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L, BOUNDS FOR ASYMPTOTIC NORMALITY OF m-DEPENDENT
SUMS USING STEIN’S TECHNIQUE!

By R. V. ERICKSON
Michigan State University

In a recent paper, C. Stein has given a new, direct technique for
bounding the error of the normal approximation to the distribution of a
sum of dependent random variables, assuming the variables form a station-
ary sequence with eighth moments. In the present paper we give two L;
bounds on this error for an arbitrary m-dependent sequence with second
moments.

1. Introduction, notation and results. Let X, X,, --- be random variables
with EX, = 0, EX,? < oo. Set
= E(Xr X,), F,(x) = P(3r X, < 5,%)
Lan = Z{L Elela/snzx and Rn = Rsn + RZn ’
Ry = Tt E(XJIs5 1K) < 5.)
Ry, = St EQGs.5 1K) > 5,) -
Let _#" denote the standard normal distribution with density

#(x) = (2m)7* exp(—x'[2) .
If X, X,, - - - are independent, Feller (1968b) shows that ||F, — .#7||.. < 6R,;
and the author (1973) shows ||F, — .#7||, < 72R,.
In this paper we extend the L, result to include m-dependent random variables.
To be precise, we prove

THEOREM A. Suppose X,, X, - - - are m-dependent. Set M, = (2m + 1)(4m +
1)(6m + 1). Then

IF — A7||s < 13My(Ls,, + L) -

(See Theorem 3.9 for a somewhat sharper result.)
Since this is of little value when fourth moments fail to exist, we truncate and
rescale to obtain

THEOREM B. Suppose X, X;, - - - are m-dependent. Set M, = (2m + 1)(4m +
1)(6m + 1). Then

IF, — A7l < 336M,R, .

(See Theorem 4.6 and the paragraph following.)
It should be noted that if X, X,, - .. are independent, identically distributed
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then m = 0 and we have the “classical rate”
[|F, — A7||, < min {13(4,/n* + A,[n), 3364,,,/n*""}

where 4, = E|X,|//(EX)}.

The procedure used to prove Theorem 1 is the extremely interesting new
technique of Stein (1972), which is direct and makes no use of characteristic
functions. It is hoped that our use of this technique to prove an L, result will
stimulate study of this method. It is noteworthy that the L, result proceeds much
more simply than the L, result of Stein, and that, in the non independent, iden-
tically distributed case, we as yet have found no way to prove the “correct” L,
result. All that we have is the trivial

THEOREM C. Let X,, X,,. - - be m-dependent. Set My = (2m+-1)(4m+-1)(6m-+-1).

Then
IFs — A 7]le = 17[M,R, ]

In the original version of this paper we included results for the case when
X,, X,, - - - satisfy certain mixing conditions. We omit these, however, since in
their present rough form they obscure the beautiful technique of Stein, and since
they are too crude to yield Theorem A when specialized to the m-dependent case.

We wish to thank Professor Stein for stimulating discussion during the summer
of 1972, especially for helping with the bound of E,; below which improves our
original version and leads to the “correct rate” in Theorem A.

In the final section of this paper we give an example which shows that the
so-called “correct rate” for m-dependent variables may be far from correct.

2. Stein’s equation. Stein (1969) gives an interesting characterization of the
standard normal random variable: W has distribution .#" iff E[f'(W) —
Wf(W)] = 0 for sufficiently many functions f. Thus, tosee if W is approximately
normal, check the magnitude of E[ f/(W) — Wf(W)]. Itis exactly this that Stein
does.

