The Annals of Probability
1974, Vol. 2, No. 3, 480-485

CONDITIONAL DISTRIBUTIONS AND TIGHTNESS'

By PATRICK BILLINGSLEY
The University of Chicago

Conditions for tightness and weak convergence of sequences of sto-
chastic processes are given in terms of restrictions on the conditional
probabilities of large increments and of large jumps.

1. Results. Let D be the space of functions on [0, 1] with discontinuities of
at most the first kind, with the Skorohod J, topology (see [2] for the theory of D
and for the other weak-convergence concepts required here). For a random
element X of D, let J(X) be the maximum of the jumps |X(f) — X(r—)|, and let
Jis.c(X) be the maximum jump in the interval [s, r]. Let M(X) = sup, |X(#)|. In
all that follows, 0 < d < 1, ¢ > 0, r > 0, and A is a Borel set on the line.

Let a(A, ¢, 6) be a number such that

e)) o< .-, <551, §—1,<0
implies that
0) PIIX(s) — X(t)] > €[ X(8), - - X(t,)] < a(4, &, 0)
holds with probability 1 on the set
3) [X(t) € A, -, X(t,) € 4]
Let 7(4, r, 6) be a number such that (1) implies that
) Pl o(X) Z rl|X(t), -+ X(t)] < 7(4, 7, 9)
holds with probability 1 on the set (3).
If the functions « and y are small in an appropriate sense, then the random
function X has small probability of oscillating violently; it is therefore possible
to formulate tightness conditions in terms of these functions. Suppose that, for

each X, in a sequence of random elements of D, «, and 7, are related to X, by
the analogues of (2) and (4).

THEOREM 1. The sequence {X,} is tight in D if the sequence {M(X,)} is tight on
the line, if

(5) lim,_, lim sup,_, @,(4, ¢, 8) = 0

for each positive ¢ and each bounded set A, and if

(6) lim,_,, lim sup,_, lim sup, ., 7,(4, 7, 0) = 0
for each bounded set A.
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Theorem 1 has been applied by Barbour to prove convergence of epidemic
processes. It can also be used to give a simple derivation of the results of Section
4 of [4]. Note that (5) is not a necessary condition for tightness even if X, is
continuous and does not depend on n: If X = x, with probability 2-*, where
x,(f) = k' + kt, then P[X(9) — X(0) > ¢|| X(0) = k7] = 1 for k > ¢/o.

THEOREM 2. If (5) and (6) hold, if the sequence {J(X,)} is tight on the line, and
if the finite-dimensional distributions of X, converge weakly to those of X, then
X, —, X

These results become weaker but simpler if given in terms of a,(e, 0) =
a, (R, ¢, 0).

THEOREM 3. The sequence {X,} is tight in D if
©) lim,_, lim sup,,_,, a, (¢, 0) = 0
for each positive ¢ and if for each t the sequence {X,(t)} is tight on the line.

Theorem 3 is due to Grigelionis [3]. A variant may prove convenient:

THEOREM 4. The sequence {X,} is tight in D if (7) holds and if the sequence { X, (0)}
and {J(X,)} are tight on the line.

THEOREM 5. If (7) holds, and if the finite-dimensional distributions of the X,
converge weakly to those of X, then X, — X.

Theorem 5, together with Chebyshev’s inequality, gives a simple proof of
Donsker’s theorem.

2. Three lemmas. It will be convenient to take the a in (2) to be minimal:
a(A, e, 0) is the supremum over (1) of the essential supremum of the left side of
(2) over the set (3). In the same way, let y(4, r, 6) be the smallest number such
that (1) implies that (4) holds with probability 1 on the set (3). Let 5(4, ¢, d) be
the smallest number for which (1) implies that

®) P[SUp,,, <us, | X(#) — X(1,)] > €| X(1), - -+, X(ta)] = B(4, ¢, 0)

holds with probability 1 on (3). Put (¢, d) = B(R", ¢, ). Denote by A° the e-
neighborhood of A—the set of points x such that there exists in 4 a y with
|x —y| <e.

LEMMA 1. We have

) B(A, &, 8) < 2a(A*7, Je, 8) + 7(A, 1, D)
and
(10) Be, 9) < 2a(de, 9) .

Proor. We shall use the fact that, if M, lies in a o-field &, then requiring
P[H||.#] £ « with probability 1 on M, is the same thing as requiring
P(M n H) £ aP(M) for all M with Me &% and M C M,.
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In proving (9) we may assume that s = ¢, + ; write ¢ in place of 7,. Suppose
M is a subset of (3) and lies in the o-field generated by X(t,), .- -, X(#,). Fixa
positive integer k for the moment and for 1 < j < 2* define

J

M, = [maxosiq. X(t n 5175> — X(t)l <e< 1X<t + —217 5) - X(t)H.

