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ON THE WEAK CONVERGENCE OF INTERPOLATED
MARKOV CHAINS TO A DIFFUSION!

By HArRoLD J. KUSHNER

Brown University

Let {&", k =0, 1, - - -} denote a R~ valued discrete parameter Markov
process for each n. For each real T > 0, it is shown that suitable piecewise
interpolations in D7[0, T] converge weakly as n — oo, to the diffusion given
by
(% x(t) = x + §§ fx(s), 5) ds + {& a(x(s), 5) dw(s) ,
under essentially the condition that the solution to (*) is unique in the sense
of multivariate distributions, f(s, «), o(+, +) are bounded and continuous,
and the scaled “‘infinitesimal” coefficients of the {£x*} are close to f(+, «) and
o(+, +). It is not required that f(, +) or g(+, +) satisfy a uniform Lipschitz
condition, nor that g(s, «)o’(+, +) be positive definite. The result extends
the result of Gikhman and Skorokhod (1969). Two examples arising in
population genetics are given, where o(+, «) is not uniformly Lipschitz.

1. Introduction. For each n, let {§,", k =0, 1, ...} denote a discrete param-
eter Markov process with values in R", Euclidean r-space, where &,* converges
in distribution to a random variable §,;as n — co. Let <%," denote the minimum
o-algebra which measures §,”,i < k, and let9¢,",i = 0, 1, - - -, denote a sequence
of positive real numbers. Define

= D on".
Let T denote a fixed positive real number, and let f(., +) and f,(+, +) denote

bounded R~ valued functions on R" x [0, T'], and ¢,(-, +), and ¢(-, -) bounded
r x r matrices on R” x [0, T']. Suppose that

Eﬂk”[EZ+l — & = fu6”s 1o
ov;&’k"[s;:+l — & = 0,87 1M)e (6 1Mo,

where ’ denotes the transpose. Let N, = min{k: 7, > T} and suppose that
(where Euclidean norms are used)

() E X8 {6 6" — fES 6P + louEn 1) — a6 1)t — 0

as n— oo .

‘

Under some additional conditions Gikhman and Skorokhod (1969) showed,
for r = 1, that suitable continuous time interpolations of the &, processes con-
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MARKOV CHAINS TO A DIFFUSION 41

verge weakly to a diffusion satisfying
(2) xX(1) = x + §5(x(s), 5) ds + §o0(x(s), 5) dw(s) ,

as n — oo, where w is a standard Wiener process. Crucial to their proof were
the conditions that f(., f) and o(-, r) satisfy a Lipschitz condition uniformly in
t,and that |o(-, £)| be strictly positive. If ¢'(+, «)o(-, +) is strictly positive definite
and the uniform Lipschitz condition continues to hold, there is no difficult in
extending their proof for general r.

There are many applications where a(-, +)o’(+, +) is neither strictly positive
definite, nor does o(-, +) satisfy a uniform Lipschitz condition. An example
arising in population genetics is discussed at the end of the paper. We also note
that the strict positive definiteness rarely holds in examples arising in stochastic
control theory when r > 1. In this paper, we prove weak convergence under
essentially the conditions that f{., «), ¢(+, +) are bounded and continuous, and
that the solution to (2) is unique in the sense that any two non-anticipative solu-
tions (perhaps each corresponding to a different Wiener process) have the same
multivariate distributions.

2. Some preliminaries. For the most part, we follow the terminology of
Billingsley (1968). Let D denote the space of real valued functions on [0, T
which are continuous from the right on [0, T'), have left hand limits on 0, 1],
and are continuous from the left at t = T. D™ denotes the m-fold product of
D. There is a metric (which we use here) dy(x(+), y(+)) (see Billingsley (1968)
pages 112-116) on D™, with respect to which D™ is a complete separable metric
space, and convergence of y,(+) to y(-) in the metric d, implies convergence at
all points of continuity of y(+), and if y(+) € D™ then y(.) has at most a countable
number of discontinuities. Let 7™ denote the Borel algebra induced on D™ by
the metric d,.

Let {z,} denote a tight sequence of measures on (D™, &™), corresponding to
a sequence of processes {x"(+)} with paths in D™ w.p. 1. Then {z,} has a weakly
convergent subsequence {z,, } (converging to a measure x on (D™, ™)) and there
is a separable process x(+) with paths in D™ w.p. 1, corresponding to the measure
. Such convergence will be denoted by either z,, —,, ¢ or x*(+) —, x(+), and
if {¢,} is tight we may write {x"(+)} is tight.