To proceed let us first verify the above characterization. This is done most
simply by defining the normal transform of any function #in B ={h: R— R|h
is bounded, measurable}:

B (x) = §2o [A(y) — vh](y) dy[=(x)
= =2 [A(y) = vhl(y) dyl(x) ,
where vi = (=, h(y)-(y)dy = Eh(-#"). (We shall consistently use .4 for both

the standard normal distribution and its corresponding random variable on any
appropriate probability space.) Further, define

B (x) = xh”(x) + h(x) — vh .
(2.1) PRrROPOSITION. For any h in B and any finite a, b, we have
187 = 4lAlle s A7 = 411l
and \} h"%(x) dx = h”*(b) — h”(a).
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Proor. When x<0, |77 (x)| < 2||A||... ¥ (x)[(x), and .#7(x)/~(x) < min (1/|x],
1/2..(x)) < 2 (for the last use x = — 4 and for the first notice that {2 ~(y) dy <
$*w —y~(y) dy/(—x) = »(x)/(—x)). This same reasoning shows that |x|.#7(x)/
»(x) < 1, and hence ||2""||,, < 4||4||... The last assertion follows by using Fubini’s
theorem. [J

The characterization of normal is now obvious: for each kin Bset f = b if
W = 4" then E[f'(A4") — A4 f(A4")] = vh — vh = 0, and conversely if for all
hin B, 0 = E(f'(W) — Wf(W)) = EW(W) — Eh(.#") then W = 4"

The next step in Stein’s technique is to bound E[ f"(W) — Wf(W)] = En(W) —
En(A"), hin B, f = k7, f’ = %, This is done in great generality in Stein
(1972), but here we shall deal only with the m-dependent case.

Fix n > m, and from now on Assume

{X,},* is m-dependent, i.c. forall i<n—m
o{X,, ---, X;} isindependent of o{X; -, X}

+m+1y

and use the Notation

Ay = Xifs, B, = Xiji—usmAi > Ci= 2ij-usmA;
D, = le—i|§3mAj s Q= A; B, — EAiBi s S=2 Aj
b,=S—B,, ,=5S—-0C,, d,=S—-D,,
f=hr", f=r" for # in B.

Summation is always taken over the indicated range and between 1 and n.

Under the assumptions it is clear that the entries in the pair’s (4,, 4,), (B;, ¢,),
(C;, d;) and (Q,, ¢,) are independent.

(2.2) ProrosiTiON (Stein’s equation). Suppose L,, < oo. Under the above
assumptions for each hin B, Eh(S) — Eh(.4") = } 1 E,, where E,, = E,(h) is given by

E = T E[f(S) — [(c)]Q:
E, =32 EAiBizf(S)
E,= 3} EA )iz 53 f'(w)dudz
E, = > EA, §)[h(z) — h(S)]dz.
Proor. Observe that
EW(S) — ER(7") = E[f'(S) — Sf(S)] = E{f"(S) + X ALf(6) — f(D)]}-

Now write f(b) — f(s) = §2 [f'(2) — ['(s)]dz + (b — s)f'(s) and f(z) — f'(s) =
(z — )f(s) + 2§ f/(u) du + h(z) — h()-

Formal substitution produces terms E,, E, and E, and would force E, =
Ef'(S)[1 — X 4,B;]. The expression for E, now follows because m-dependence
implies both that 1 = ES?* = } EA,B; and that ¢, and Q, are independent.
Under the assumption that L,, is finite it is easy to show that each E, is finite
(more details are given in the succeeding propositions), and the formal substitu-
tion is justified. []
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3. Proof of Theorem A. We would have a nice L, Berry-Esséen result for
m-dependent random variables if we could show |E, (k)| < const. ||A|w(Ls, + Lin)-
We cannot do this; nor do we see how this can be done replacing (L, + L,,) by
something of the form };}_; L,,, as in Stein (1972).

But we can do something for an L, bound, ||F, — .#7||,. In order to obtain
such a bound take h = h, = I _,, ,,s0 that Ei(S) — Eh(.4") = F,(x) — A (x) =
4 E (h,). We show how to bound

Ey = §2. |Ey(h,)] dx .
First we must prove something like (2.1).

3.1 PROPOSITION. Seth = h, = I _,, .y, [, = b, f,, = k*®. For each real
y we have

= | feO)dx =1, L fy ) dx < 3.

