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LIMIT THEOREMS FOR THE MAXIMUM TERM
OF A STATIONARY PROCESS!

By G. L. O’BRIEN
York University

This paper contains necessary and sufficient conditions, which some-
times coincide, for the limiting distribution of a uniformly (or strongly)
mixing stationary process to be the same as for the independent process with
the same marginal distributions. Examples with different limits are given.
Let Hbe any distribution function and let c,(¢) = inf {x € R: H(x)=1—¢&/n}.
The limiting behavior of Hn(ca(£)) is determined.

1. Introduction. Throughout this paper we let {X,,n = 1, 2, ...} be a strictly
stationary process with marginal distribution function H. We assume H is con-
tinuous at x, = sup{x € R| H(x) < 1}. Otherwise the problems considered here
are trivial. We also assume {X,} is uniformly (or strongly) mixing, that is, there
is a real-valued function g on the positive integers such that g(k) — 0 as k — oo
and, if 4e Z(X,, .-, X,) and Be Z(X, .1, Xpirs» - - ) fOr some m, then
|P(4 n By — P(A)P(B)| < g(k). (Here ZZ(X) is the Borel field generated by X.)
We call g a mixing function for {X,}.

Let Z, = max{X,, X,, ---, X,}. We extend some of Gnedenko’s results (1943)
about the limiting behavior of Z, in the independent identically distributed (i.i.d.)
case. Loynes (1965) obtained some results in this direction. We use similar
methods to obtain additional results.

Let{Y,} beani.i.d. process with marginal distribution H. Then P[max (Y, - -,
Y,) < c] = H"(c). Gnedenko showed that there are only three possible non-
degenerate limit law types for H"(a,x + b,). Loynes extended that result to the
present circumstances.

A sequence {c,} of real numbers with ¢, < x, is said to satisfy condition R if
there exist sequences {p = p,}, {¢ = ¢,}, and {r = r,} of positive integers such
that, if m — oo, then r— oo, rg(q)—0, p~'¢g—0 and (writing 1 = t(m) = r(p + ¢))
(1 PRSP — DP[X > | X, > ] 0.

The sequence {c,} satisfies R, if {c,} satisfies Rand, in addition, r,, ., pu 11 (7, pr) *— 1.

Gnedenko also obtained conditions on H for convergence to each of the types
mentioned above. Feller ((1966) page 270) and Marcus and Pinsky (1969) and
de Haan (1970) have obtained further results of this nature. Loynes showed that
if {a,x 4 b,} satisfies R, for all x such that 0 < ®(x) < 1, then H(a,x + b,) —
®(x) (where convergence is in distribution) implies P[Z, < a,x + b,] — O(x).
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Our Theorem 4 shows that if {a,x + b,} satisfies R, then H"(a,x + b,) — O(x)
if and only if P[Z, < a,x + b,] — O(x).

For £ between 0 and oo, define ¢,(§) = inf{xe R: H(x) = 1 — n™*}forn > &.
If H is continuous, H"(c,(§)) — e~¢. Theorem 2 determines more completely the
limiting behavior of H*(c,(§)). Loynes showed that if {c,(£)} satisfies R, for some
¢ > 0 and if H*(c,(§)) — e°¢, then P[Z, < ¢, (§)] — e~*. We give as Theorem 3
the more general result that under R,, H*(c,(§)) — P[Z, < c,(£§)] — 0.

Loynes showed that the only possible non-degenerate limits of P[Z, < c,(§)]
are the functions e=*¢, 0 < @ < 1. We give examples to show each such func-
tion is possible. In O’Brien and Denzel (1975), we give further examples. In
one, P[Z, < c,(§)] — 1 for & > 0 (that is, a = 0).

2. General results. In thissection we obtain some results for general sequences
{c.}. Theorem 1 gives necessary conditions for H"(c,) — P[Z, < ¢,] — 0, while
Lemma 3 gives sufficient conditions.