The following (slightly reworded) lemma of Skorokhod (1956), page 281 will
be helpful later.

Lemma 1. Let {v,} and v denote random variables with values in a complete sepa-
rable metric space X. Let v, —,v. Then there exist random variables (¥}, ¥ with
values in X such that for any Borel set A in X,

P{v, e A} = PV, € A}, Plve A} = P{v e A}.

The random variables {V,}, ¥, are defined on the same probability space, where Q =
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[0, 1], and the probability measure is the Lebesgue measure, and
P@,—>¥,n—o0)=1,
where the convergence is in the metric on X.

(In our case X = D™ for some m, and the metric will be d,. To each random
variable x(+) with values in D™ corresponds a process (¢ € [0, T']), also denoted
by x(+), with paths in D™ w.p. 1. We can (and always will) suppose that the
process x(-) is separable.)

Criterion for tightness on D™. Let {x"(.)} denote a family of processes with
paths in D™ w.p. 1. A sufficient condition for tightness is (see Billingsley (1968)
Chapter 3, Theorem 15.3, and proof of Theorem 15.6) that (i)—(iv) hold.

There is a real K so that, forall0 < <t <, < T,

(i) E|x™(t) — x*(t)*|x™(t)) — x™(1)]* £ K|t, — t,*. Foreache¢>0, >0, there
isa de (0, T) and an integer n, so that for n > n,

(i) P{supog,s;<, [X"(1) — X™(5) = ¢} < 7.

(iii) P{SUpy_,gegisr [X"(1) — X"(8)| = ¢} < 9.

(iv) P{sup,., |x™(t)] > a} — 0 as @ — oo, uniformly in n.

3. Assumptions. We will require (1) and (Al)—(A6).

(A1) max,g,oy _,|0t,"| —0asn— co.

(A2) f(+, +) and o(., ») are bounded and continuous on R" x [0, T], f,.(+, *),
c,(+, +) are uniformly bounded.

(A3) &,” converges in distribution to a random variable &, as n — oo.

(A4) E =it |€ry — & — fu(&5 1Mot [t —0as n — oo, for some a > 0.

(AS) There is a real X, > 0, so that K, < d#7,,/0t," < K,7%, for all n, k.

(A6) Let &'(+), i = 1, 2, be R” valued processes, non-anticipative with respect
to the R™ valued Wiener processes Wi(+), i = 1, 2, resp. If (Wi(+), §i(+)), i =
1, 2, satisfy (2), and £'(0) and £*(0) have the same distribution, then the mul-
tivariate distributions of £(+) are the same as those of £%(.).

4. Interpolations in D™. We write (the equation defines dY,")
S =4§&," + fuli"s 1,01 + 0Y," .
{0Y,"} is an orthogonal sequence for each n, and E_ .0Y,*(3Y,") = 0,(§,", 1,")
a,/(&", t,")at,". Define Y,™ by )
Y,r = s oY,
For each n and ¢ > 0, let {0U,™*} denote a sequence of independent random
variables in R™ with mean zero, and which are independent of the {£,"}. Let
E@U™)(0U™) = éldt,", where I is the identity matrix and E|oU,™¢|* < K|o¢,"]*
for some real* K. Define
U = S ause.

2 The value of K may vary from usage to usage. It will always denote a positive real number,
independent of w, n, ¢, k, etc,
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Define X,™ = &,* + U™, and Q™ = dY," + oU,™¢, and let Q,™* denote
Y,” 4+ U,™c. Then
X17:+€1 =§" + Z:J;Ofn(sin’ tin)atin + Y+ Ukn’s .

Let .57,™¢ denote the minimal ¢-algebra which measures {§, U™, i < k}.
Define the matrices A™¢(+, «) and A(., +) by

AR (s ) = [3,(05 )0 (o +) + 1]
A(es +) = [0(s5 )o'(ss +) + 1.