Proor. From the definition of the normal transform it is clear that

[ =AW = A 0)-(x) i y=x
= AW =AW i yzx.
The first equality now follows by direct calculation, using Fubini’s theorem and

expressing .4 (y) = (¥, ~(u) du. Let L,(y) denote the left side of the second
inequality. Similarly it is shown that

Ly(y) = 2-(p)[1 + y2 ()= — y(d — A ()]=()] -

If use is made of the fact (Feller (1968a), page 193) py,,(x) < [1 — A (x)]/+(x) =
Pau(%), k=0,1,.-.,x >0, wherep,(x) = x™' + L¥(—1)7[1.3...(2j — 1)]x~ P,
it is easy to show that L,(y) < 3, [yLy(y)| < 3 and lim,_, [yL,(y)| = 2. [

Before proceeding to give bounds for E,, we state an extension of an inequality
of Loéve (1963), page 155:

3.2) PROPOSITION (c,-inequality). Given random variables U,, ---, U,, set
¢,, = max (1, k"Y). Then E|U, + --- + Uy|" < ¢, 2% E|Uy|"

To get the best bounds we randomize, as in Stein (1972). Let J be a random
variable independent of all X, - - -, X, and let J be uniform on the set of indices
{1, .-, n}. Now consider the randomized random variables 4;, B;, Q,.

(3.3) PROPOSITION. For a =1 we have E|A,|* < L,,[n, E|B,|* < (2m +
1)*L,,/n, E|Q,|* < 27E|A, B,|*.

Proor. Note first that E|4,|* = n~' Y] E|4,* = n~'L,,. Next, by (3.2),
E|B)|* = X E|Bj|*[n < (2m + 1)™' 5 Fu—jizam ElAW]*[n < (2m 4 1)L, [n. Fi-
nally, again by (3.2) and also the moment inequality, E|Q,|* < 2*7'[E|A4, B,|* +
E|q,|*], where |q,;|* = |E(A; B;)|* < E|A4;B;|*. [

Similar results are true for E|C,|*, E|C, — D,|%, --- and these will be used
without further comment. Another inequality typical of what will be used
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below is
3.9 ProrosITION. Set K; = C,— D,. ThennE|C;K;Q,| <2(2m + 1)(4m +
H(2m)L,,.
Proor. Use a three term Holder inequality to get
1€ K Qilly = NCANKSALNQolls = 21l 1K1l Al | B

< 2[(4m + 1)Y(Lan[m)(2m) (Lu/n)(Lan/n)(2m + 1)*Lyu/n}t . [0
We are now in a position to find appropriate bounds for E,,.
3.5) PROPOSITION.
E, £ 102m + 1)(4m + 1)L, + 6(2m + 1)(4m + 1)(8m + 1)L,, .
Proor. We may certainly assume L,, < oo, else there is nothing to prove. From
the definition of f,’ we have E,(k,) = nE[f,/(S) — [,/ (¢,)]Q; = nE{C,f.(S)Q, +
€, Qy oy f () du + [ho(S) — ho(c;)]Qs} Now §2, [, (S) — hy(c,)| dx = |C,|, and
(3.1) implies
E, < nE|C;Q,| + 3nE|c,;C,Q,| + nE|C,Q,| .

Asin (3.4), EIC; 0| < [IC,11l|Qlly < 2/IColll| Al 1 Ble < 2(2m+ 1)(4m+ 1)Ly, .
Next ¢, = d; + (D; — C;) and 4, is independent of C,;Q,. Thus

Elc,C;Q,| < E|d,C,Q,| + E|K,C,;0Q,|, K,=D,—-C,.

Finally, since E|d;| < E|S| + E|D;| < 1 + 0;, 0, = E|D,|, we have E|d,C,Q,| =
n=' 31 E|C; Q;|E|d;| < E|C,Q,| + E|0,C,Q,|. ButE|d,|* < n™* )} E|D,|* < (6m +
1)*L,,/n,and weargue asin (3.4) to obtain E|0,C, Q,| < ||6,4|C,l1Q/l|: < 2(6m+
1)(4m + 1)(2m + 1)L,,/n. Adding all of the estimates gives the result. []

(3.6) ProOPOSITION. E, < 1(2m + 1)’L,,.

