure theory developed by Bishop and Cheng [2].

Throughout this paper, Q will denote a basic set, and F(Q) the family of
functions defined partially on Q. A function of (finitely or infinitely many)
functions in F(Q) is defined in the natural way. For instance, if X and Y are
in F(Q), then X + Y is the function in F(Q) whose domain is the (possibly
empty) intersection of those of X and Y, and whose value on this domain is the
sum of X and Y. A convention: we only write the sum of a series ), a, of
real numbers along with the implicit assumption that this series converges
absolutely.

Suppose, now, that L is a linear subspace of F(Q) which is closed relative to
the operations of absolute value and truncation (i.e. if X belongs to L then so
do |X]and X A 1). We may call functions in L primary integrable functions, to
be assigned an integral in the following sense. A linear function /on L is called
an integration (or a measure) if it satisfies the following continuity conditions.

(1.1) If (X,)7-, is a sequence of nonnegative functions in L such that
21 I(X,) < I(X;), then there exists an w at which X, is defined for every n,
such that Y7, X, (0) < Xy().
(1.2) For each X in L, lim,_, I(X A n) = I(X) and lim,_, I(|X]| A n™!) = 0.
To rule out trivial cases, we also assume the existence of some X € L such that
I(X) > 0. The triple (Q, L, I) will be called a measure space. The family L of
primary integrable functions is usually too small for measure theoretic studies.
We can extend it by taking sums of series in L. To be precise, an integrable
function X is an ordered pair (X, (X,);.,) where X e F(Q) and (X,) is a sequence
in L, such that 37 /|X,| converges and such that X{(w) is defined and equal to
2. X,(») whenever the latter sum is defined—recall our convention for sums of
series of real numbers. The integral of X is then defined by /(X) = ) I(X,,).
When no confusion is likely, we write X for the integrable function. We say
that the integrable function X is represented by the sequence (X,). Note that a
sequence (X,) in L with } I(X,) defined (i.e. convergent absolutely) always
represents an integrable function. The family of integrable functions will be
denoted by L(). It turns out that (Q, L(I), /) is again a measure space, and no
further such extension is possible because L(1)(/) = L(I).

As a consequence of (1.1), the domain of an integrable function must contain
some point. Actually such a domain D is necessarily big in the sense that two
integrable functions X and Y obeying X < Y on D must also satisfy /(X) < I(Y).

n—00
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Furthermore, if X e F(Q) is equal to some integrable function on D, then X is
also integrable. Hence, a subset of Q is called a full set if it contains such a
domain. Hereafter equality in L(/) means equality on a full set; similarly for
inequality. We see from the above remark that 7 is a function on L(J) with this
new equality relation. Note that the intersection of a sequence of full sets
remains a full set.

A complemented set is a pair A = (A*, A°) of subsets such that two points in
different components of A4 are unequal. Conceptually we can identify a comple-
mented set 4 with its indicator, the function y, which equals 1 on 4'and 0 on A°.
Thus we could talk solely in terms of functions. For instance, the intersection
(resp. union) of a sequence (A4,) of complemented sets is the complemented set
A. Au(resp. V, A4,) whose indicator is A, x,, (resp. V,x,,). Likewise —A4 is
the complemented set with indicator 1 — y,. If X is a member of F(Q), we will
write {w: X(@) < a}, or simply (X < a) for the complemented set ({w: X(w) <
a}, {o: X(w) > a}). Ingeneral we will let the first component stand for a eom-
plemented set if it is clear what the second component is. If o belongs to 4%,
we write w € 4, and say o belongs to 4. Roughly speaking a complemented
set is a subset of Q with a built-in complement, so that the set operation of
taking complements has a positive meaning.

Naturally, then, a complemented set 4 is called an integrable set if y, is
integrable. In symbols 4 e L(/). The integral I(4) = I(y,) is then called the
measure of 4. Integrable sets abound. If X is an integrable function, then
(X = a) and (X > a) are integrable (and have the same measure) for all but
countably many a € (0, o). From now on, we write (X = a) or (X > a) only
along with the implicit assumption that a has been so chosen as to make the
set in question integrable. As expected, if A4 is integrable, then 4' U A° is a full
set. If moreover 4 has measure 0, then A° is a full set. The relation 4 < B
will stand for y, < y,; for integrable sets 4 and B. If X is an integrable function
and A4 an integrable set, then Xy, is also integrable and we will write I(X; A)
or I(A; X) for I(Xy,).

The product of two measure spaces (Q;, L, I,), (i = 1, 2) is defined as usual.
The primary integrable functions on Q, x Q, are linear combinations of indica-
tors of the form X, ® X, where X, is an integrable indicator in L,(/;). Fubini’s
theorem is again valid.

In case the constant function 1 on a measure space (Q, L, I) is integrable
with integral 1, we call (Q, L, I) a probability space. An important example of
measure spaces is a nonnegative linear function on the space L of continuous
functions with compact support in a locally compact metric space (Q, d). If
there is a bounded sequence X, in L converging uniformly on compact sets to 1
such that I(X,) — 1, then (Q, L, I) is a probability space.

2. Measurable functions. Let (Q, L, /) be a measure space, A an integrable
set, X, X,(n = 1) elements of F(Q). Then we way X, converges in measure on
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Ato Xif forall ¢ > 0 there exists a positive integer N such that for every n > N
we have |X, — X[y, < ¢ for some integrable set B < A with /(4 — B) < ¢. (In
symbols X, —, X on 4). If B is independent of n, then we séy X, converges
almost everywhere on A to X. (In symbols X, —, , Xon 4). Note thata.e. con-
vergence is stronger than convergence on a full subset of 4, the latter being a
useless notion in the constructive theory. If X, —, X on A for every integrable
set 4 we simply say X, converges in measure to X. Similarly for a.e. con-
vergence.

We now deviate from [2] and define a measurable function as a function X
which is defined on a full set such that for every integrable set A there exists a
sequence (X,) of integrable functions converging to X in measure on 4. Thus
every integrable function is measurable. By a 3c-argument it can be proved
that limits in measure of measurable functions are also measurable.

ProrosiTioN 2.1. If X), - - -, X, are measurable and f is a continuous function on
RY, then f(X,, - - -, X,) is measurable.

ProoF FoR k = 1. Let X be a measurable function. Let A4 be any integrable
set and let ¢ be a number in (0, 1). First choose Y e L(I) such that
|Y — X|xp < ¢ for some B < 4 with I(4 — B) < e. Choose a > 0 so large that
I([Y|za—1)<e Write C=BA(|Y]<a—1). Clearly C< 4, [(A—C)<
2¢ and |X|y, < a. Now subdivide [—a — 1, a + 1] by numbers —a — 1 =
g < a < - <a,=a-+1 such that |[f{r) — f(s)]| <e if |[r|<a+ 1 and
Ir—s] < V*(a, — a,_,). Next choose Z¢e L(I) such that | X — Z|y, < V*(a, —
a,_,) for some integrable set D with /(4 — D) < e. Define

U= Z;lf(az)X(ai_ISZ«zz)/\CAD e L(I).

Then [f(X) — Ulye.p < 2¢ and (4 — C A D) < 3e.  Since ¢ is arbitrarily
small, f(X) is measurable. []

As a corollary, sums, products, maxima, and minima of several measurable
functions are measurable.