LemMmA 1. Let {c,} be a sequence of real numbers. Assume there are sequences
{9 = qn}, {r=r,} and {t = t,} of positive integers such that rg(q) — 0, r — oo,
rq(ty™* —0 and P[Z, < c]—a >0 as m— oco. Then P[Z, < c,]" — a, where
P = Pn = Int(r7't) — g (where int stands for the greatest integer function).

Proor. We have rip+¢q)<t<rp+gq+1). Let W,,V,, .-, W, V, be
the maxima of 2r successive sets of the X,’s, alternately of sizes p and g or g + 1,
the latter choices being made so that the total number of random variables is ¢.

We note that we may assume without loss of generality that g is a decreasing
function. If not, we may replace g(m) by ¢’(m) = min{g(1), 9(2), - - -, g(m)}.

We therefore have

la — PlZ, < ]| = la— P[Z, < c] + |[P[Z, < ] — P[Ni (W = o)

+ [P[Ni= (W: £ ¢)] — P[W, < ]|
la — P[Z, < c]| + PIUi= (Vi > ¢)] + r9(q)
la — P[Z, < c]| +1— PV, = c] + rg(p) + r9(9) -
The first and two last terms go to zero by hypothesis. We show the third term
goes to one.

It is enough to show liminf P[V; < ¢,]*» > 0 for a sequence «,, such that
r, = o(a,). If g(k)iseventually zero, let a,, = int(rp(2¢9)~"); otherwise, let a,, =
min {int[—r log(rg(¢))], int (rp(29)~")}." Then {a,,} is a sequence of positive in-
tegers such that r = o(a,,) (since pg~* — co and —log(rg(g)) — o), @,,9(9) — 0
and 2qa,, < rp. Divide the first 2ga,, random variables into 2a,, successive sets
of ¢ each, with maxima U,, U,, - .-, U Then

2a,,°

P[V1 = Ct]am = P[U1 = ¢ O U2am—-1 = ct] - amg(q)
= P[Zt = Ct] - amg(q)

=
=

asrequired. Thus we conclude that P[W, < ¢,]” — a. This completes the proof.
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THEOREM 1. Let {c,} be a sequence of real numbers and let {t = t,} be a sequence
of positive integers which goes to infinity. Suppose H'(c,) —a and P[Z, < ¢,] —a
where 0 < a < 1. Then P[X, ., > ¢,|X, >¢,]—>0fori=1,2,---.

Proor. We have g(m) — 0. Therefore u,,g(m) — 0 for some sequence of posi-
tive integers {,} for which u, — oo (for example, if e=* > g(m) > 0 for all m,
let u,, = int (—logg(m)), where int(x) is the greatest integer not greater than x).
There is a sequence {g = ¢,,} of positive integers such that ¢ — oo; u#,9(9) — 0
and qu, = o(t). Define r,, = u,. By Lemma 1, P(Z, < ¢,)" —a. Since H'(¢,) —a,
H(c) =14 ttloga + o(t™"). Thus (1 — p(1 — H(c,)))" — a. Fixi. Place the
random variables X, - - -, X, in pairs as follows (X, X, ), (X5, X;1a)s « - 5 (Xy X3)s
(Xaisr> Xais)s + 0> (Koo Xig)s + - o5 (Xenyir Xis), where k is even and (k)i < p <
(k + 2)i. Let U, U,, ---, Uy, be the maxima of these pairs, respectively. The
number of pairs (int (p/2i))i = ki/2 > p/3 for m sufficiently large. By elementary
inequalities,

P[Z, > c] < P[UE(U; > c)] + P[U%=k (X; > ¢)]
< p(l — H(c,)) — %PP[Xl > ¢ X > ¢
= p(l — H(c)) .

Subtracting each expression from one and taking the rth power of each, the
outside terms both go to a. Hence

rp(1 — H(c,)) — 3rpP[X; > ¢, Xiy > ¢]) — —loga.

But the first term goes to —loga. Therefore the second goes to 0. Hence the
quotient goes to 0, which is the required result.