If 4 is any positive definite matrix, let 4} denote some square root of A4 (i.e.,
A = A¥(A4Y)). Define o°(«, «) = [A(+, )]}, 0™(+, +) = [4™*(+, +)]}, and we can
suppose that ¢¢(+, -) and ¢™<(+,.) are chosen so that ¢¢(., -) is bounded and
continuous on R" x [0, 7] and that (see (1))

E Y ¥ast [ame(E,", 1,7) — o9&, ,")Pot," — 0 as n— oo .

we can also suppose that ¢°(+, +) converges pointwise to g(+, «) as ¢ — 0.
Define b,™* by

byme = [o™(&," ,")]7[0Y," + oUMe] .
For each n, ¢, {6,"} is an orthogonal sequence and Cov b, *¢ = dr,"I. Define
B, = Yk b and Z,v = Yk o6, 1M)b . Note that
o = ?:_ol on’E({:in’ tin)bin'E
and that, using the martingale inequality of Doob (1953) VII, Theorem 3.4,
(3) Emaxg,cy, |Q" — Z," P < 4E Yingt ot (6", ") — o™(§,", 1) [Por”
-0 as n— oo .

Define the piecewise constant interpolations denoted by
(4) §(e)s Y7(e), Une(e)s @V(e)s X™5()s Z75(¢), BM(+)
in D" by, e.g.,

sn(t) = {:kn s LTS -

Let m = 7r henceforth, and denote the R™ valued process whose components
are listed in (4) by @™<(.).

LEMMA 2. {®™<(.)} is tight in (D™, Z™).

Proor. The proofis straightforward, and only a sketch for Y”(.) will be given.
Y,™ is a martingale and the inequality

Esupﬂngkgo IYk”lz £ 4£] Yﬁnlz < 4E Zi’é‘;l lon(gkn’ 10, (€,", tkn)z‘]mkn < KT,
which holds for some real K, yields (iv). Both (ii) and (iii) follow from a very
similar calculation and we omit the details.

For se [0, T) define m,(s) = max{k: t,* < s}. Let &," denote the minimum
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c-algebra measuring §*(t), t < s. For r > s, we have

) EoalY"(@) = YO = En | Z5mn 5 0Y,
< K(tm (ry — mn(s))

for a real K (independent of n, 7, s, w). Let 1, < 5 < 1,, and let m,(s) = k. If
either ¢, < t},, or 1, = 1,", then the left-hand side of (i) is zero. Thus suppose

that #, = 73,, and 1, < 1,*. By (5), the left-hand side of (i) is bounded above by

K? (tm alte) In (s))(t:L (s) — tf?»,,(t,)) = Kz(tz - tl)(tnn(a) — I (tl)) ’

and by (AS5), 15 o — tn o) = (s — 1) + 01,"/K, < 2(t, — t,)/K,, which implies
(i) for some real K. [

LeMMA 3. For each e, {B™*(+)} converges weakly to a standard r-dimensional
Brownian motion W*(+), as n — co.

Proofr. The proofisa straightforward vector extension of the proof of Lemma
1, page 462, Gikhman and Skorokhod (1969), and we omit the details. The
cited lemma proves that the finite dimensional distributions of {B™<(+)} converge
to those of a Wiener process. That and tightness (our Lemma 2) yield Lemma 3.

5. The convergence theorem.

THEOREM 1. Under (A1)—(AS6), there is a Wiener process W(+) and a random
function &(+), non-anticipative with respect to W(+), so that E"(+) —, &(+), and

(6) E() = & + S5fE(s), 8) ds + §ia(E(s), 5) dW(s)
where &, has the same distribution as &,.

Proor. By Lemma 2, for each ¢, there is a separable process @¢(-) with paths
in D™ w.p. 1 and a subsequence {®""¢(+)} of {®™¢(.)}, so that O™ (.) —, D(+).
Until further notice we will suppose that n (and not n’) indexes this subsequence.
Observe that the finite dimensional distributions of &(+) and Y*(+) do not depend on
& (§7(+), Y7(+)) =5 (£(+)s Y(+))-

Considered as random variables, the ®™¢(.) and ®:(.) take values in D™. By
Lemma 1, we can define random functions (which we can and will suppose are
separable) o “(o)yn=1,2, , and (Df( +), all on the same probability space,
with paths in D™ w. p 1, and havmg the same multivariate® distributions as the
Q™<(.), n=1,2, ..., and ®%(+), resp.,'and for which ®m¢(.) — ®(.) w. p.- lin
the metricd,. In partlcular this implies that Ome(e) — (. +) for almost all w, ¢.
Again, note that the multivariate distributions of* &¢() and ¥+(-) do not depend
on ¢, and that (§"(+), Y*(+)) —, (£°(+), Y*(+)). Now

Xty = & + S5 fE"(9), s)ds + Tn(1) + U™(r) + £ ™(r),

3 Let x(+) denote the generic element of D”. For any Borel set Be R™, and ¢ €[0, T], {x(+):
x(f) € By e &m. Thus, e.g. P{O(11), - - -, D(tk) € Bix « « + x B} =P{®D(t), « -+, De(ty) € By x - - - x By}
for any k, ¢; € [0, T], and Borel B; in R™.