ProprosITION 2.2. If X is measurable, Y integrable, and |X| < Y, then X is also
integrable.

Proor. Let a, | 0 be such that 4, = (Y = a,) is integrable for every n.
Then 3} I(Y: 4,,, — A,) < co. Choose X, ¢ L(I) and B, < A, such that

(a) Z I(An - Bn) < oo,
(b) X I(Y; A, — B,) < oo,
(©) X — X,|xs, < e, where Ze¢,I(A4,) < oco.

There is no loss of generality in assuming |X,| < Y. We will prove that (Xy By
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Xyxs, — X125,, - - +) represents an integrable function equal to X. Estimate

Ian-(-lXBn_H - XnXBn[
11X, 0 — anxBn+lAB” + Ian-(-llXB,H_l—Bn + Ian|XBn—B,;+1
Curr + e)l(Apy A A,) + I(Y5 Ayyy — B,) + I(Y; A,y — B,yy)
Snstl(Anr) + &, M(A,) + I(Y5 A,y — A,) + K(Y; A, — B,)
+ (Y5 Ay — Boiy)

A IA A

Hence, in view of (a), (b), and (c), the series 3] I|X, x5, — X,x5,| converges
and so (X x 5y XaXp, — X1Xp,» -+ +) represents some integrable function Z. On
a full set we have |Z] = |lim X, x, | < Y because |X,| < Y. On the other hand,
because of (a), the sequence (y 1, — Xg,) Tepresents an integrable function also.
In particular y, — x; — 0 ona full set. We will now show that for every o
in the full set where y, —yx; —0, |Z| <Y, and |X] £ Y, we must have
X(w) = Z(w), whence follows the integrability of X. Suppose for such an o
that X(w) #+ Z(w). Then there is m = 1 such that |X(0) — Z(®)| > 24,,. In
particular Y(w) = a,, i.e. y, (#) =1 for all n = m and so y; (v) — 1. But
X, xp,(®0)— Z(w)and |[X — X, |5 (0) —0. Hence X(w) = Z(w), a contradiction. []

As a consequence, a A (—a V X)y, is integrable if 4 is an integrable set and
a some positive real number, i.e. a measurable function X is also measurable
in the sense of [2]. In particular, the Monotone Convergence Theorem and the
Dominated Convergence Theorem proved in [2] remain valid. Since only the
former is different from the classical version we state it here.

THEOREM 2.3 (Monotone Convergence). Let (X,) be a non-decreasing sequence
of integrable functions. If ¢ = lim I(X,) exists, then X, converges a.e. to some
integrable function X with I(X) = c. Conversely, if X, converges in measure to an
integrable function X, then lim I(X,) = I(X).

A moment’s reflection would make it apparent why the boundedness of the
sequence /(X,) would not suffice, if one insists as we do on knowing how fast
X, converges to X (see the definition of a.e. convergence).

Corresponding to the concepts of convergence in measure and convergence
almost everywhere are the respective notions of Cauchyness. The completeness
of these two kinds of convergence is proved in [1] under a different set-up, but
the reader will have no trouble adapting the proofs to the present situation. It
should be remarked again that convergence on a full set (or even on the whole
space Q) does not imply convergence almost everywhere, the latter being a
much more useful concept.

In case our measure space (2, L, /) turns out to be a probability space, i.e.
if the constant function 1 is integrable with I(1) = 1, we call integrals expecta-
tions, measurable functions random variables, and will replace the word measure
by the word probability whenever it appears. An integrable subset 4 of a
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probability space will be called an event. For a probability space we can prove
the following criterion for measurability.

PROPOSITION 2.4. A function X on a probability space (Q, L, E) is a random
variable iff (X < a) € L(E) for all but countably many a and E(—a < X < a) 11
asal co.

3. Measurable spaces. A measurable space is a vehicle to carry various
measures. An attempt to define measurable spaces, parallel to the classical
development, would therefore be taking a set Q and some family of functions on
Q which deserve to be called measurable functions. Later on, measures would
be defined on this couple. However, there is in general not a natural family to
play this role. For example, the family of continuous functions on the real line
is too small for measure-theoretic studies, and to enlarge this family the only
way is via convergence in measure—with respect to some measure. In short,
the measurable functions are too closely related to the measure with respect to
which they are generated to be studied alone. Accordingly, we make the
following definition.

DEFINITION 3.1. A measurable space is a triple (Q, L, E) where L is a family
of functions on the set Q, and E is a family of functions on L such that for
every Ein E, the triple (Q, L, E) is a probability measure space. For each E in
E let F(L, E) denote the family of measurable functions on (Q, L, E). The
intersection (. F(L, E) will be called the family of measurable functions on the
measurable space (Q, L, E), and will be denoted by F(L, E).

A complemented set in Q is said to be measurable if its indicator is a measur-
able function. A subset of Q is called an E-full set if it is an E-full set for every
E e E. Two measurable functions are said to be equal if they coincide on some
(E)-full set. We will let L(E) denote the subset of F(L, E) consisting of all
functions which are integrable with respect to every E in E. Clearly two
members X and Y of L(E) are equal iff E|JX — Y| = 0 for all E€E.

We next introduce a substitute for Borel fields of subsets of Q. A subfamily
F' of F(L, E) is called a Borel family if continuous functions of functions in F’
remain in F’, and if a function X belongs to F”, provided that X is for every E
in E the limit (in probability) of members in F'.

Let G be an arbitrary subfamily of F(L, E). Let L’ be the family of bounded
continuous functions of (one or more) members of G. Then (Q, L', E) is a
measurable space. It can be shown that F(L’, E) is a Borel subfamily of F(L, E)
and that every Borel subfamily of F(L, E) is generated in this way.

Let X,, - - -, X, be measurable functions on (Q, L, E). They induce a measur-
able structure on (R*, C;) where Cj is the space of bounded continuous func-
tions on R*. To be precise, define E' = E, ...y, on C, by

E(f) = E(fiX,, - X)) for feCp EcE.
Then (R¥, C,, E’), where E' = {E’: E ¢ E}, is a measurable space. That E’ is a
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probability measure follows from the observation that except on an arbitrarily-
small-measured set, X, ---, X, are bounded (see 2.4) and so, as f converges
boundedly to 1 uniformly on compact sets, E’(f) — 1. The defining equation
for E’ can at once be generalized, by a continuity argument, to integrable func-
tions. To be precise, if f is integrable on (R*, Cy, E’) then f(X,, ---, X,) is
integrable on (Q, L, E) and E'(f) = E(f(X,, ---, X;)). A similar situation holds
for measurable functions.

THEOREM 3.2. For every measurable function [ on the measurable space
(R*, Cy, E), the function f(X,, - - -, X,) is measurable on (Q, L, E).

Proor. For every positive integer n, the function n A (—n Vv f(X,, ---, X))
is equal to n A (—n Vv f)(X,, ---, X,) and so belongs to L(E). Hence the set
(f(Xy, - -+, X,) < a) € L(E) for all but countably many a in R. Furthermore, as

a — oo
E(—a<f(Xy, -+, X)Sa)=F(—a<f<a)—>1.
Hence 2.4 implies the measurability of f(X,, -- -, X}). [

This theorem will be used repeatedly in Section 5.