Notice that, on theset M n M, we have X(t + i27*0) e A*for0 < i < j— 1. Now
i
X(t + 275) — X(1)| > {l)
= P(M 0 [|X(r 4 9) — X(0)] > $e])
e P(M N M, n [X(t +1; 5) eA5+':|

P<M n [maxiézk

n[[xe+ o - x(r+ o) > ))

B o [ o) S50 )

By the defining property of a, this is at most
2a(A*", Le, 0)P(M) + P(M n Jy),

where J, is the set where | X(t + j27*3) — X(t + (j — 1)27%9)| = rforsomej < 2*.
Letting k tend to infinity and using the defining property of 7 gives

P(M 01 [$UP,zuzess [X(H) — X()| > €]) < 2a(4*, 4o, O)P(M) + 7(4, 1, 6)P(M) ,

from which (9) follows. Replacing Aand 4**" by R"in this argument and omitting
the J, gives a proof of (10) which is formally (9) with 4 = R'and r = co.
For the definition of w’ see ([2] page 110).

LEMMA 2. For each pair 6 and 6, (0 < d, 6, < 1),
(1) Plwy(39) = 2¢]

< 2P(U .z [X(1) € A]) + (4, ¢, 0) + — 2P & 9)

a1 — B(4, ¢, d0))

and

2 Plw/(43) = 2¢] < B(e) 0) + 2P0
(12) e/ (49) 2 26] = 86 0) + 50 5o

Proor. We prove (11), (12) being the case 4 = R'. Fixe¢, 9, and d,, and for
a positive integer k, temporarily fixed, define random times T,, T}, - - - as follows.
Take T, = 0; T,_, having been defined, take T, to be the smallest u of the form
i2-* satisfying T,_, < u < 1 and |X(u) — X(T,_,)| > ¢, with T, = 2 if there is
no such u. Note that T,_, > 1 implies 7, = 2. Put D, = T, — T,_,; note that
Y. D, <2

If T,_, = j2=* < 1, then(since § < 1) D, < & implies that | X(x) — X(j27%)| > e
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for some u with j27% < u < j2=* 4 § and u < 1. Therefore
(13) PID, < 3| X(127¥), i < j] < f(4, <, 3)
holds with probability 1 on the set
My =[T,, =j27% X2 e 4,i < J].

The same relation holds for §,, so that
(14) E[D,|| X(127%), i < J] = 01 — B(4, ¢, dy))
holds with probability 1 on M,;.

We want to show that the event
(15) T,—T,_,=9d if T,_,<1, i=1,2,...
has high probability. Write » = P({,, [X(?) ¢ 4]), 8 = B(4, ¢, 9), and B, =
B(4, ¢, d,). Since (13) and (14) hold with probability 1 on M,;, (15) holds except
on a set of probability at most

7+ L P, <D, <05 X()ed, t < 1)
=7+ 2z Dk P(My; 0 [Dy <) =94 8 X 2ij<ak P(M,;)

=7+ 5;(1‘8_—[30) Ziiz1 Dl j<ak SM” D, dp

28
syt P L ED =g+
ol — g = o1 — Bo)
If (15) holds, then there exist points s;*, i = 0, 1, - -, N, such that
0=S0k<-~<S1"\’,k=1, sk—st, =9, i=1,.---,N, — 1
(the last inequality may fail for i = N,) and such that | X(r) — X(s)] £ 2¢ifsand ¢
have the form i2-* and lie in a common interval (s_,, s*,i=1, ..., N, suchs?*
exist except on a set of probability » + 28/5,(1 — 8,). If such s,* exist for infi-
nitely many k, then, since N, < 1 + 6, there is a subsequence of integers k
along which the N, have a common value N and along which s,* converges for
eachi = 0,1, ..., N to some s;, in which case
(16) 0=S0<~-~<SN_1§SN=1, 5 — 85420,
i=1,...,N—-1.
Since |X(r) — X(s)| < 2¢ if s and t are dyadic rationals in a common interval
(8i-15 5,), it follows by right-continuity that
17 WelSio1s 8;) < 26, i=1,..-,N.
And outside a set of probability » + 28/d,(1 — 8,) there exist s, satisfying (16)
and (17).
By the definitions of » and 8,

(18) SUP _sgust [ X(#) — X(1 — 0)| S ¢

outside a set of probability » 4 8. Suppose (16), (17), and (18) all hold. If s, _,
exceeds 1 — 9/2, replace it by 1 — §/2; the new s, satisfy (17), and s, — s, , = 0/2
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for i=1, ..., N. Thus w'(d/3) < 2¢ outside a set of probability 2 + 8 +
2B/6,(1 — B,), which proves (11).

These two lemmas suffice for the proof of Theorem 1. The remaining theorems
require a third lemma.