PrOOF. 2E, < nE|A,; B/ < n||4,||s||B/|ls = nl|A,ls||B,ls* < n(Ls,/n)}((2m +
1)Ly, /n)t. []
(3.7) PROPOSITION. Ey < 3(2m + 1)Ly, + 3[3(2m + 1)* + 1(2m + 1)(6m +
DL

Proor. Since |z| < |z — S| + |S| we have

L1E; < nE|A; ¥ |z]|z — S| dz]
< % E|4,B}| + _’;. E|A,B}S)| .

Write S=B,+c¢,+K,, K, =C, — B, to get iE, <3%H + {H, 4+ iH,
where H, = nE|4, B < n||4,|l||B/||¢ < @m + 1¥L,,, H, = nE|4,B?K,| <
(2m + 1)*(2m)L,, and (as in the proof of (3.5)) H; = nE|A,B*c,| < nE|A; B} +
nEly, A, B < 2m + 1)L, + (2m + 1)¥4m + 1)L,,, where y;, = E|C;|. []
(3.8) PROPOSITION. E,; < 1(2m + 1)’L,,.

Proor. §= |k (z) — h,(S) dx = |z — S|, and thus E,; < (n/2)E|A,B;|. [
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Addition gives the next result, of which Theorem A is a simple corollary.
(3.9) THEOREM. Suppose X,, X,, - - - are m-dependent. Then for all n

|F, — A < (12.5)(2m + 1)(3.6m + 1)L,
+ 102m + 1)22m? + 9.4m + 1)L, .

Let us point out the problem in getting L., bounds by the above methods. For
the L, bound we encountered § |4, (z) — #,(S)|dx = |z — S|, h, = I _., ,, both in
E, and E,;; in the L, case this is instead sup, |h,(z) — h,(S)| = 1. This is exactly
the problem. Some bounds can be given, but they lead to the square root of the
“correct bound” and a proof of Theorem C which is not as nice as our geometric
proof using Theorem B. (See the last paragraphs of Section 4.)

4. Proof of Theorem B and C. We prove Theorem B by giving an L, bound
for the error committed by truncation. We also give results which apply to the
L, case. To do this we first prove

4.1) PRrOPOSITION. Let U and V be random variables with distributions G and
H. Then
G —H|, =ElU—-V], [[6-H.=PU+V).

Proor. The L, inequality follows from the identity G(x) — H(x) = P(U < x,
U+#V)— PV <x,U= V). For the L, inequality define 7, = I _,, ,;, so that
IG — H||\ = §=., |EI(U) — EI(V)|da < E §=., |I(U) — I(V)| da = E||U — V.
(This trick now has been used three times.) ]

(4.2) PROPOSITION. Let a > 0 and define 4 (x) = 4 (ax). Then ||.¥, —
AN = 41— a7 and ||V, — A, = §]1 — a7,

Proor. Let U have distribution .#" and ¥ = UJa have distribution _#",. Then
ElU — V| = |1 —aY|E|U| £ £|1 — a7'| and the L, part follows from (4.1). For
the L,, part, first take a = 1 and notice that |4 (ax) — A7 (x)| = |{%* »(y) dy| =
la — 1||x»(x)|. Since |x~(x)| is maximal at |x] = 1 and »(1) < £ we have the
result, for |4, — A |e = || — A o]l O

Let us use these in the following truncation setup. Set 7* = s,” = E(} X,)%
define X,7 = X, I(|X,| < ), and

Y,= X, — EX,;”, Z,=X,—Y,.

Set T = 3 Y,, t>= ET* r = s,[t,. Finally, write F, — 4" = H, + H, + H,,
Hy(x) = F(x) — (T < s,x), Hyx)=P(T < t,rx) — 4 (rx) and Hy(x) =
A x) — A ().
We will bound H, using L,.(Z) = 3 E|Z,|*/s,* and L,,(Y) = X E|Y,|*/[s,".
From (4.1) follows
(4.3) ProrosITION. ||H,||, £ L,,(Z).