1 &¢(s), Ye(+), etc., are the obvious components of De().
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where < ™#(+) arises due to the approximation of ™%~ £ (. ¢ by the
integral §{f(5"(s), $) ds. The inequality (1), the continuity of f(., «), and the
convergence of ¢"(+) to &(») w.p. | imply that < m¢(.) converges to the zero
function as n — co. By Lemma 1, for almost all o, 1,

(7) Xi(t) = &6 4 §ifE(9), ) ds + (Y1) + U(1)) -
Note that one of the components of ®(.) is a standard Wiener process W:(.).

It will be shown below that &¢(+) is non-anticipative with respect to W<(-), and
that

(8) Q1) = Y(1) + U() = §50°(5(5), 5) dW(s) .
Thus since X<(+) is separable, (7) and (8) imply that it is continuous w.p. 1, and
(7) holds w.p. 1, for all r e [0, T'].

For any ¢, > 0, the set {®(+), ¢ < ¢} is tight and
) Esupyzcp |[X4(1) — S0 = Esupye,er |UA(0)] -0,
as ¢ — 0. There is a process D(+) = ((+), ---) with paths in D™ w.p. 1 so that
for some sequence ¢ — 0 (we hold the sequence fixed in the sequel) D:(+) -, D).
The processes £(+) and ¥(+) have the same multivariate distributions as £%(+)
and Y<(.), resp. and are the weak limits of &*(. )and Y"(+), resp. Let us suppose
that (appealing to Lemma 1) all the ®<(.) and ®(.) are defined on the same
probability space and that ®<(+) — ®(.) w.p. 1 in the metric d, (i.e., for almost
all w, 7). Define

A1) = 5107 ), 5) = a(E(s), )] dW(s)
and write
(10) V() -+ U(1) = §50°(E(5), ) dW(s) + € (1) -
Then
ESupys oy [ (0 < 4E §] [0°(35(s), 5) — a(E(s), )] ds
= 4E §J [0°(8(5), 5) — a(&(9), HPds— 0

as ¢ — 0. Observe that Y(-) is the limit (for almost all , 1) of the sequence of
random functions with values

(11 (Lo (E(s), 5) dW(s) .
Each W'(-) is a standard Wiener process (1 € [0, T]). Since the family of #+(+)
is tight, and they all have the same multivariate distributions, it is obvious that
there is a standard Wiener process W(+) such that W¢(>) —, W(.), and W(+) —
W(.) for all 1€[0, T], w.p. 1. Also, &(+) — &(+) for almost all w, 7. Indeed,
it follows from (9) that £(.) is continuous w.p. 1. Hence ¢*(+) — &(+) for all ¢,
w.p. 1. (9) implies that X(+) = &(+).

Next, we show that, w.p. 1
(12) §5 0(85(5), 8) dWi(s) — S a(E(s), s)dW(s) .

Fix ¢ and let A denote a real number so that r = mA for some integer m.
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Clearly
(13)  o(&(id), iD[W(id + A) — We(iD)] — o(E(id), iAW (iA + A) — W(iA)],
w.p.1ase— 0. Also :

(14) ESup,ygisiaea |§6 [0(5°(0), 1) — 0(84(i), iD)] dW (1)

< 4E (4*0 [a(84(1), 1) — a(&5(id), iM)]* ds
and
(15) Nt E SR (060, 1) — o(§°(8), ib)]P ds — 0
as A — 0, uniformly in ¢, (since the multivariate distributions of &¢(.) do not
depend on ¢). (13)—(15) imply (12). The limit (12), the zero limit of E(+),
and the fact that X(.) = &(+), imply that (6) holds for the weak limit of the
originally selected subsequence of {£"(+)}.

Each subsequence of {{*(+)} contains a further subsequence which converges
weakly to a process x(+) satisfying (6) for some Wiener process with respect to
which x(.) is non-anticipative. By (A3), the distribution of x(0) does not depend
on the subsequence and is that of &,. The uniqueness condition (A6) then gives
the Theorem.