4. Transition functions. Consider a measurable space (2, L, E) and a member
X of L. If E is countable, then it follows from the remark after Proposition 1.9
that for all but countably many a in R, the set (X = a) is integrable with respect
to all Ein E. In general, if E is parametrized by a probability measure space,
the situation will usually be such that for all but countably many a in R, the
set (X = a) is integrable with respect to almost every E in E. (This is the best
that can be hoped for, as seen from the following example. Let L be the family
of all continuous functions on R, and let E be the family of point masses d,
with b ranging through R. Then the function X(r) = ¢ is a member of L. But
given any a in R, the set (X = a) is integrable only with respect to those d, for
which @ = b or a # b.) This will give us sufficiently many integrable sets for
the construction and study of homogeneous Markov processes in a later section.
The setting is, of course, furnished by transition functions.

DEerINITION 4.1. Let (Q,, L;, E;) (i = 1, 2) be measurable spaces. A linear
mapping E: L, — L, is said to be a probability transition function from (X, L,, E,)
to (Q,, L,, E,) if the following two conditions are satisfied.

(i) The composite mapping E, E is in E, for every E, in E,.

(ii) For each w in Q,, if we let L,” denote the family of those functions X in
L, for which E“(X) = E(X)(®) is defined, then the triple (Q,, L,*, E) is a prob-
ability space.

Every o in Q, can be looked upon as a piece of information which leads us

to select the probability E¢ on Q,. Classically no reference is made to E, and
E,; or equivalently, they are taken to be all possible probability measures. For
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us, however, the pair (Q,, L;) is usually not sufficient to describe our measurable
space.

We can extend E to a function on F({,) in the following way. For X e F(Q,)
let E(X) be the function in F(Q,) whose domain consists of all @ € Q, such that
X e L,*(E®), and which has value E(X)(w) = E“(X) at such an w.

THEOREM 4.2. Suppose E is a transition function from (Q,, L,, E,) to (Q,, L,, E,).
Then

(a) extended as above, E is a transition function from (Q,, L(E), E)) to
(@, Ly(E,), Ey),

(b) for every measurable function X on (Q,, L,, E, E) where E, is a given member
of E,, for all but countably many a € R, the sets (X = a) and (X > a) are E“-integr-
able for all w in some E,-full set, and E“(X = a) = E*(X > a) for such ’s.

Proor. Take X in L,(E,). Let E, be an arbitrary member of E,. By Condi-
tion (i) of Definition 4.1 we have E, E = E, for some E, in E,. Therefore there
exists some sequence (X,) in L, such that (X, (X,)) belongs to L,(E,). In particular
> EE|X,| = J] E)JX,| < oo. Hence the set of w’s for which )] E|X,| is defined
and converges constitutes an E,-full set. By definition E(X) equals 3] E(X,) on
this full set. On the other hand we have 3 E||E(X,)| € 3 E, E|X,| < oo because
|E(X,)| < E|X,| in view of condition (ii) of Definition 4.1. Consequently
31 E(X,) is E,-integrable. Therefore E(X) is also E -integrable. Since E, was
arbitrary, we have E(X) € L,(E). Moreover, in the above notation, E,E(X) =
S EE(X,) = Y Ey(X,) = Ey(X) and so E, E and E, coincide on L,(E,). Finally
Ly(E,)* = L,”(E) for every w in Q,, as is clear from the definitions of E(X) and
L(E,*. Hence E” is a probability measure on (Q,, L,(E,)”). Assertion (a) is
thus proved. Assertion (b) is a consequence of (a). (See Section 1.) []

Two transition functions E and E’ from (Q,, L, E)) to (Q,, L,, E,) are said to
be equal if they are equal as functions on L,. It should be emphasized that the
equality relation on L,(i = 1, 2) is the equality with respect to E,. By a con-
tinuity argument, we can prove that if £ and E’ are equal transition functions,
so are their extensions.

If E/ is a family of functions on L,, we will let E/E denote the family
{E/E:E'€eE/}.

It can easily be verified that composites of transition functions are again
transition functions.

In the rest of this section suppose for every nonnegative integer n = 0 we are
given a set Q, and a subset L, of F(Q,). Let Q denote the product [[7., Q,.
We also regard L, as a subset of F(Q) by regarding a function X, in L, as a
function on Q whose domain consists of those w ¢ Q for which o, belongs to
the domain of X,, and whose value at such an o is X,(»,). For arbitrary
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integers p < n, define subsets of F(Q):
M, ={rraX}t - - X}  meN a,eR, X;* some indicator in L}
Mn = MO,n
Mp’ = Un;p Mp,n
M=M= U2 Mo = Uuzo M,
Let Q' = T],s, Q.-
THEOREM 4.3. Suppose for every n we are given
(@) asetQ,, asubset L, of F(Q,), a family E, of functions on M, such that
(Q, M, E,) is a measurable space,
(b) a transition function E, from (Q, M,_,(E,_,), E,_)) to (Q, M(E,), E,) such
that
E(XY) = XE,(Y)
forall Xe M,_, and Y e M, (E,).
Then the function E defined on M by
E(X)=E, ... E(X) if XeM,
is a transition function from (Q, My(E,), E;) to (2, M, E\E).
For the proof of this theorem we need a lemma whose easy proof is omitted.

LEMMA. Let X, Y, Z be nonnegative integrable functions on a probability space
(Q, L, E). Suppose X < 1, and for some positive numbers ¢, > ¢, we have E(Y) <
E(X) — 2¢ and E(Z) < ¢*. Then there exists an event A with positive measure such
that Y(0) < X(0) — & and Z(w) < ¢, for all o € A.

ProoF oF THEOREM 4.3. We may assume that the functions in L, are
bounded.

(i) To start, E is a well-defined function. For if Xe M,_, n M,, then
E, ... E(X)=E, ... E,_(X)

in view of condition (b).
(i) Suppose m < nand X; e L;(0 < j < n) are given. Then again by condi-
tion (b) 4

E ‘E(Xo"‘Xn):Xo"’XE En(Xm+1Xn)

m+1 " n m T~ m+1

Therefore, for a in an E_-full set, we have

EE e En(XO vt Xn) - EnEm+1 e En(XO(aO) T Xm(am)Xm+l Tt Xn)

a~m+1
where E, is the point mass concentrated at a. By linearity, for every X e M,,
there exists an E -full set of a’s such that

EEppy - ES(X) = E Epyy - Ey(X|ag -+, a)

a™~m+1
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where X|ay, ---, a, is the member of M, defined by
(Xag -y a,) (@) = X(ag, « 5 Xy Opyyy Gppygy - - )

(iii) We next prove that (Q, M, E,E) is indeed a measurable space, i.e. given
E, e E,, the function E,E is a probability measure on (Q, M). Only condition
(1.1) in Section 1 needs be verified, the other conditions being trivial. Thus let
Xy, X, -+ be a sequence of nonnegative functions in M such that Yy E,E(X;)
converges and is less than E,E(X,) — 2¢, for some ¢, > 0. We may assume that
X;eM,;, with n(j) < n(j + 1) for j > 0, and that X, and 3¢, are bounded by 1.

n(g
Choose a decreasing sequence ¢, of positive numbers such that 2 Y17, < e,

Then for some integer p large enough, we have

ZlSjSp EE, --- En(j)(Xj) <E .- En(O)(XO) — 2¢,
and

Zp<j EE, ... En(j)(Xj) <&l

Since n(j) < n(j + 1) for all j, the last two inequalities may be rewritten as

E, ... En(p)(ZlSjSp Xj) <E - En(p)(Xo) — 2,
and

EO e E’n(p)(Zp<j E'n(p)+1 Tt En(j)(Xj)) < 812 .