LEMMA 2. Suppose {c,} satisfies condition R. Then P[Z, € c,] — H'(¢,) — 0.

Proor. It is sufficient to prove the result on any subsequence of m’s on which
both P[Z, < ¢,] and H'(c,) converge. The result now follows (using Lemma 1)
as in the proof of Lemma 1 of Loynes (1965).

LemMaA 3. Let{c,} be a sequence satisfying R, such that a = liminf,,_, H'(c,) > 0,
b = limsup (P(X, < ¢,))* < 1 and, for all ¢ > 0, there exists an m, such that if
m > myand m < n(l — ¢), then ¢, < ¢,. Then P[Z, < ¢,] — H"(c,) — 0.

Proor. Let s(n) = max,, {t,: ¢, <c,}. If s(n)=r1,, let t(n) =1,.,,. Then
Comy < €, < Cymy> S(n)/n — 1 and t(n)/n' — 1. For any subsequence of {n}, pick a
sub-subsequence {k} such that s(k) is strictly increasing. Since limsup, P(X; >
Cou)| P(Xy > ¢;) < limsup P(X, > ¢,4,))/P(X; = ¢,,)) < logaflogd < oo, P(X, >
o)/ P(X, > ¢;) is bounded for large k, say by M > 1. Defined, = ¢, if n = s(k)
and c, otherwise. Then d, = c, for all n. Therefore :

P[X, > d, X;;;, > d,)/P[X, > d,] £ MP[X, > ¢,, X;,, > c]/P[X; > ¢] -

Thus R, holds for {d,}. P[Z, < ¢,] — H¥(¢,) = P[Z, < d,,,] — H*d,4,) — 0 by
Lemma 2.
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3. Limit theorems for P[Z, < c,(£)]. We first examine the limiting behavior
in the independent case.

THEOREM 2. The set of limit points of H"(c,(§)), for any § > 0, is the interval
[e7¢, e=*/°] where

) 5 = limsup, , _ (1 — H(x—))/(1 — H(x)) < oo

Proor. First suppose d > 1. Fix § > 0. Let a and b be such that 1 < a <
b < 0. There is a sequence {x,} such that, for each k, (I — H(x,—))/(1 —
H(x,)) > b, x, —» x, and §/(1 — H(x,)) > (ab)/(b — a). There is an integer n in
the interval [(1 — H(x,))"%€67", (1 — H(x,))"*a"']. Then

(3) (I — H(x))b > én~* > (1 — H(x,))a .
Therefore 1 — H(x,—) > én* > 1 — H(x,), so that ¢,(§) = x;,. By (3) also we
obtain

(1 = §/(na))" < H™(eu(§)) < (I — §/(nb))" .

The left term converges to ¢~¢/; the right goes to e~¢*. Thus H"(c,(§)) has a

limit point in [e~¢/, ¢=¢/*]. Therefore the closed set of limit poiats contains
[e~¢, e~¢/°].

We note that H*(c,(§)) = (1 — én~Y)* — e~¢. We show lim sup H*(c,(§)) <
e~#° 1If 9§ = oo, this is obvious. We may assume § < oco. Suppose conversely

that there is a subsequence {n’} such that H"(c,.(£)) — e~¢ where 0 < { < &/d.
Then

#(1 — H((€) =  + o(1) .
Since H is continuous at x, and n(1 — H(c,(§)—)) = ¢ > 0, it must be that
1 — H(c,(§)) > 0. If £ > 0 (the case { = 0 is similar),

n(1 — H(c,(§)—)) = n'(1 — H(Cw(@))( 11__H,(;(’§(i5)>

= {0 + §/9)/2

for nsufficiently large, since d < §/{. Therefore limsup H™(c, (§)—)=e~¢@+e/02>
e~¢. But this contradicts H*(c,(§)—) < (1—&n~")" — e~¢. This completes the
proof. '

THEOREM 3. Assume {c,(£)} satisfies R, for some & > 0. Then P[Z, < c,(§)] —
H(c,(€)) — 0.