We have only to show (8). Since by (3), for each ¢, the weak limits of Q™*(+)
(resp. O™¢(+)) and Z™<(+) (resp. Z™*(+)) are the same, we need only show that
Z¢(+), satisfies (8), where &¢(+) is non-anticipative with respect to W<(+).

The proof of non-anticipativeness follows very closely the proof that B¢(.) is
a Wiener process in Gikhman and Skorokhod (1969) page 462 (where the scalar
B™¢(+) process is called w,(+)). Let0 < s, < --- <5, < LH< - < t, = T for
some integers p, ¢, let p,, -+, p,, 4, - -+, 4, be arbitrary elements of R” and
write the characteristic function

" = Eexp 1, 0,/6"(s;) expi $1y /(B (1;,1) — B (1))
Following the argument in Gikhman and Skorokhod, and noting that £7(¢) is
%," measurable, we get
lim, I'* = lim, Eexpi 31%_, p,//§"(s;)E , nexpi X1, A/[B™(t;,,) — B™(1))],
where the conditional expectation converges to
exp — 3 21 |41t — 1)
as n — co. Since §%(+) —, &(+) and (§7(+), B(+)) =y (B(+), W),
I — Eexpi }2., p/§(s;) exp — ¥ Lic [ (t50 — 1)
= Eexpi 7, pj’f(sj) expi 219, 4] WS(IHI) — W)l
which proves that &(+) is non-anticipative with respect to We¢(.).

Fix 1€ (0, T), and suppose that A is a real number such that r = gA, for

integral g. We will suppose that 55(1) iscontinuous®w.p. latt = iA,i =0, .-, q.

5 Recall that the proof of the continuity of E(-) depended on the representation (8), which we
are now proving, so we can only assume right continuity here.
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This is convenient but not really necessary. Since &(+) is continuous w.p. 1 at
all ¢, except possibly at a countable number of them, our proof can be adjusted
by dividing [0, T'] into slightly unequal divisions. Define m(i, A, n) = max{k:
t," < t}). Then&*(iA) = &% . LetI(i, A, n) = [k:m(i, A, n) < k < m(@i + 1,
A, n)}. Then ((16) defines C,™)

(16) Cymt = 215 0 (Eniams Tmiam) ke riam 04"

= XI5 07 (1), 1,0,m)[BM (A + A) — B (iB)] .
As n — co, the right side of (16) tends in distribution to
(17) 120 0“4, IB[WH(IA + B) — WH(iD)],

which tends to (8) in probability as A — 0, ¢ — oo, with Ag = 1.
To complete the proof we need a suitable bound on the difference between
C,™¢and Z™(t). Thus we write

E'CAn,e _ Z’n,e(t)|2
= E|X5 Dieraam [0 6 — 0°(§"(18), th,a,m) 00,7
(18) S E RIS Deerinm [958 1.7) — of(€(), 1) 00"
— S [0 (€7(s), 5) — o*(€7(18), 1B)]" ds|
+ LIS E§T [0°(87(9), 5) — of(§7(1), id)J ds .
The argument of a typical term of the first expectation on the right-hand side
of (18) has the distribution of

H

w1 — An.iA - Bn,lA ’

where

Awis = Dieram [0°E 0N, 17) — 0 (EM(18), 1 5,0) 01"
B, = §3+ [04(8(s), 5) — o“(E"(iA), iA)]* ds.

n,t4 —

The sequence {£"(+)} is tight. Thus foreachd > 0, there isa compactum 4, ¢ D™
for which P{&"(+) ¢ A,} < 4, alln. Anecessary and sufficient condition (Billingsley
(1968) Theorem 14.3) for compactness of a set 4 € D™ is that

SUP,. e 4 SUPssesr [X(1)] < 00
lim, _,SUp,..)c 4 inful, max, w[t,_;, t) =0
where, for each fixed d,, the inf is taken over all finite sets {t,} sothat0 < f, <
ty--- <Tandvt,, — 1t = 0d, and where we define

wz[a’ b) = SUP,<s<i<h IX(S) - x(t)] .

These facts, together with the continuity of (., .), and the facts that
max, |6z,"| — 0 and that £"(iA) converges w.p. 1 (to &(iA), since &(+) is con-
tinuous w.p. 1 at r = iA), imply that for any real ¢, > 0, ¢, > 0, there is an
integer n, < oo so that |4 B, .| < ¢, with probability® > 1 — ¢, for n = n,.

n,d T

6 Le., for n sufficiently large (= no) the integral is uniformly (e1) approximated by the sum, for
o in a set whose probability is = 1 — ¢2.
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Thus H, ,, tends to zero in probability as n — co. Hence, by boundedness of
o°(+, +), the expectation of H, ,, tends to zero, as does the first term on the right
side of (18), as n — oo.