The lemma, applied to the random variables X,, 3}, ;., X, and 3}, E, ., - - -
E,;(X;) on the probability space (Q, M, E,--- E,,), yields a positive
measured subset 4 of (Q, M, ,, E, - - - E,,)) such that for all a € 4,

(p)?
Dizizp X (@) < Xy(@) — ¢

and

2ip<i EaEppysn - Euy(X;) < &

Since E, - - . E,,, isa member of E, ,,, by (ii) we can choose a € 4 such that
2izisy Xj(@) < Xo(@) — &

and

Zp<j EE, - En(j)(lea;)’ ) a’n(p)) <& = 3 — 2.
The last displayed inequality has the same appearance as the first in this proof.

Hence the argument above can be repeated to yield inductively integers
g <r< ---andelements 8, 7, - - - of Q such that

Lip<ize (Xjlao, « -y @,0,))(B) < 3¢y — & = 26,
Zq<i$r ((Xj I Hoy = s an(p)) | Bos =+ s :Bnu;))(?’) < 3ey — g = 2¢,,

Therefore, if we let = (@05 *++5 Xty Buiprars = *s By T+ = %> Ttrrs =+ )



62 Y. K. CHAN

the above inequalities become

2izizp Xj(0) < Xy(w) — ¢,
Zp<j5q X;i(w) < 251 ’
Dig<icr Xj(“)) < 2,

In short, we have constructed w such that Y%, X (o) is well defined, con-
vergent, and less than Xy(w) — ¢, + 2 317" ¢, < X (w). Condition (1.1) has thus
been verified.

(iv) For arbitrary € Q, the argument in (iii) with E, replaced by E, shows
that E, is a probability measure. Therefore condition 4.1 (ii) is satisfied by E.
Condition 4.1 (i) being self evident, E is indeed a transition function. []

The above version of Tonescu-Tulcea’s theorem is sufficient for the construc-
tion of a Markov process (discrete time) from its transition functions.

THEOREM 4.4. Suppose for each n are given a measurable space (Q,, L,, 1,) and
a transition function D, from (Q,_,, L, ,(1,.),1,_)) to (Q,, L,,1,) such that
In_an = In. Then

(i) there exists a family E of probability integrations on (Q, M) such that
I, ={E|L,: E€E},

(i) for every p there exists a transition function E, from (Q, L,(E), E) to
(Q, M,(E), E) such that

E/(YZ) = YE,(Z)
for all bounded functions Y in M, (E) and Z in M,/ (E).

The proof of this theorem is lengthy and omitted.

Let (Q,, L, E,),_, , be measurable spaces, and let X be a function from Q, to
Q,. X is said to be a measurable mapping, or a random variable, on (Q,, L,, E))
with values in (Q,, L,, E,), if the conjugate map X*, defined on L, by X*(f) =
[ o X, constitutes a transition function from (Q,, L(E)), E,) to (Q,, L,, E,). The
proof of the next proposition is routine and will not be given.

ProposITION 4.5. If X is a measurable mapping from (Q,, L,, E,) to (Q,, L,, E,),
then it is a measurable mapping from (Q,, L,(E,), E,) to (Q,, Ly(E,), E,).

In case E, is the family of all probability measures on (Q,, L,), we will simply
say X is a random variable on (Q,, L,, E,) with values in (Q,, L,). Given a
measurable mapping X as above, and a member E of E,, the probability measure
EX* on (Q, L,) is called the probability measure induced by X relative to E, and
is denoted by E,. A

5. Construction of a Markov process. Suppose we are given
(a) a compact metric space (S, d),
(b) a semi-group (P,),c ., of nonnegative linear operators on C, the space
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of continuous functions on (S, d) equipped with the supremum norm, such that
P(1) =1 and Py(f) = ffor feC,

(c¢) a family I, of probability measures on (S, C).
It is then well known classically that a time homogeneous Markov process can
be constructed with parameter set [0, co), state space S, transition functions P,,
and initial distributions I,. Indeed the construction is nothing more than an
application of Kolmogorov’s extension theorem. Now the constructive version
of Kolmogorov’s theorem [4] is proved only when § is some convex closed
subset of the extended real line, and in any case some linear structure (in addi-
tion to the metric) on § is assumed. So it is not applicable here. Fortunately,
the construction with a countable dense subset D of [0, co) as parameter set is
easy. It is also well known classically that under the condition

(d) forall ¢ > 0, there exists d(¢) > 0 such that |P, f(x)| < ¢ for all + < 0,
xe S, and fe C with ||f|] < 1 and f(y) = 0 whenever d(y, x) < ¢,
the process can be assumed to have sample functions which have no more than
finitely many oscillations on every finite interval ([3], [6]), and so extendable
from D to [0, co); the process could then be extended correspondingly. The
proof actually goes like this. Let [s, ¢ + 0] be an interval where # is some
positive number depending only on the operation ¢ in (d). Let A be the comple-
ment of the set 4 of sample functions which have at most finitely many oscil-
lations on [g, ¢ ++ #]. It is proved that

A < AI;”:I V';T:I Ak,'n

where A, , are measurable with
A, . <A,... and J4,,) <27

for all k, n, and I corresponding to any initial distribution /. From this it is
deduced that A is a null event. We maintain that the computational content
of the above theorem is not as strong as should be. To be precise

(i) givenan event B with /(B) > 0 it does not follow from the two formulas
displayed above that a member of 4 can be constructed in B;

(ii) even if it could be proved that all the sample functions can be assumed

to be members of A, it does not follow constructively from the lack of infinite-
ly many oscillations that the left and right hand limits exist, and so the exten-
sion to [0, oo) is not valid.
The main task in our construction, technical questions aside, will therefore be
proving a version of the above discussed regularity property of the sample
functions as functions on D, with enough computational content so that the
difficulties mentioned in (i) and (ii) do not arise.

Before proceeding we remark that condition (d) is equivalent to

(d’) forall fe C, we have ||P,f — f|| > 0ast—0.

Observe that, under condition (b), the condition (d’) is hardly any restriction,
because we have never seen a semi-group (P,) where P, is defined for every
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t € [0, co) which is not strongly continuous in the sense of (d’). The same thing
can therefore be said about (d).

Throughout this section assume that the objects in (a)-(d) are given. Let D
denote the set of nonnegative dyadic numbers, with a fixed enumeration (r,);_,.
Let Q = S” be equipped with a (compact) product metric d(w, ') =
Yivoy 27d(w(r,), @'(r,)). Let L denote the space of continuous functions on Q,
equipped with the supremum norm. Jet L*, C* denote the families of all
probability measures on L, C respectively. Define

X(0) = o(F) forall reD,weQ,
L, = {g(X(t), ---, X(t,)): ne N; g continuous on S$* ¢, ---,t,€D n [0,s]}.