Define M, = [[%., 2jm + 1).
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From (3.9) and the change of variable y = rx follows
4.4) PROPOSITION. We have
[|Hll, < (12.5)r*M, Ly, (Y) + 10r*M,L,,(Y) .
Clearly ||H,||, < 4|1 — r?|, because of (4.2). Let us bound this.
4.5) ProposITION. |1 — r7?| < M|[4L,,(Z) + L,,(Z)].

Proor. Notice that 1 — r=* = (s,> — ¢,%)/s,? and that s,’ — t,> = Var ()} X,) —
Var (T) = Var (X Z,)+2Cov (T, 3} Z,). Because of m-dependence Cov (Z,, Z;)=
0 =Cov (Y,, Z;) if |j — k| > m. In general, |2 Cov (Zw Z;)| S EZ? + EZ7,
and |Cov (Y,, Z,)| < E|Y,Z,;| < 2s,E|Z,|. The result follows by writing s,’ —
)= N [EZ}+2Cov(Y,, Z)]+ L X532k [2Cov(Z;, Z,, ;) +2Cov(Z,, Y,y )+
2CoV (Zy;, Y] 1

Combining these we prove

(4.6) THEOREM. ||F, — 47|, < 14(K, + K,), where K, = M,[4L,,(Z) + L,,(Z)]
and K, = M, L, (Y) + M,L,,(Y).

Proor. By (4.1) we know that ||F, — 47|, S E|S — S| < ||S— A ||, =
[Var (S)+Var 47t < 2%, Thus we may assume K, < 2¢/14, and from 1 —r—2 < K,
it follows that r? < 1.12, r®* < 1.2. Substitution of these values in the bound for
||[H,||, and addition of the bounds for ||H,||, give the result. [}

To prove Theorem B use the c,-inequality (3.2) and the moment inequality to
see that L,,(Y) < 8R,,, L,,(Y) < 16R,,, while L, (Z) < 2R,,, L,,(Z) < R,,.

To prove Theorem C, if ||F, — .#7||., = &, draw a triangle with height / and
base 5h/2 completely between the graphs of F, and .#" This can be done since
¥ has maximum slope -(0) < 2. This triangle has area equal 542/4 < |Fn— A
and we see that ||F, — 47|, < 2[||F, — A7||,/5] £ 16.5(M,R,):.

5. An example. Suppose X,, X;, - - - are identically distributed and 1-depend-
ent and that EX;* < co. Then (3.9) implies that

||F, — 47|, < 1000Kn(s,™® + s5,7%) = B,
where E|X,’, EX;* < K < co. We will construct a sequence so that
B, > Cnt, [|F, — A, < Cnt

for some constant C, 0 < C < co. This will show that while our bounds in terms
of L,, look effective, in fact they are not the proper generalization of the classical
Berry-Esséen theorem.
In order to construct such a sequence we merely have to choose the X; in such
a way that ‘
57 = E(X7 X, ~ n}

while S, = 31 X, consists only of essentially n* independent, identically distrib-
uted (i.i.d.) terms.
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To do this let Y;, Y,, - -+ be i.i.d. with EY, =0, EY? =1, EY = K < co.
Notice that if X,,_, = Y,, X,, = —Y, then 5,2 = 0if n even, = 1 if n odd. If
we do not force quite so much cancellation we have the result we want.

More precisely, define X, inductively as follows. Set X, = Y,, X, = Y,. After
k terms are defined, when X, = Y}, define X,,, = — Y, if 52 > k* and X,,, =
+7Y;,, if 5, < k¥ on the other hand, if X, = —Y; just define X,,, =Y,,,. A
graph makes it clear that |s,* — n¥| < 2. Therefore )7 X, contains approximately
nt nonzero i.i.d. terms. If we apply (3.9) with m = 0 to this i.i.d. sequence we

get ||F, — A7||, < C'n¥(n~t + nt) < Cn~i. The result now follows from the
definition of B,.
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