Denote the last term on the right of (18) by L™*. The functional

§iate [os(X(s), 5) — o*(X(id), iM]* ds

is bounded and continuous almost everywhere in (D7, <77) with respect to the
measure of £¢(+) on (D, <77), since £%(.) is assumed continuous w.p. 1 at r = iA.
Thus, since £*(+) —, &%(+) as n — oo, L,™* converges to (as n — co),

DI E§37 [0(G(s), ) — o°(§(d), id)] ds

which in turn tends to zero as A — 0, since £(+) is right continuous. These argu-
ments imply that as n — oo, and then A — 0, the left hand of (18) goes to zero.
This, together with the convergence of (17) to (8) as A — 0, implies that Q¢(#)
has the representation (8), as asserted. []

6. Examples from population genetics. We first consider the scalar problem
dealt with by Feller (1950). There is a population of 2n genes of two types.
Suppose that in the current generation there are j of type a, and 2n — j of type
A. The new generation, also of size 2n is selected by 2n trials with replacement,
each trial yielding an a with probability p, = j/2n and an A with probability
g; = 1 — j/2n. The sequence of numbers of type a in successive generations
form a Markov chain with transition probabilities p,, = (3*)p,'q,**~'. Define &,
to be the number of a’s in the kth generation divided by 2n; i.e., the probability
that each selection (trial) taken to form the next (k + 1)st generation yields an
a with probability &,

We have

E );kn[gg.'_l - ékn] = O
E ,ﬂk”|$;cb+1 =& =&(1 = §.)/2n
E ,,k%léz.'_l - Sknl4 é I<(1/2'n)2

for a real K. Interpolate by defining ¢,* = k/2n, o1, = 1/2n, £"(+) by £"(r) = &,»
for t € [k/2n, (k + 1)/2n). Feller (1950) proves that the characteristic function
of £7(r) converges (as the population size 2n increases to oo) to that of the solution
to the stochastic differential equation

(19) x(1) = x + §i[x(s)(1 = x(s)]* dw(s)

which (as seen below) has a unique solution, with absorption at {1, 0}. ¢(x) does
not satisfy a uniform Lipschitz condition. Our Theorem 1 is directly applicable
and yields weak convergence of the processes £"(+) to x(+) on any finite time
interval, a strong result. In addition, our method is applicable to many other
problems arising in genetics, where there is a drift due to selective advantages,
where there is mutation, where the selection rule depends on time, etc.
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To prove the uniqueness assertion, suppose that the pair (%(f), w(r)) satisfy
(19) also, where w(r) is a standard Wiener process, and %(0) = x(0) = x. Define
t, (resp. %) as the first time that x(r) (resp. %()) is either < eor =z 1 —¢,¢ > 0.
Then the two processes defined by x*(r) = x(t n r,), ¥(f) = X(t n £,) are Markov
processes, and they have the same multivariate distributions. Uniqueness of
the multivariate distributions follows, since x*(f) — x(r), %(f) — %(¢) for all ¢,
w.p. 1.

The next example, following Crow and Kimura ((1970) Section 5.6, Chapter
8), and involving selective advantages due to fertility difference between the a
and A, was suggested to the author by Wendell Fleming. Let /# and ¢ denote
positive real numbers, fix the (gamete) population size at 2n, suppose that in
the current generation there are j gametes of type a (2n — jof type A), and define
p; = j/2n. Let the p,; be defined by

P = (27)]~’jlqjl s ;= 1 — P
where we define

Pi=p; + fupi)]2n

and
Opq(g + h(p — )
n( ) = N
P = T ny gty + 9

The parameters 4 and ¢ are used to represent differences in fertility among the
genotypes. We have (£," again denotes the number of gametes of type a in the
kth generation)

g=1-p.

E o pl€in — 61 = a6/ 2n
Cov, al€i — &1 = 0.2(64")[2n

= (o 420~ 12)

where

and, for a real K,

E

ta — &0 — LS < k(1 any
2n

f.(p) and ¢,%(p) converge uniformly (for p e [0, 1]) to Opg(q + h(p — g)) and pq,
resp., and Theorem 1 is applicable. '
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