For convenience we sometimes write X(f) for the function X, and write X(¢, w)
or X(f)(w) for its value at w. The easy construction of the Markov process on
the parameter set D is carried out in the next theorem.

THEOREM 5.1. There exists a transition function E from (S, C, C*) to (Q, L, L*)
such that for a given I ¢ C* and I = I E we have

(i) for every sin D, the probability measure I, ,, induced by X(s) on (S, C) is
the same as I, P,,

(il) for every Ze L(I,P,E), if we let 0, denote the shift map on Q defined by
O (0)(t) = w(s + 1) and let F, denote F(L,, I), then Z o 0, € L(I) and

I(Zo0,|F,) = EX*(Z) on an I-full set.

(Recall that the induced measure 7, ,, is defined by /,,,(f) = I(f - X(s)) for all
feC. Recall also that by Theorem 4.2 the function E(Z) belongs to C(/,P,).
On the other hand, it follows from (i) that X(s) is a measurable mapping from
(Q, L, 1) to (S, C, I,P,). Therefore Proposition 4.5 applies and we see that the
composite function E¥(Z) really belongs to L(/). The intuitive meaning of
assertion (ii) is as follows. E*(Z) represents the expectation of Z if our process
starts at the initial position x. The Borel family F, represents information about
the process up to time s. So the displayed equality in (ii) means that the condi-
tional expectation of a random variable Z o #, which depends only on the
process after time s, if all information about the process up to time s is given,
is as if the process had started at time s at the initial position of X(s).)

Proor. The linear closure L’ of the stibset of L consisting of functions of the
form fi(X(t)) --- f,(X(,)) with f,eC(j =1, --.,n) is dense in L by Stone-
Weierstrass’ theorem. Define £ on L’ by

E(Ziaff(X(1) -+ [LA(X(1)) = 2y ai Py (i Py (fs" -+ Popee, (1))
foralla,eR, f;feC,and t, < --- < t,in D. To prove that E is well defined
it suffices to show that if the sum in the left side of the above equality is the
constant zero function, then so is the sum in the right hand side. But if the
first sum is the constant function 0, then 3}, a, fi'(x)) - - - f,(x,) = 0 for all
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(X1, -+, x,)€S" In particular, when x,, - .., x,_, are held fixed, this function
as a function of x, is the constant zero function. Consequently

24 filx) - f’fb—l(xn—l)Ptn—tn_l(fni) =0
for all (x,, ---, x,_;) € S"~'. Repeating this argument we see that the second
sum in the defining formula for E is indeed the constant zero function if the
first is. It is obvious that E is linear, nonnegative, and that E(1) = 1. Hence
E can be extended by continuity to a similar function from L to C, which is a
fortiori a transition function from (S, C, C*) to (Q, L, L*). Let I, C* be given,
and let / = I E. Assertion (i) follows trivially from the defining formula of E.
To prove (ii) take two arbitrary generating elements Y’ = f|(X(t,)) - - - f.(X(¢,))
and Z' = g,(X(s)) - - - 9,(X(sy)) with 1, < ... <t, <5 for some se D and
5 -+ <s,. Then
I(Y/(Z' 0 0))) = (YE**(Z'))

as can be verified by a direct substitution. By linearity and continuity of E,
the same equality therefore holds for all Y’e L, and Z'e€ L. The Markov
property (ii) has thus been verified for all Z’e L. In general take (Z, (Z,)) e
L(I,P,E) = L(I;). By Theorem 4.2 (or rather its proof) we have (EZ, (EZ))) €
C(Iy,); equivalently (EX®(Z), (E¥*(Z,))) e L(I). On the other hand (Z . 4,,
(Z w0 0,)) € L(I) because

ZallZy o 0] = Du K(|Z,] 0 0,) = ZW IEY|Z,| = T, L P, E|Z,] < oo
and the conditions (1.1) and (1.2) are fulfilled. Thus for Ye L,
(Y(Z00,) = L, [(Y(Z, 2 0.) = X, (YE¥"(Z,)) = (YE*"(Z)) . 1[I

To extend the Markov process constructed on D to [0, co) we need first to
show that the sample functions X(., w) are well behaved on D. To this end,
the following scheme is followed. Fix ¢ > 0 and consider, heuristically, the
first time 7 when X(T) wanders out of the e-neighborhood of X(0). We note
where X(T) is, and observe the behavior after time T. The strong Markov
property 5.2(b), if it were applicable to T, would say that this probabilistic
behavior of X after time 7 would be as if the process had originally started at
X(T). So there is a first time 7" after T when X(7”) wanders out of the e-neigh-
borhood of X(T'), and so on. The Markov property and the continuity condition
(d) should then imply that, given any s > 0, for n large enough, the nth time
T™ should exceed s with a high probability. In particular, except a small subset
of Q, every sample function X(., w) up to time s can be broken into n pieces
each of diameter at most ¢. This is the conclusion of Theorem 5.5.

There are two difficulties involved in the construction just described. First
the function T might be constructively undefined, defined but not measurable,
or measurable but with values not in D so that X(T) does not make sense.
Second, the strong Markov property might not a priori be applicable to 7. To
overcome these difficulties, we introduce a sequence of random times (T,),
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where T, is the first time the process X wanders out of the ¢-neighborhood of
X(0) when X is sampled only on a finite subset D, of D. On the one hand,
since T, has only finitely many values the Markov property is easily applicable.
On the other hand, it is hoped that as D, 1 D we have T, | T whence X differs
on Dn[T,,, T,] by at most some ¢, from X(T,), except perhaps on a subset
of Q with probability < ¢,. Asa consequence X would differ on D n (T, T}]
from X(T,) by at most }] ¢,, except perhaps on a subset of Q with probability
at most ) ¢,. This way we can sidestep the application of the Markov property
to T by applying it to the T,’s, provided }; ¢, is very small. There is, however,
no reason to expect »; ¢, to converge. It is even conceivable that the waiting
time T, for X to wander out of the fixed ¢-neighborhood of X(0), when X is
sampled on D,, to be much longer than T, ,. For this reason we give up the
fixed e-neighborhood. Instead we let T, be the first time in D, when X(T) is
out of the a(T,)-neighborhood of X(0), where a is a function on D varying in
(¢, 2¢). How this will help is perhaps best explained by the proofs of Lemma 5.3
through Theorem 5.5, which make the above construction precise.

First we define a stopping time (with finitely many values) and state a lemma
to the effect that the Markov property 5.1(ii) is applicable to such stopping
time.

Let Q, L, E, (X,), (L,), and (6,) be as constructed in the above theorem. Let
I, be a subset of C* and let I = I,E. By Theorem 4.2 we can extend E to a
transition function from (S, C(I)), L) to (2, L(I), I). A measurable function T
on (Q, L(I), I) with values in a finite subset D’ of D will be called a stopping
time for the Markov process (Q, L, I, E, (X,), (6,)) relative to the initial distribu-
tions I, if

(T =1neL) for every teD’.
For such a stopping time define
FT,I)={XeFL,I): f(X)pr-n€ F(L,) if teD’, feC};

0r(®) = O0py(0) 3
Xr(0) = Xy, (@) .
Clearly F(T, 1) is a Borel subfamily of F(L,I). Suppose T and T’ are two

stopping times as above. We will use without mention the easily proved fact
that T + 7" o 0, is a stopping time relative to the same initial distributions I,.