LEmMma 3. If

(19) 0=s5< - <sy=1, s, —5_,<90, i=1,...,N,

then
(20)  P(Uisi [X(D) € 4]) < P(U sy [X(5:) € A]) + (A7, ¢, 0) + P[J(X) = 7]
and

21) P(Ues [X(1) € A]) = P(Uisw [X(s)) € A]) + a(e, 9) -
Proor. Let 0 = u, < --- < u, = 1 be points that include the 5, among them,
and forj =1, ..., k define

M; = [X(u)e 4,0 <1< j; X(u;) ¢ A°].
Let » = P(U;<y [X(5;) ¢ A]). If the inner sums below denote summation over
those j for which s,_, < u; < s,, then

P(U <k [X(u;) € 4°])
=7+ 25 2 P(M; 0 [X(uy) e A7) 0 [|X(u5) — X(si)| > ¢])
+ 2% 2 P(M; 0 [|X () — X(u)l = 1)) -
By the defining property of a, this is at most » + a(A4*", ¢, ) + P(M’), where
M’ is the set where |X(u;) — X(u;_,)| = r for some j < k. Letting the u; become
dense in [0, 1] yields (20). Replacing 4*" by R* in this argument and omitting
M’ gives a proof of (21), formally the case r = co.

3. Proof of Theorem 1. By Lemma 1, the hypotheses (5) and (6) together imply
(22) lim,_, lim sup,,_,, 8,(4,¢,0) =0

for bounded 4. Suppose positive ¢ and 7 are given. Since {M(X,)} is tight by
hypothesis, there is a bounded set A such that P(|J,<, [X,(¢) € A]) < 7 for all n.
And by (22) there exists a 9, such that 8,(4, ¢, d,) < 3 for large n. That d, fixed,
there exists a ¢ such that §8,(4,¢, d) < 59, < » for large n. By Lemma 2,
P[w,'(9/3) = 2¢] < 7y for large n, which proves tightness (see Theorem 15.2 of
[2)).

4. Proof of Theorem 2. Weak convergence will follow if we prove {X,} tight,
and by Theorem 1 this will follow if we prove {M(X,)} tight. Suppose 7 is given.
Since {J(X,)} is tight by hypothesis, there is an r such that P[J(X,) = r] < » for
all n. Choose a so that P[sup, |X(f)| = a] < », put A = (—a, a), and then choose
d so that a,(4'", 1, 9) < 5 for large n. Fix points s, satisfying (19). Since the
finite-dimensional distributions converge,

limsup, ., P[maxi_S_N [Xa(s)| = a] < P[max,gy |X(s;)| = a] <7,
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so that P(Uzy [X.(s;)) € 4]) < 7 for large n. It follows by Lemma 3 that
Psup, | X,(7)| Z a + 1] < 37 for large n, which proves that {M(X,)} is tight.

5. Proof of Theorem 3. From (7) and Lemma 1 it follows that
(23) lim,_, lim sup,,_,, 8.(s, 6) = 0,
which, together with Lemma 2 (use (12)), implies
(24) lim,_, lim sup,_,, P[W% (0) = ¢] = 0.

That {X,} is tight will now follow if we show that {M(X,)} is tight. Given a
positive », choose d so that a,(1,d) < » for large n. That ¢ fixed, choose s,
satisfying (19) and then, using the tightness of each sequence {X,(¢)}, choose a
so that P[max,_, |X,(s;)] = a] < » for all n. From Lemma 3 it follows that
P[sup, | X,(1)] = a + 1] < 27 for large n, which proves {M(X,)} tight.

6. Proof of Theorem 4. By Theorem 3, it suffices to prove that the sequence
{X.(9)} is tight for each 7. As before, (23) holds and hence so does (24).
We first show that

(25) Sup, [x(0)] = [X(O)] + - w/(@) + ~ J(x)

for x in the space D. Indeed, given ¢ choose points s, such that0 = 5, < --- <
5, = landsuch that s, — s, , > d and w,[s,_,, 5,) < w,/(0) + efori=1, ..., k.
Since k < 1/6 and [x(?)] < |x(0)] + k(w,'(d) + ¢) + kJ(x), letting ¢ tend to 0
gives (25).

From (25) it follows that

(26)  Plsup, |X,()] = 3a]
< P[|X,(0)] = a] + P} (3) = da] + P[I(X,) = da] .

For 5 > 0, there exists by (24) a 6 such that P[w) () = 1] < 5 for large n.
Choose v so large that P[|X,(0)] = v] < n and P[J(X,) = v] < pforalln. If a
exceeds v, 1/d, and v/, the left side of (26) is at most 35. Thus {M(X,)} is tight.

7. Proof of Theorem 5. If the sequence {X,(f)} is weakly convergent, it is
tight. Hence Theorem 5 is an immediate consequence of Theorem 3.
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