This follows immediately from Lemma 3 by the definition of ¢,(£). - Thus, the
result of Theorem 2 holds also for strongly mixing processes if R, holds. This
generalizes Loyne’s Lemma 1 which was for the case when § = 1. It includes
the case studied by Watson (1954), when g is eventually 0. Another theorem of
this general type has been obtained by Galambos (1972), who does not assume
stationarity. The result of Berman (1964) for sequences of the form {a,x + b,}
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is valid also for {c,(§)}. We note that the random variable Y in his result is
identically 1 in our circumstances.

4. Convergence of P[Z, < d,] for general {d,}. Of particular interest in this
section are the sequences {d, = a,x + b,}.

First we note the following fact in the i.i.d case. If lim,_, H"(d,) = a € (0, 1),
then § = 1. Suppose 6 > 1 and liminf H*(d,) = a€ (0, 1). Let & > 0 satisfy
et < a< e, Then limsup H*c,(§)—) < et < a; thus d, = ¢,(§) for all
large n. Therefore, lim sup H*(d,) = lim sup H*(c,(§)) = e ** > a, by Theorem
2. This proves the result, which Gnedenko (1943) showed under the hypothesis
H%a,x + b,) — ®(x), for some extreme value distribution ®.

THEOREM 4. Assume {d,} satisfies R,. Then H*(d,) — a € (0, 1) if and only if
P[Z,<d,]—a.

Proor. Assume P[Z, < d,]—ae(0,1). Lete > Oandsuppose m < (1 — e)n.
By an argument like that of Lemma 1, P(Z, < d,,) < P(Z, < d,) for large m and
n. Thus, d, < d,. By Lemma 2, H'(d,) — a. Lemma 3 now gives the required
result.

As a corollary, we note that if P[Z, < d,] —ae(0,1) and {d,} satisfies R,
then ¢ = 1.

5. Examples. We show each function e~*, 0 < a < 1is a possible limit of
PIZ, < c,()].

First let {J,} and {Y,} be two sequences of random variables, all independent,
with P[J, = 1] = a =1 — P[J, = 0] and P[Y, < y] = H(y) for some distribu-
tion function H for whichd = 1. Let X, = Y,. Forn > 1,letX, =Y, ifJ, =1
and X, = X,_, otherwise. LetA4e Z(X,, -+, X,)and Be (X, 5 Xpirs1>* )
Let C be the event that J, = 1 for some [ withm < | < m + k. Then P(4BC) =
P(B| AC)P(C | A)P(A)= P(B)P(C)P(A)=P(BC)P(A). Thus, |P(AB)— P(A)P(B)| =
P(C°) + |P(ABC) — P(A)P(BC)| = P(C°) = (1 — a)*—0. {X,}isuniformly mix-
ing with g(k) = (1 — a)*. Up to time n, there are approximately an independent
X;’s. By the weak law of large numbers, P[Z, < c,(§)] = H*(c,(§)) + o(1) —
e==¢. Note that H"(a,x + b,) — ®(x) if and only if P[Z, < a,x + b,] — (D(x))".
In fact, for fixed x, pick & so that e~¢ < ®(x). Then H*(c,(§)) — e . Thus
¢.(6) < a,x + b, forlargen. Thusliminf P[Z, <a,x +b,] 2 lim P[Z, <c,(§)] =
e~*¢ which implies lim inf P[Z, < a,x + b,] = (D(x))*. The rest is similar.

We now give a similar example for which g(2) = 0. Fixa e[}, 1] and let {/,}
be a Markov chain on {0, 1} with transition matrix (P;;) given by Py, = 0, Py = 1,
P,=a'—1and P, =2 — a™'. Assume {/,} is started with its stationary
probability measure (r,) given by 7, = 1 — a and 7, = a. Define {X,} as above.
Since P,, = 0, g(2) = 0. As before, one can achieve the limit e~*¢. In general,
if g(k) = 0, e~*¢ is a possible limit for any a € [k, 1].
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