LEMMA 5.2. Let Iye C* be given and let I = IJE. If T is a stopping time for
the Markov process (2, L, {I,P,E},.,, E, (X,), (0,)) andif Ze L({I,P E},.,), then

@) Zob,eL{l,P,E},cp)
(b) I(Zo0,|F(T,I)) = EX7(Z) as measurable functions on (Q, L, I), and
(€) E(Zo0;) = E(E*'"(Z)) as measurable functions on (S, C, {I,P,},. ).

Proor. The proofs are straightforward., We give, for illustration, that of (a).



CONSTRUCTIVE PROBABILITY THEORY 67

Since (P,) is a semi-group, we have for every u e D,

{[OPuPsE}sSD c {[OPsE}seD a‘nd so L({IOPsE}seD) c L({IOPuPsE}

seD) *

Hence Ze L({I,P,P,E},.,). Therefore 5.1(ii) gives Zo 6, e L(I,P, E) for all
re D. Since u is arbitrary, we have Zo 0, e L({I,P,E},.,). Therefore (a) follows
from

Zolp=YepZob, Xip, - 0

The next lemma is crucial to our construction. It also establishes the nota-
tions used in the theorem to follow.

LemMA 5.3. For arbitrary s € D, the function Y, = sup {d(X,, X,): te D n [0, s]}
belongs to L(C*E).

Proor. Let /e C*and I = I,E. Conceivably Y, could be undefined on a full
set in (Q, L, 7). That this is not the case is part of the assertion. Let0 < a < b
be arbitrary. Let a, be a strictly increasing sequence in (a, b) converging to
some a, and such that (d(X,, X,) > a,) and (d(X,, X,) > a,,, — a,) belong to
L({l,P.E},.,) forallte D,k =0, 1,2 ... (thisis possible by (2.4)). Construct

(i) asequence 0 =p, < p, < --- < p, < --- of strictly increasing integers
such that 2-7% . s < d((a,,, — a,)/2) for k = 1,

(i) D, ={j277 -5:0<Z j< 2%} fork =0,and D_, = ¢,

(iii) for each re D n [0, s], the integer j(f) = j such that re D; — D, _,,

(iv) in case j(f) = k + 1, the smallest member r(r) of D, such that ¢t < r(z),

(V) 4e = Aiep, (d(Xp, X)) < a;0)),

(viy T, = 2iteny DXaixg xp>a)0idXg, X Sa .y, forall ue Dynlo,en T SXa, (= first time
in D, when d(X,, X,) > a;).

Then T, is a stopping time for (Q, L, {I, P, E},. ,, (X,), (0,)). Also obvious is the
relation: for all k = 0, 4, > A4, , and

Ay — A < Ve ppi T =16 d(Xy, Xoi) > @ — ay) .

Hence

(A, — Ap) = Ztepkﬂ [(X<Tk+1=t>EX(t)(d(X0s Xow—t) > @y — ay))
= 2l D41 [(X(Tk+1=t))(ak+1 — a2
= (@41 — a)/2.
The first inequality follows from the Markov property since (T,,, = ) € F,; the
second because r(f) — t < 277 . 5 < 6((a,,, — a,)/2) for te D,,,. Therefore
the set
B= AiioAr = Aiennros (d(Xoy X,) < ayp))

is measurable in (Q, L, I). It is obvious that for all we B, we have d(X(w),
X(w)) < bforall te D n [0, 5]; and for all w € — B, we have d(X,(v), X,(®)) > a
forsome r€ D n [0, s]. Repeating the above construction we obtain, for every
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n, measurable sets ¢ = B(0), B(1), - .-, B(2") such that
for all we B(k), d(X)(w), X (0)) < k2="M forall te D n [0, s];
for all we —B(k), d(Xy(w), X, (0)) > (k — 1)2—"M

for some re D n |0, s].
where M is the diameter of S. Define

— 2n —n
Z, = 3L K27"My gy - pi-1) -

Then Z, — Z,,, < 27"M for all n, and so Z =1lim Z, is in L(I). It is easily
verified that Z, whenever defined, is the supremum of {d(X,, X,): te D n [0, s]}.
In other words Y, is equal to Z and so belongs to L(f) = L(I, E). As I,e C* is
arbitrary, the lemma is proved. [J

The next lemma says that with high probability, X will remain near X(0) at
least for a while. Perhaps one should bear in mind that the strong Markov
property is not available; otherwise the proof would be much simpler.

LemMA 5.4. Suppose ¢ > 0, s < 8(c), and ¢ > 2e. Then E(Y, > ¢) < 2¢ on its
domain. (Recall that x is in the domain of E(Y, > ¢)iff (Y, > ¢) e L(E*) = L(0,E)
where 0_ is the point mass concentrated at x.)

Proor. Let/,=d,and I = [,E = E*. Leta = ¢and b = 2¢. Construct as
in the proof of the previous lemma the objects (a,), (p,), (P,), and (4,). Then,
as seen in that proof,

EX(A, — Apy) = (A, — Apy) < @y — 4y
If we let f be a continuous function on §* with y4.., < f < Xw>e» then
Er(—A) = E*(d(Xy, X)) > a) = E*(f(X,, X)) = P(f(x, +))(x) = .
The first equality is a consequence of the definition of E, while the last inequality
is a direct consequence of condition (d). Combining,
E*(— APz Ar) = E*((—A)) V (Ay — A) V (A — Ay) V- +)
<e+(a,—ay) + (a,—a)+ ---
=¢+a, — q,
< 2e.
Since (Y, > ¢) < — A 4, for all ¢ > 2¢, the lemma is proved. (]
The next theorem is the main result of this section.

THEOREM 5.5. Let real numbers ¢ € (0, 1) and s € D be given. Then there exists
an integer n which depends only on ¢, s, and the operation ¢ in (d) such that for every
I, € C* there exist random variables

0=U,<...=U,
and a measurable set G in (Q, L, I = I,E) such that
I(GvVv (U, £9) < 2e,
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and such that for all w € —G we have
d(X(w), X(0)) < 4c whenever t,re (Ufw), U, (w)) for somei.
(In particular, except for a set of measure no greater than 2e, the sample functions
X(+, w) can be broken into n pieces on [0, 5], each of diameter no greater than 4e.)
ProOF. Let g be an integer greater than 2 and 2s - d(¢/2)"(1 — ¢)~*. Let m be
an integer so large that (¢ — 2)™/(g — 1)™ < ¢, and letn = gm + 1. We will prove
that the integer n has the desired properties. Take any /,e C* and let I = [ E.
Let a =¢, b = ¢ + ¢/n. As in the proof of Lemma 5.3 construct the objects
(a)> (Pi)> (D), J(1), (A,) and (T,). For k = 1, define
Z, =sup{d(X,, X,):te D n [0, 27% . 5]} .
In view of Lemma 5.3, we can find a sequence (a,’) of numbers such that
a, < a' <a,,,and
(Zy > apy — a) e L({L, P E}, )

for every k. Define

B, = (Z, 0 0T,,+1 > apy — ).
Then y,, = Lizy>ay, -ap © Or,,, and so, by Lemma 5.2,

B,e L{,P,E},.p)
and
E(B,) = E(EYTe1(Z, > @iy — ay)) -
Since 277 - s < 0((a,, — a,)/2) and a;,, — a, > a,,, — a,, Lemma 5.4 implies
that the last displayed expression is always bounded by a,,, — a,. It follows
that B = V., B, belongs to L({l,P,E},.,) and
EB) < 201 (@441 — @) = G — a; < ¢fn
on some full subset of (S, C, {[,P,},.,)-
Likewise, since

Tk+1 é Tlc in L({IOPuE}uED)
and

(Ty = Tpyr > 277 - 5) < B,
The function T = lim,_,, T, belongs to L(/,P,E},.,) also.

Now we start the process again at time 7, and repeat the above construction
n times. To be precise, define for 1 <i < n
Vi=T,; u=r; L= B,
V, Vii+ Vio 0"1‘—1 5 U=V,_,+Uo-80,

G=G, V.- VG,.

The set G will now be shown to be the exceptional set having the properties
described in the conclusion of the theorem. To this end let w be in —G and in
the common domain of the ¥, and U,’s. Then

o = 0"1‘—1(0)) € -G, =—B=—V;.B,

; G, =0;_(G).

1—1
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and so
d(X(r), X(Ty))@) < apyy — @, < iy — @,
for k = 1 and re[7,,,(e'), Tipu(@’) + 27% - 5] C [Ty4y(@’), Ty(')]. Summing
over k, we have for all re (T('), Ty(w')], '
d(X(r), X(T))(@) < 4(a. — a,) < 2¢.
Substituting ¢, _(w) for ' and simplifying,
d(X(t), X(V))(@) < 2¢ for te (Uw), V,(o)].
On the other hand, if 1€ [V,(w), U,,,(®)), we can write t = r 4 V,(w) where
r< Uy(o) — V(o) = T(ﬁvl(“’)) = Tj(r)(ﬁVi(w)) .

Therefore

d(X(1), X(V))(@) = d(X(r), X(0))(0, (0)) < a;,) < @ < 2e
because T, is the first time when the process X, sampled on D, ,,, wanders
out of the a,, -neighborhood of X(0). The second conclusion of the theorem
has been proved. It remains to see that the exceptional sets G and (U, < s)
have small measures as alleged. It is immediate that /(G) < ¢ because for each
i, by 5.2(c),

[G) = I(ts 0 0y, ) = HET=2(B)) < ¢fn.
To show that (U, < s) is very small we first prove that /(V, < s) is not too
large and then that J(U, < s5) < I(V, < s)». Now for each i we have, for all
re D with r > d(¢/2),
E(Viyy — V) = E(Ty 0 0,) = E(E""(T})) =z E(rE*" (T, z 1))
= E(rEXVo(Y, < a)) = r(1 — ¢)

where Y, = sup {d(X,, X,): 0 < ¢ < r} as defined in 5.4. Summing these in-

equalitiesr over i, we see that E(V,) = qd(¢/2)(1 — ¢) > 2s. Observing that
0 < V, < gs, we obtain by an elementary calculation
EV,=9)=(@—-2/(qg—-1.

Vim-11g> Vmq abbreviated by V, V7, ... 7 respectively,
an easy induction shows V' — V =Vod,, ..., V" — V" = Vo 6,... Hence,
using 5.2(b) repeatedly, we obtain

U, <) < IV, , < 5) = (V" < 5)
VSV — Vs V" — V' <)
=IVEssV —VZs.-3Vel,, <)
=I(V==ssV —-VZs - EXU(V < s))
sIV=ssV —V=s--)-(g=2/¢q—1)

With V,, ,

2> "t

A

=@¢-2"g—-D"
< €.
The proof is completed. []
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The extension of the Markov process to the parameter set [0, co) is now an
easy corollary. Define X on [0, o) by

X(t, ) = lim X(r, w),

reD,r—t

the domain of X composing of those (¢, ) for which the limit exists.

PROPOSITION 5.6. (a) X is a measurable mapping from ([0, c0)® Q, K,
¢ ® C*E) to (S, C). Here K stands for the continuous functions on [0, co) ® Q
with compact supports, and p for the Lebesgue measure on [0, co).

(b) Foreveryte [0, co), the function X, = X(t, +) is a measurable mapping from
(Q, L, C*E) to (S,C). In particular X(t, +) is defined on a full subset of
(Q, L, C*E)—almost sure lack of discontinuity at t.

ProoF. Let se D, I, e C* be given. By the previous theorem, for each k there
exists random variables0 = U} = V) S Ul < VFi< ..o € Uk, < VE,, such
that, except on a subset B, of Q with measure /(B,) = I,E(B,) at most 27%, we
have U%,, > s and the sample function X(., w) differs on (U}, U}, )(®) from

X(V,}(w), ®) by at most 27*. Define X* on [0, co) ® Q by

Xt 0) = 2007 L U k) <t<U ;l(w))X(V (@), w) .

Then X* is clearly measurable. Moreover X* is away from X™ by at most
2% 4 27™ on [0, 5] X —V mss Bn if m = k. Since the last written set has
measure at most 2-*s, the sequence X* converges a.e. on [0, 5] ® Q relative to
¢ ® 1. The limit is readily verified to be X. In particular X is # ® I-measurable.

To prove (b) take r € [0, co) and I = I,E. Lete, > 0 be terms of a convergent
series. Let (r,) and (s,) be sequences in D with r, 1 t and s, | ¢, in such a way
that the set

Ay = (SUPse patry a1 X (1), X(5) > )

has measure /(A4,) less than ¢,. This is possible by 5.4. (Strictly speaking ¢,
should be replaced by a slightly larger number so as to ensure the measurability
of 4,.) Then A = V7, Ai. A, is a null set. X(z, .) is clearly defined on — 4.
Moreover d(X(r), X(r,)) < ¢, on — A, and so X(r,) converges a.e. (/) to X,. In
particular X, is measurable as asserted. []

The next proposition merely extends 5.1 to cover the parameter set [0, oo).
Its easy proof by continuity is omitted.

PROPOSITION 5.7. Let the process X be defined as above. Again we write X(1)
for X, when convenient.

(i) Let [,e C* and / = I E. Then the probability 7, ,, induced by X(s) on
(S, C) relative to I is equal to I, P,.

(iiy For s > 0 define the shift §, on Q by 6,(w) = the member of Q whose
value at re D is given by X(r + s, ). Then 6, is a measurable mapping from
(Q, L, C*E) to itself.

(iiiy Let s> 0, I,e C*, and Ze L(I,P,E) be given. Write / for [,E and L,
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for the family
{9(X(s,), - -+, X(s,)): ne N; g continuouson §*; 5 < --- <5

Then .
K(Zo6, F(L,, I)) = E¥®(Z) onan [-full set. 0

6. A submartingale convergence theorem. In [1], Bishop proves that if
certain “2-norms” of a martingale converges, then the martingale converges a.e.
The proof being constructive, bounds are given which also give numerical
information concerning finite martingale sequences. This is in distinct contrast
to the classical convergence theorem. The purpose of the present section is
two-fold. First, we amend Bishop’s definition for admissible functions for his
“2-norms”, so that functions like |x|?(p > 1) are included. Second, Bishop’s
theorem is extended to submartingales.

A sequence of random variables (X,) is called a submartingale if for every n

E(X,; A) = E(X,; A)

where A4 is any set measurable relative to X, ---, X, (in the terminology of
Section 3, y, belongs to the Borel family generated by {X,, ---, X,}). If > is
replaced by = in the definition, (X,) is called a martingale.

Let Abea honnegative even function with a continuous first derivative on R,
and a continuous positive second derivative on R — {0} and such that 1(0) = 0.
(e.g., |x|* would be admissible if p > 1). For r > 0 define

a(r)y = inf {(r — x)72§2 (1) — X(x)dt: |x| = 1},
B(r) = inf{(r — ) () — X dr: |y = 1}
The infimums exist since the functions involved are continuous. A little calcula-
tion shows that these infimums are positive, and are continuous functions of
re (0, co). Moreover, if we define
o(r) = a(r) A Br),
then the function 8(|x| v |y|)(y — x)* can be extended to a continuous function
on R? which vanishes on the diagonal x = y. We have the following inequality.
LEMMA 6.1. A(y) — A(x) — X(x)(y — x) = 0(|x] V |y|)(y — x)*forallx, ye R.

Proor. The left side of the inequality can be written as ! A'(r) — A'(x) dt
which is equal to {22 '(f) — A'(—x) df since 1 is an even function. In case
y > |x|, the first integral is no less than a(y)(y — x)* by the very definition of
a. In case —y > |x|, the second integral is no less than a(— y)(y — x)* for the
same reason. Thus the left side is no less than

a(y)(y — x)" = a(lx| v YDy — x)* = 0(x| v [Y)(r — x)*
when |y| > |x|. Similar reasoning will prove the inequality when |y| < |x]|.

Since both sides of the inequality are continuous in x and y, the lemma is
proved. ]
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From this inequality, Bishop [1] gives the following estimates for a martingale.

THEOREM 6.2. Let K and ¢ be positive real numbers. Then there exists 0 > 0
such that for every finite martingale X, - - -, X, with E(A(X,)) < K and. E(A(X,)) —
E(A2(X,)) < 0 we have

@) E(Via (X — Xo| > ) <.
(Strictly speaking, the first ¢ in the inequality should be replaced by a slightly
larger number so as to ensure the measurability of the set involved.)

We now generalize this theorem to submartingales.

THEOREM 6.3. Let ¢ be a positive real number and let a be an operation which
assigns to every positive real number another positive real number. Then there exists
0’ > 0 such that for every finite submartingale X,, - - -, X, with

(b) E(A(X,); A(Xy) > a(F)) < 8 forall 6 > 0,

(©) E(A(X,)) — E((Xy) < 9,

(d) E(X,) — E(X,) < @,
then X, - - -, X, satisfy condition 6.2(a) above.

Proor. Lete, a be givenand let K = a(1) + 2. Let d be associated to K and
¢/3 as in the previous theorem. Choose r > 0 so large that A(r) > «(6/4). Then
choose s so small that |A(x) — A(y)| < d/4 if |x]| £ r and |x — y| < 5. Define
0" = 0'(e) = /9 A s0/(4A(r)) A 6/4 A 1. We will show that ¢’ has the desired
properties.

So let X, ---, X, be a submartingale satisfying conditions (b) through (d).
There is no loss of generality in assuming that X, ..., X, are such that for
some countable subset C, of the set {rational numbers}*+!, we have

Zrean(Xo =r, X, =r)=1

and that all terms in the series are positive. Clearly, then, each subsequence
Xy, - -+, X, has the same property. In this case we can constructively define the
conditional expectations
EX,;Xo=rp - X, =1)
U, =EX,| Xy -5 Xp) = 20, e ny 40 0 y Xy k)
k (X, | X, ¥) = 2irec, Lixg=rg, o, X =) EX, =10, - X, = 1)

Then it is well known that (U,);_, is a martingale, while (V},);_,, defined by
V.= X, — U, is a non-positive submartingale. Also obvious is the relation
U, = X,. Hence ’

0 = E(Vy) = E(X,) — E(Uy) = E(X,) — E(U,) = E(X,) — E(X,) > —0d".

Let v be the first time k such that ¥V, < —¢/3. Then V,, V, is again a sub-
martingale and so

B(via(n< ~£)) = (< ~5) 5 Lacny s e
<3<
€ 3

IA
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Next, observe that condition (b) with ¢ = 1 implies E(4(X;)) < (1) 4 1 and
so condition (c) implies E(A(X,)) < a(1) + 1 + ¢’ < a(1) + 2 = K. Hence, for
the martingale (U,) we have

E((U,)) = EQEX,| X, -+, X,)) < EEQXX,)| Xy, -+, X)) = EA(X,)) < K,

where the first inequality (Jensen) is a direct consequence of Lemma 6.1. At
the same time

B((U) = (X)) < BQX) + 0" < EGUX)) + 5
= EQ(X): (%] = 1) A (Wl < 9) + EGEG); (K] < 1) A (Wil 2 9)
+ B (5] > 1) + 2

< £(XU) + 5) + AOE(VI 2 9) + EG: (A(X) 2 20) +

ENES

< EQU)) + 2+ A0 E=V) + 5 + 5

— EQ(U)) + 3.

The hypothesis of the previous theorem is satisfied by X, ¢/3, 4, and U, ---, U,.
Hence

(vl 00> $)) < 5

Combining this with

(Va1 > ) = (vl < -3)) < 5

we obtain via the triangle inequality
2
E(VI‘=1 (le - Xol > 5)) < ?E <e. 0

COROLLARY 6.4. Suppose (X,)y-, is a submartingale such that (A(X,))i., is uni-
formly integrable (i.e. the random variables A(X,) satisfy (b) for one and the same
operation ) with E(A(X,)) and E(X,) convergent. Then X, converges a.e.

The corollary is proved by applying the previous theorem to successive blocks
of the sequence (1(X,)). (See [1] page 225.)

We remark that in Theorem 6.3, the number ¢’ depends in an essential way
on the operation a. Thus Theorem 6.2 is untrue for a submartingale even with
the additional assumption that E(X,) — E(X,) < . Suppose §(K, ¢) can be com-
puted so that condition (a) is satisfied for every submartingale with E(2(X,)) < K,
E(A(X,)) — E(A(Xy)) < 6, and E(X,) — E(X,) < 6. For illustration take (x) = x*,
e=14, and K =1. We may assume 6 < }. Let X, assume values 0 and —o~!
with probabilities 1 — 4% and &* respectively, and let X; be independent of X,
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and assume values —1 and 1 with probability } for each. Then X,, X, isa sub-
martingale.  Also E(X)) =0*-4* =1, E(X?) =1, while E(X,)=0 and
E(X,) = —d. So (X,, X)) satisfies all the conditions laid down. However

E(lX, — X >HZEX,=0)=1—-8>3.

.

By the same taken none of the three conditions in Corollary 6.4 can be
dropped.

In case 4 is convex monotone (but not necessarily smooth) an inequality with
the same flavor as (a) has been derived for submartingales in [5].
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